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Abstract
Aluminum alloys were used in engineering applications, such as aircraft, aerospace, automobiles, and various other fields due to
being light-weight, have relatively high strength, retain good ductility at sub-zero temperatures, have high corrosion resistance,
and are non-toxic. Three-dimensional printing was used for the fabrication of aluminum alloys and aluminum metal matrix
composites with high precision, shorter lead time, cost-effectiveness compared to traditional manufacturing. In the 3D printing
process, Al-Si alloys and composites were produced by using powder-based manufacturing techniques, such as Selective Laser
Melting (SLM), Laser Powder Bed Fusion (LPBF), and Direct Metal Laser Sintering (DMLS) due to their higher laser absorp-
tion. The mechanical properties of built parts were improved compared to the traditional manufacturing process and some
drawbacks in surface finishing, dimensional accuracy. The mechanical and tribological properties of 3D printing Al-Si alloys
were dependent upon process and process parameters. Pre and post-processing methods were used to improve the mechanical
and tribological properties. In this paper, an attempt has been made to review the mechanical and tribological properties of 3D
printing Al-Si alloys and their composites in various additive manufacturing processes with varying process parameters and to
review the effect of pre and post-processing methods on mechanical and tribological properties of 3D printing Al-Si alloys and
their composites before and after pre and post-processing methods. The mechanical properties of Al-Si alloys produced in 3D
printing methods were more compared to the conventional manufacturing methods. The ductility of the 3D printed Al-Si alloys
were improved in heat treatment methods, such as hot isostatic pressing, annealing, and solution heat treatment methods. The 3D
printing methods were successfully used for manufacturing Al-Si metal matrix components. The wear resistance of the 3D
printed Al-Si metal matrix components were more compared to the conventional manufacturing Al-Si metal matrix components.

Keywords 3D printing . Al-Si alloys . Al-Si composites . process parameters . pre and post-processing methods . Mechanical
Properties . Tribological properties

1 Introduction

Three-dimensional (3D) printing is also called additive
manufacturing (AM), described first in 1986 by Charles [1].
It is defined as the process of adding material layer-by-layer

with a layer thickness as small as 20μm to make components
from 3D CAD models [2–4].The AM process accorded with
several advantages like flexibility in design, higher productiv-
ity, less wastage in material and energy over the conventional
way of manufacturing the industrial components [5]. The de-
velopments in additive manufacturing processes during the
last three decades invited the manufacturing of a widely range
of functional and operational industrial parts [6–9] made of
plastics, ceramics, and metals with in competitive costs and
times [10–13]. Different type of materials used in additive
manufacturing process for making the functional parts, are
stainless steels [14,15], titanium [16,17], nickel [18,-
19],copper [20,21],gold [22], aluminum alloys [23–25], metal
matrix composites [26,27] and ceramic materials [26]. The use
of AM process is also gained attraction for manufacturing of
complex rapid prototyping tools with design flexibility [28].
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Small batch sizes are produced in AM at a reasonable cost
[29]. The time gap between design and manufacturing is re-
duced by reducing the wastages and replacing the manufactur-
ing process with a single process in AM [30, 31]. Parts pro-
duced in AM are used in different applications, in medical
such as dental prostheses, orthopedic implants [32], in the
aerospace industry such as lightweight scaffold implants
structures [33], in the automotive and power sector [34–35].
The limitations in metal AM are the size of the part which
intern depends upon the size of the machine chamber, higher
machine cost, poorer surface finish, product anisotropy, and
cost of the powders [36–37]. In the industry 4.0 revolution,
AM is one of the leading sectors [38–39].

Aluminum alloys and their composites are used for various
engineering applications in aircraft, aerospace, automobiles,
electronics, and railway industries. The attractive characteris-
tics of these materials for such applications are lightweight,
high strength, high stiffness, and high load to weight ratio,
tremendous wear resistance, corrosion resistance, excellent
electrical and thermal conductivity, and low thermal expan-
sion coefficient [40–44]. Depending upon the alloy, they have
a melting point temperature range between 482°C and 660°C
[45]. In traditional manufacturing, aluminum and its alloys are
produced by using casting, extrusion, and forging processes.
The disadvantages in conventional manufacturing are the de-
lays in the production process, high cost, formation of thin-
walled and irregular shapes during the production of complex
geometry structures [46]. AM in the present industrial sectors
is gaining more attention to fabricating aluminum alloy-based
functional components as a new manufacturing technology.
Initially, the AM process is used to produce the prototypes,
and later, it is being used to create highly complex parts [47].
Through continues development and research, 3D printing
techniques switched from “rapid prototyping” into “rapid
manufacturing” [48]. The recent technological advancements
emerging for metal parts manufacturing are Selective Laser
Melting (SLM) [49], Laser Powder Bed Fusion (LPBF) [50],
and Direct Metal Laser Sintering (DMLS) [51].

As with the conventional manufacturing process, the me-
chanical and tribological properties of AM components also
depend upon their processing parameters. The internal stress
of the LPBF Ti-6Al-4V alloy is lower at higher laser power
[52]. The laser power affects the porosity of the built parts.
The porosity of the SLM15-5PH stainless steel decreases with
decreasing the laser power [53]. The porosity of the LPBF
316L stainless increases with reducing the laser power [54].
The tensile strength of the additive manufacturing parts in-
creases with increasing the laser scanning velocity [55]. The
porousness of the SLM 15-5PH stainless steel decreases with
increasing the laser scanning velocity [54]. The laser scanning
velocity affects the mechanical features of the SLM 316L
stainless steel [56]. Higher relative density of the SLM 316L
stainless steel and better mechanical properties were obtained

at higher laser scanning speed [57]. The hatch spacing affects
the ultimate tensile of the 3D printed parts. The maximum
tensile strength of SLM Ti–6Al–4V alloy decreases with in-
creasing the hatch spacing [58]. The tensile strength of the
SLM 316L stainless steel increases with increasing the sample
thickness from 1mm to 3mm [59]. Gan et al. [60] examined
the effect of SLM 18Ni300 steel extracting parameters on
hardness, the higher hardness of the built samples obtained
at a laser power of 150~200W, a laser scanning velocity
600mm/s, and hatch spacing of 0.105mm. The post-heat treat-
ment methods are used to enhance the mechanical features of
3D printed samples. The mechanical characteristics of the
SLM Zr-modified AA6061 alloy are increased after the T6
heat treatment [61]. The mechanical features of the SLM Al-
Cu alloy components improved after aging heat treatment
[62]. The mechanical characteristics of the SLM AlSi10Mg
alloy components were improved after heat treatment at
175°C for 6h [63]. The additive manufacturing methods are
used to fabricate the aluminum-based metal matrix compos-
ites, and the mechanical properties of aluminum alloys are
improved by reinforcement particles [64–66].

2 3D printing methods

According to ASTM F42 standards, 3D printing methods are
classified as (i) material extrusion,(ii) vat polymerization,(iii)
binder jetting,(iv) material jetting, (v) powder bed
fusion,(vi)sheet lamination, and (vii) direct energy deposition
[67]. These technologies are evolved for manufacturing dif-
ferent parts made of polymers, photopolymers, ceramic, and
metallics. Binder jetting, material extrusion and powder bed
fusion are used for polymers, while material jetting and vat
polymerization are used for photopolymers. Binder jetting,
powder bed fusion, sheet lamination, and vat polymerization
are used for ceramics, and sheet metal lamination is used for
metallic sheets. Binder jetting, powder bed fusion and direct
energy deposition [68] are adopted for metal AM. The inher-
ent physical properties with aluminum alloys, such as high
laser reflectivity, formation of oxide film, thermal expansion,
and high thermal conductivity, restricted the application of 3D
printing methods for widespread manufacturing of industrial
components comparedwith the steel, titanium (Ti), nickel (Ni)
based alloys. Due to the higher laser absorption property with
the Al-Si alloys made them easy to process using laser-based
AM approaches compared with their allied alloys. Hence,
powder bed fusion and direct energy deposition methods are
more pronounced AM processes for manufacturing Al-Si al-
loy components. Electron beam, laser energy, and welding arc
sources are used to fuse the feedstock material in the direct
energy deposition method. The wire is used as a feedstock
material in electron beam and welding arc, while powder is
the feedstock material in the laser energy source [69–72].
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Direct energy deposition is referred to as Direct Metal
Deposition (DMD), Laser Metal Deposition (LMD), Laser
Engineered Net Shaping (LENS), or Electron Beam Melting
(EBM) [73]. DMD and LENS methods are used for additive
manufacturing of Al-Si alloys [74–77]. Compared to the
Powder Bed Fusion process, the porosity of built parts is
higher, and relative density is less in the DED method [77].
Coarse microstructures are observed in the DED due to tem-
perature cycle history, and the internal cooling rate is less
during the process, and layer thickness is higher compared
to the powder bed fusion process [74,75]. Powder Bed
Fusion is referred to as Laser Powder Bed Fusion, Selective
Laser Melting, and Direct Metal Laser Sintering, but the prin-
ciple of operation is the same in all cases [73]. Compared to
the Direct Energy Deposition method, the Powder Bed Fusion
methods are widely used to manufacture Al-Si alloys. In the
Powder Bed Fusion method, Selective Laser Melting (SLM),
Laser Powder Bed Fusion (LPBF), Direct Metal Laser
Sintering (DMLS) technologies are widely used to produce
Al-Si components [49–51].

2.1 Selective Laser Melting

SLM is one type of powder-based three-dimensional printing
technique used for manufacturing metal parts since the 1980s
[78]. It is used to produce parts with complex shapes [79]. In
SLM, the final part is made by laser fusion of powder material
based on the CAD input model [80–82]. The working princi-
ple of the SLM process is shown in Fig. 1. SLM is an eminent
metal 3D printing process. It is also known as DMLS [83],
Laser Metal Fusion (LMF) [84], and Laser Beam Melting
(LBM) [85], depending upon the manufacturers of the ma-
chine. Nowadays, industries need design freedom,
manufacturing flexibility, and the depletion of cost and time
for complex parts [86–88]. The mechanical strength and sur-
face quality of functional parts produced in the SLM process
are higher than the conventional parts [89,90]. Themechanical
properties of the SLM components are superior to the

traditional casting and powder metallurgy processes due to
the rapid cooling [91–93]. Due to the fast solidification and
high freezing rates, very fine microstructures are formed in the
SLM process [94–98]. The impediment in the SLM process is
the surface quality of the built parts, and it is to be improved
[99]. The surface roughness of the produced parts affects the
mechanical properties. However, the surface quality of as-
built products depends upon the selection of suitable parame-
ters and balling phenomenon formed due to the coarse molten
metal.

The SLM process is affected by operation parameters and
material variables which controlling the processing and
strengthen the mechanism of sintered components. These pa-
rameters directly affect the part geometry, dimensions of the
built part, density, and spatial distribution of pores within a
component. Such information is essential in developing strat-
egies for reducing the defect content inside parts [100].
According to spears [101], there are four categories of param-
eters which are influencing the process. These are laser pa-
rameters, properties of powder particles, powder bed proper-
ties, and environmental parameters. The SLM process can be
managed using parameters such as powder material, build
direction, inert gas flow velocity, build platform temperature,
and process parameters [102–108]. The process parameters in
the Selective Laser Melting process are laser power, laser
scanning velocity and strategy, hatch space, and layer thick-
ness [86]. The laser parameters and scanning strategy influ-
ence the density of the built parts [109–111]. In the SLM
process, the molten metal's stability and the built part's final
shape depend upon the laser parameters [112,113].

Generally, metal AM machines manufacturers are design-
ing the machine with a wavelength of 1μm to allow optimal
absorption for all metal materials [114]. The laser absorption
of aluminum is low compare to other metal materials on a
wavelength of 1064 nm. The laser absorption of aluminum
is better for wavelengths close to 10μm due to an oxide layer
in the powder particles [115]. The power of the laser used in
laser sintering and laser melting are different, and this is the

Fig 1 Selective laser melting process [122]
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main difference between the two processes. The highest tem-
perature reached in the laser sintering process of aluminum
depends upon the alloy type and is generally between 595°C
to 625°C. In the case of the laser melting process, the maxi-
mum temperature is reached to the melting point temperature
of aluminum i.e., more than 660°C [116]. In the SLM process,
the melt fluids' mechanics affect the final product's surface
quality. The sintering of aluminum powders is complicated
due to the natural presence of alumina [117].SLM has become
an exemplary fabrication process for aluminum parts since it
dramatically shortens the production design and planning.
Other significant advantages of the SLM process are less
wastage of material [118], topological optimization [119],
and re-melting of un-melted powder [120,121].

2.2 Direct Metal Laser Sintering

Direct Metal Laser Sintering (DMLS) is a powder-based 3D
printing technique used for manufacturing metal parts. It uses
the laser beam to carefully melt the fine metal powder and
build it into a fully denser layer-by-layer. This process is en-
tirely automated, and it is used to produce the complex shape
parts from the computer-aided design data without the need
for special tools [123]. And this method was introduced by
EOS GmbH [124]. It is also known as SLM [83], Laser Metal
Fusion (LMF) [84], and Laser BeamMelting (LBM) [85]. The
moral principle of DMLS is shown in Fig. 2. The blended
powders are used as feedstock in the direct metal sintering
process. Two types of composite powders are primarily used
with low and high melting point temperatures. These powders
are fused with the laser beam. The powder with a high melting
temperature moderately melts only near the surface during the

fusion, whereas the powder with a low melting temperature
melts perfectly [125–127]. The rapid cooling and solidifica-
tion allow production parts with fine microstructure in the
DMLS process [128]. This process offers a good balance be-
tween the investment costs, range of materials, and part qual-
ity, while the finishing quality of parts is still an issue [129].
The surface roughness of the metal AM parts is between 8 to
25 μm (Ra) [129,130], while it depends upon the selection of
the processing parameters [131]. Powder material, build direc-
tion, inert gas flow speed, build platform temperature, laser
power, laser scanning velocity, laser scanning strategy, hatch
distance, and layer thickness are the significant parameters
that control the quality of the built part in the DMLS process
[102–108]. In the DMLS process, the denser parts with the
best surface quality can be produced by selecting such pro-
cessing variables [132].

2.3 Laser Powder Bed Fusion (LPBF)

Laser Powder Bed Fusion (LPBF) is a powder-based 3D print-
ing process used to produce metal parts [134]. Depending on
the machine manufacturer, the Laser Powder Bed Fusion is
also known as Direct Metal Laser Sintering (DMLS) for EOS
Gmbh, laser CUSING for concept laser, Direct Metal
Production (DMP) for Phenix (3D system), Selective Laser
Melting (SLM) for SLM solutions, Realizer, Matsuura and
Renishaw [135,136]. High complex geometries and custom-
ized parts are produced in the LPBF process with less wastage
of material [137]. The working process of LPBF is shown in
Fig. 3. LPBF allow a variety of materials such as copper, steel,
nickel, cobalt, titanium, steel, and aluminum alloys for build-
ing functional components [138,139]. The complex aluminum

Fig 2 Direct metal laser sintering process [133]

5754 Silicon (2022) 14:5751–5782



alloys that are not conveniently produced in the casting and
deformation process can also be handled successfully in LPBF
[140,141]. The parts made in the LPBF are successfully used
in jewelry, aerospace, automobile, and biomedical sectors
[142–144]. Laser powder, laser scanning velocity, hatch
space, the thickness of the layer, and scanning strategy are
the significant LPBF processing control parameters [153].
Melting of powder, balling, spatter, and building process af-
fects the final surface roughness of the built components
[145–152]. Also, the surface roughness of components pro-
duced in the LPBF process depends upon the heat adsorption
of powder, reflection, and powder melting [154–156]. The
reduction of surface roughness with the LPBF built compo-
nents can be possible with some post-process treatments.

3 Mechanical and tribological properties
of aluminum alloys and their components

The properties like lower absorptivity of the laser and the
formation of aluminum oxide layer increased the complexity
to additively manufacture the aluminum alloys compared with
the steel, titanium (Ti), and nickel (Ni) alloys [158,159]. Al-
Si, Al-Mg, Al-Zn-Mg alloy components fabricated by using
metal AM techniques such as SLM, LPBF, DMLS [160–162].
Al-Cu and Al-Mn are hindered in their manufacturability by
AM due to their inherent high laser reflectivity [163–167]. Al-
Cu-Mg alloys are conscious of rupturing due to the presence
of copper and magnesium. In the SLM process, cracks are
reduced if the laser speed decreases [168]. Al-Cu, Al-Zn alloy

components are produced in the SLM process without cracks
[165].

3.1 Pure Aluminum

The laser reflectivity of pure aluminum is near 91%, and it is
higher than other aluminum alloys [169,170]. The laser ab-
sorbing capacity of pure aluminum is enhanced by a coating
of high laser absorbing elements on aluminum powder [171].
Cobalt is one of the coating elements due to its material char-
acteristics like high laser absorptivity and high strength via
precipitation hardening [172–178]. Geng et al. [179] present-
ed the effect of cobalt phase in 3D printing of aluminum pow-
der in which they found that the laser absorptivity of alumi-
num powder and its 3D printability improved with the deco-
ration of a little amount of high laser absorbing cobalt nano
particles, the powder surface chemical composition modified
and it can be roughened due to the homogenous dispersion of
Co, internal pores eliminated due to the complete melting. The
tensile strength of the aluminum parts produced in additive
manufacturing was comparable to medium-strength alumi-
num alloys..

3.2 Al-Si alloys

The Al-Si alloy components are quickly processed using the
SLM technique due to the silicon content among the all-
aluminum alloys. It offers superior laser absorption, elimi-
nates cracking, and offers the material adequate flow and weld
properties [180]. In addition, Al-Si alloy is used to manufac-
ture heat exchangers, and it is used as filler material [181].

Fig 3 Laser powder bed fusion process [157]
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Kimura et al. deliberate the result of silicon percentage in Al-
Si alloy parts produced in the Selective LaserMelting Process.
They found that the ultimate tensile strength and proof stress
of the made parts increases with the silicon percentage rising
due to the rise of crystallized phases and the solid solubility of
silicon in the aluminummatrix. In contrast, the elongation and
thermal conductivity decreased [182]. In the SLM process,
higher relative density Al-12Si alloy components is produced
by optimizing the laser scanning parameters, and a relative
density of more than 99.5% in Al-0Si and Al-20Si samples
[182]. Furthermore, the corrosion resistance decreases in SLM
Al-Si alloy components due to fine silicon particles [183].

Themechanical and tribological features of AMAl-Si alloy
components are reported in Table 1.A very high relative den-
sity component was obtained by low scanning velocity, hex-
agonal scanning strategy, and high laser power. Mechanical
properties of built parts are varied with build direction
[185,194]. The mechanical properties of 3D printed Al-12Si
samples are more than the conventional manufacturing parts

[186,192,193]. Heat treatment methods influenced the me-
chanical characteristics of built components. The ductility of
built components increases with hot isostatic pressing and
annealing [198–200].

Process and optimum process parameters of additive
manufacturing Al-Si alloy parts by different techniques are
reported in Table 2. Comparing the process and optimum
process parameters of 3D printed Al-12Si alloy parts
concerning the relative density, higher relative density obtain-
ed at a laser power of 350W, laser scanning velocity of 930
mm/s [185–198]. Comparing the process and optimum pro-
cess parameters of 3D printed Al-40Si alloy parts concerning
the relative density, the maximum relative density obtained at
a laser power of 200W, laser scanning velocity of 200 mm/s
[201,202].

Mechanical characteristics of Al-Si alloy components are
fabricated by casting, and additive manufacturing processes
are reported in Table 3. The deformation resistance and max-
imum strength of Al-Si alloy components produced in the

Table 1 Mechanical and
tribological properties of Al-Si
alloys [184–203]

Alloy AM
technique

Remarks Ref

AlSi12 SLM The built parts exhibit negative strain at room temperature and positive strain
rate at high temperature.

[184]

AlSi12 SLM Higher relative density was obtained at low scanning speed and hexagonal
scanning strategy. Yield strength and tensile strength values vary with built
orientation.

[185]

AlSi12 SLM Residual stress is reduced by preheating the powder bed. [186]

AlSi12 SLM The ductility is more in the argon, nitrogen atmosphere condition than the
helium.

[187]

AlSi12 SLM The mechanical properties of built parts are more compare to conventional
parts.

[188]

AlSi12 SLM Fatigue behavior improved through base-plate heating. [189]

AlSi12 SLM Due to isothermal annealing, the yield strength reduced from 260 MPa to 95
MPa, and the fracture strain increased from 3% to 15 %.

[190]

AlSi12 SLM The ductility is increased by 25% due to solution heat treatment. [191]

AlSi12 SLM The tensile strength of built parts more compares to the casted parts. [192]

AlSi12 SLM The strength of the built alloy is more than the conventionally cast alloy. [193]

AlSi12 SLM High relative density parts are produced at high laser power. [194]

AlSi12 SLM Dendritic morphology increase with increasing laser energy density. [195]

AlSi12 SLM The powder drying aspect produces high relative density parts. [196]

AlSi12 SLM The highest micro-hardness (about 105 HV) is obtained at a laser power of
210 W.

[197]

AlSi12 SLM Hot isostatic pressing reduces the strength and increases the fracture strain. [198]

AlSi12 SLM The ductility of the built parts increases with annealing heat treatment. [199]

Al-20Si SLM The ductility of the built parts increases with annealing heat treatment. [200]

AlSi40 SLM Surface roughness decreases with increasing the energy level. Conversely,
high-density parts are obtained at a low energy density.

[201]

AlSi40 SLM Ductility increases, and ultimate tensile strength decreases due to heat
treatment and hot isostatic pressing.

[202]

AlSi25 SLM Relative density increases with increasing laser power and decreasing the scan
speed.

[203]

AlSi50 SLM Relative density increases with increasing laser power and decreasing the scan
speed.

[203]
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SLM are more than the casting process and its ductility more
in the casting process. Atmosphere condition in additive
manufacturing affects the mechanical properties of built pats.
Higher deformation resistance and maximum strength of SLM
Al-12Si parts are fabricated in argon atmosphere conditions,
and high ductility is obtained in nitrogen atmosphere condi-
tions [185–200]

The consequence of pre or post-treating methods on the
mechanical properties of AM Al-Si alloy components is re-
ported in Table 4. The deformation resistance and maximum
strength of 3D printed Al-12Si alloy components were de-
creased after heat treatment methods, such as annealing, solu-
tion heat treatment, and hot isostatic pressing, and its ductility

increases [198–200]. On the other hand, deformation resis-
tance and maximum strength of built components are im-
proved with heat treatment, followed by a hot isostatic press-
ing [202].

The mechanical characteristics of the 3D printing Al-
12Si alloy components are depended upon the atmosphere
condition. Figure 4 shows the fracture surface of the SLM
Al-12Si components produced using different atmospheric
conditions, such as nitrogen (N2), argon (Ar), helium
(He). The ductility of the specimens grown in the helium
atmosphere condition is less compared to the nitrogen
(N2), argon (Ar) atmospheric condition due to the cluster-
ing of pores in the samples [187].

Table 2 Process and optimum parameters of additive manufacturing Al-Si alloy [185–203].

Alloy AM technique Range of parameters Optimum parameters Relative density (%) Ref

P (W) v (mm/s ) h( μm) t ( μm) P (W) v (mm/s ) h (μm) t (μm)

AlSi12 SLM 285 1000-2000 100 40 285 1000 100 40 99.8 [185]

AlSi12 SLM 200 375-2000 150 50 200 500 150 50 98.2 [187]

AlSi12 SLM 350 930 190 50 - - - - 99.7 [189]

AlSi12 SLM 320 1455-1939 110 50 - - - - 99.60 [190]

AlSi12 SLM 100 100–600 100-200 50 100 150 150 50 89.5 [194]

AlSi12 SLM 100–200 70–200 100-500 200-1000 200 120 100 200 77 [195]

AlSi12 SLM 200 500-2000 150 50 - - - - 99 [196]

AlSi12 SLM 120-210 500 50 40 210 500 50 40 96 [197]

AlSi12 SLM 350 930 - - - - - - 99.99 [198]

AlSi40 SLM 120-200 30-424 50-300 50 200 200 - - 99.97 [201]

AlSi40 SLM 200 744 -1993 - - - 1300 - - 99.5 [202]

AlSi25 SLM 125-400 750-2000 120 30 350 1500 120 30 99.95 [203]

AlSi50 SLM 125-400 750-2000 120 30 400 2000 - - 99 [203]

Table 3 Comparison of mechanical properties of cast Al-Si alloy and additive manufacturing Al-Si alloy [185–200]

Alloy AM
technique

casting/Die casting Atmospheres As Built Ref

Yield strength
(MPa)

UTS
(MPa)

Elongation
(%)

Yield strength
(MPa)

UTS (MPa) Elongation
(%)

AlSi12 SLM 55-110 130-230 8-9.5 Argon 225-263 265-365 4-6 [185]

AlSi12 SLM 145 300 2.5 Nitrogen 217-231 357-379 4.2-5.4 [187]

AlSi12 SLM 145 300 2.5 Argon 212-234 347-363 3.6-4.8 [187]

AlSi12 SLM 145 300 2.5 Helium 210-232 299-385 1.1-1.9 [187]

AlSi12 SLM - - - Argon 260 380 3 [190]

AlSi12 SLM - - - Argon 102 425 12 [192]

AlSi12 SLM - - - Argon 266.8-282.8 276.10-310.10 1.9-2.5 [193]

AlSi12 SLM 110 230 9 Argon 197.8-205.2 356.6-365.6 3.9-4.2 [198]

AlSi12 SLM - - - Argon 239-241 381-389 2.9-3.1 [199]

Al-20Si SLM 105 162 4.6 Argon - 506 1.6 [200]
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3.3 AlSi10Mg alloy

The AlSi10Mg alloy consists of 10%wt. of Si and 0.3%wt. of
Mg, and this composition corresponding to A360 cast alloy
[204]. This material has good material characteristics, such as
low density, tremendous strength to weight ratio, more
strength, high thermal conductivity corrosion resistance, good
weld ability compared with other alloys [205–207]. It is used
for functional prototypes in aerospace and automotive due to
its excellent material characteristics [208,209]. The powder-
based AM techniques, such as Selective Laser Melting
(SLM), Direct Metal Laser Sintering (DMLS), and Laser
Powder Bed Fusion (LPBF) techniques, are widely used for
the manufacturing of AlSi10Mg alloy components [267–302].
In the laser additive manufacturing process, the mechanical

properties, namely tensile strength [210,211], hardness
[210,212], and fatigue [213–217] affected by procedure vari-
ables, such as laser scanning speed and power, build direction.
The strength and ductility of AlSi10Mg alloy parts are in-
crease in the Selective Laser Melting (SLM) process due to
the refined microstructure formed by high cooling rates and
synergy between the high power laser beam and powder
grains [218–220]. The mechanical properties of SLM
AlSi10Mg alloy parts are sensitive to strain rate [221–223].
In the 3D printing process, the deformation resistance of the
built components is affected by the process parameters and
testing procedure [224–227]. Scanning strategy involves the
pores’ distribution, crack formation, and microstructure orien-
tation caused by residual stress [228–230]. The fine micro-
structure is obtained in laser additive manufacturing, and it

Table 4 Effect of pre or post processing methods on mechanical properties [190–202]

Alloy AM
technique

Built parts Heat treatment method After heat treatment Ref

Yield strength
(MPa)

UTS (MPa) Elongation
(%)

Yield strength
(MPa)

UTS (MPa) Elongation
(%)

AlSi12 SLM 260 380 3 Annealing 95 - 15 [190]

AlSi12 SLM - - - 2 h solution heat treatment 110 190 25 [191]

AlSi12 SLM 197.8-205.2 356.6-365.6 3.9-4.2 Hot isostatic pressing 106.3-110.5 152.1-158.9 17.57-20.83 [198]

AlSi12 SLM 239-241 381-389 2.9-3.1 Annealing at temperature of
573K

135-141 202-212 3.6-4.0 [199]

Al-20Si SLM - 506 1.6 Annealing at temperature of
673K

- 252 8.7 [200]

AlSi40 SLM - 225 - Heat treatment+ Hot isostatic
pressing

- 279 - [202]

Fig 4 Fracture surfaces of the Al-12Si samples produced using different atmosphere condition [187]
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contains the α-Al phase and fibrous Si particles [231]. Size
and morphology of eutectic Si phase in AM AlSi10Mg alloy
parts influenced the mechanical properties [232,233].

The presence of pores, cores, and partially melted particles
in AM components affects the mechanical and fatigue prop-
erties. Different porosities were observed in the AM alumi-
num alloy components. These are classified into powder-
induced porosities and process-induced porosities [234]. In
AM AlSi10Mg alloys, porosities are located between consec-
utive layers and melt polls [235]. There are mainly two poros-
ities: oxides [236] and hydrogen [237] formed in SLM
AlSi10Mg alloy. The porosity of AM AlSi10Mg alloy is af-
fected by laser power, laser scanning velocity, and hatch dis-
tance [209–212]. The relative density of SLM AlSi10Mg al-
loy components is reached almost 99.8% at a scanning veloc-
ity of 500 mm/s, hatch spacing of 50 um, layer thickness of 40
um, and laser power of 100 W. [213]. The lowest porosity
components are obtained at a hatch distance of 0.13 mm, laser
power 350 W, scanning velocity of 1650 mm/s, and layer
thickness of 30 um [214]. Almost 100% relative density parts
are fabricated in the SLM process [238]. The pores formed in
the SLM AlSi10Mg alloy parts are eliminated using a hot
isostatic pressure process [239]. In SLM AlSi10Mg parts, dif-
ferent porosities started to affect the fatigue strength [240].
The fatigue life of the additive manufacturing parts is vital in
various industries such as marine, defence, aerospace. The
fatigue strength of AlSi10Mg alloy parts produced in SLM
is comparable to the cast counterpart A360 [241]. Oxides
pores are formed in LPBF AlSi10Mg alloy parts during
melting also here, the fatigue inception was continuously
accredited to the sub-surface pores specifically [242].
Operation variables are optimized to reduce the process po-
rosity [243]. The build orientation affects the fatigue strength
of built parts, showing an impaired behavior for the samples
made in the Z direction [244,245]. Achieving good surface
quality of parts is challenging in Additive Manufacturing oth-
erwise, which affects the mechanical properties and porosity
[246,247]. The surface roughness affects the fatigue strength
of the AMAlSi10Mg alloy parts [248,249]. Smoother surface
correlated to higher fatigue limits [250]. Required surface
roughness depends upon the application, e.g., in biomedical
application implants requires smother surface for higher fa-
tigue strength [251,252], and higher surface roughness of the
parts causes the corrosion [253], the fuel consumption of the
propeller shaft decreased due to improving the performance
by reducing the surface roughness [254,255]. The surface
quality of the additive manufacturing metal components is in
the range of Ra 8-25 μm [256,257]. Two methods that
achieved the required surface roughness of the built parts are
1). Post-processing methods, such as mechanical processes to
thermal and chemical treatments are available, and selecting
the appropriate finishing process depends upon the tolerance,
integrity, cost, and lead time [258]. 2) By optimization of

operation variables [259]. The horizontal surface roughness
of SLM AlSi10Mg alloy parts is reduced by 25% if process
parameters are optimized [260]. The surface irregularities of
the built components decreases by optimization of operation
variables, such as hatch distance, laser power, and scan veloc-
ity [261,262]. The surface roughness of the Selective Laser
Melting parts is reduced by selecting the relevant processing
variables [263]. Laser power and scan speed, layer thickness,
hatch spacing, and overlap ratio significantly affect the surface
irregularities of laser melting components [264,265].
Orientation of the surface and the presence of a support struc-
ture in AM process will also influence the surface quality of
the made parts [266].

Mechanical and tribological features of AlSi10Mg alloy
components by distinct techniques are reported in Table 5.
The mechanical characteristics of AM AlSi10Mg samples
are more than conventional manufacturing parts
[276,282,290,291], and these are dependent upon the process
variables, such as hatch distance, build direction, laser scan-
ning velocity, and layer thickness. Better mechanical proper-
ties of build parts occurred at hatch spacing of 190 μm [278].
Build direction affects the deformation resistance. The defor-
mation resistance of components builds in the 0° direction is
8% more than the 90° direction, and the ultimate tensile
strength of parts makes in the Z direction more than XY and
45° direction [287,290]. The mechanical properties increase
as the build direction increases from 35.5° to 90° [294]. The
ultimate tensile strength decreases as the laser scanning veloc-
ity increases from 80 to 120 mm/sec [295]. The better me-
chanical properties occurred at small layer thickness and hatch
distance, and the productivity is improved by higher scan
speeds [297]. The surface smoothness of the built components
depends upon the operation variables. The surface smoothness
of the produced components increases with increasing the
laser power and increases with increasing the laser energy
density [270,271,285]. The surface irregularities of the built
components vary with surfaces. The roughness on the top
surface is less than the bottom and side surface [277]. The
roughness on the bottom surface is more than the top and side
surface [281]. Compared to laser power, the hatch distance is
the more predominant process parameter that influenced the
surface roughness of the built parts [299]. The relative density
of the made parts depends upon the operation variables, such
as laser power, laser scanning speed, and scan spacing [283].
The porosity of the built parts depends upon the laser energy
density. Low energy density causes irregular shapes, and high
laser energy density leads to boiling voids [300]

Process and optimum process parameters in AM
AlSi10Mg alloy by different techniques are reported in
Table 6. Comparing the process and optimum process param-
eters of AMAlSi10Mg alloy parts concerning relative density,
higher relative density parts are produced at a laser power of
370W, laser scanning velocity of 1000 mm/s, and scan
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spacing of 190 μm, and layer thickness of 30 μm [270–293].
At constant laser power and scan spacing, the relative density
of built components increases with increasing scanning veloc-
ity [275,294]. The relative density of built features increases
as the increasing hatch distance with continuous laser power,
laser scanning speed, and layer thickness [289,294].

Mechanical characteristics of AlSi10Mg alloy parts pro-
duced by casting and AM techniques are reported in
Table 7. The deformation resistance and maximum strength
of AlSi10Mg alloy parts produced in the Selective Laser
Melting process were more than the casting process. The duc-
tility of AlSi10Mg alloy parts made in the casting process was
more than Selective Laser Melting [272–298]. The higher
yield strength of the SLM AlSi10Mg was 410 MPa and ob-
tained at a laser power of 370 W, laser scanning velocity of
1300 mm/s, hatch spacing of 190 μm, and layer thickness of
30 μm [276]. The higher ultimate tensile strength of the SLM
AlSi10Mg was 473 MPa, obtained at a laser power of 150 W,
scanning velocity of 1000mm/s, hatch distance of 50 μm, and
layer thickness of 50 μm [290]. The higher hardness of the
SLMAlSi10Mgwas 143 HV, obtained at a laser power of 350
W, laser scanning velocity of 1150 mm/s, scan spacing of 170
μm, and layer thickness of 50 μm [288]. The sintered
AlSi10Mg parts have some drawbacks in surface finishing,
dimensional accuracy, and mechanical properties. These are
improved by using post-processing methods. Post-processing
methods such as electro less gold plating, electro less silver

plating, chemical surface finishing, ultrasonic peening treat-
ment, shot peening, abrasive fluidized bed (AFB), magnetic
abrasive machining, hot isostatic pressing, re melting, laser
polishing, laser shock peening, stress-relieving, solution heat
treatment, T5, T6 heat treatment methods are used to achieve
the required surface roughness and to enhance the mechanical
features of sintered AlSi10Mg parts.

The mechanical characteristics of 3D printed AlSi10Mg
alloy parts later post-processing methods are reported in
Table 8. The surface roughness of the built parts decreases
with increasing the layer thickness of the gold and silver
[303,304]. The surface quality of the made parts is improved
after post-processing methods, such as chemical surface
finishing, shot peening, abrasive fluidized machining, and
magnetic abrasive machining [305,307,310–312]. Ultrasonic
and shot peening methods improve the fatigue and hardness of
3D printed AlSi10Mg alloy components [306,308,309].

The mechanical properties of 3D printed AlSi10Mg alloy
parts before and after post-refining methods are reported in
Table 9. The micro hardness of the 3D printed AlSi10Mg
alloy components is improved after post-processing methods,
such as ultrasonic peening treatment, shot peening, machin-
ing, and machining high and low-intensity shot peening
[306–308]. Among the post-refining methods, the micro hard-
ness of the produced components was increased by 28%, and
fatigue strength was increased by 33% in shot peening
[307,308].

Table 6 Process and optimum parameters of additive manufacturing AlSi10Mg alloy [270–299]

AM technique Range of parameters Optimum parameters Relative density(%) Ref

P (W) v (mm/s ) h( μm) t ( μm) P (W) v (mm/s ) h (μm) t (μm)

SLM 200-370 1000-1500 150-250 30 370 1000 190 30 99.99 [270]

SLM 160-370 150-800 - 30 370 800 - 30 - [271]

SLM 370 1000 200 30 - - - - 99.98 [273]

SLM 350 930 190 50 - - - - 98.8 [274]

SLM 370 1300 150 40 - - - - 99.88 [275]

SLM 370 1300 160-220 30 370 1300 190 30 - [278]

SLM 320-380 1550-1750 0.1-0.15 30 350 1650 130 30 99.13 [280]

SLM 320-380 1550-1750 100-150 20-75 350 1650 130 - 99.26 [283]

SLM 370 520-2600 - - - 1300 - - 95.85 [284]

SLM 400 240-340 130 25 - - - - 99 [285]

SLM 300 - 140 25 - - - - 99.5 [288]

SLM 350 1150 170 50 - - - - 99.5 [288]

SLM 370 1500 190 30 - - - - 99.9 [289]

SLM 150 1000 50 50 - - - - 99.96 [290]

SLM 370 1500 150 30 - - - - 99.98 [294]

DMD 1900 80-120 - - - 80 - - - [295]

DMLS 280 2000 60 30 - - - - - [298]

DMLS 120-190 800-1250 100-200 30 120 900 110 - - [299]
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The surface quality of 3D printed AlSi10Mg alloy compo-
nents before and after post-processing methods are reported in
Table 10. The 3D printed AlSi10Mg parts' surface irregulari-
ties were decreased after post-processing methods, such as
electroless gold coating, electroless silver coating, shot
peening, machining, abrasive fluidized bed grinding process,
and magnetic abrasive machining [303–312]. Comparing the
surface roughness of built parts was achieved in the electroless
gold and silver coating methods, the surface quality of the
built components was increased by 41 % in electroless gold

coating [303,304]. Comparing the surface roughness of the
produced parts was achieved in post-processing methods;
the surface roughness of the made components was decreased
by 98% in magnetic abrasive machining [303–312].

The mechanical characteristics of 3D printed AlSi10Mg
alloy components after the heat treatment process are reported
in Table 11. The yield strength and ultimate tensile strength of
3D printed AlSi10Mg alloy components are decreased, and
ductility increases after heat treatment methods, such as hot
isostatic pressing, re melting, annealing, solution heat

Table 7 Comparison of mechanical properties of cast AlSi10Mg alloy and additive manufacturing AlSi10Mg alloy [272–298]

AM
technique

casting/Die casting As Built Fatigue strength
(MPa)

Hardness
(HV)

Ref

Yield strength
(MPa)

UTS
(MPa)

Elongation
(%)

Yield strength
(MPa)

UTS
(MPa)

Elongation
(%)

SLM 204.62 255.39 2.75 301.26 401.89 4.30 - 64 [272]

SLM - - - 410 - - - 102 [276]

SLM 160 310 4 180 287 14 - - [278]

SLM 160-185 300-350 3-5 247 414 6.64 - 149 [279]

SLM - - - 323 396 7.7 - - [283]

SLM - - - - - - - 124.4 [284]

SLM - - - - - - - 112 [286]

SLM - - - 241.2 379.6 8.1 120 - [287]

SLM - - - 294 - - - 143 [288]

SLM - - - 230.2 355.4 5.51 - - [289]

SLM - - - 268 473 7.5 - 128.64 [290]

SLM - 312.65 12.6 - 445.34 8.68 - - [291]

SLM - - - 176.3 360.7 2.92 - - [294]

DMLS - - - - - - - 131 [298]

Table 8 Mechanical properties of
AlSi10Mg alloy after post
processing methods [303–312]

AM
technique

Post processing
method

Remarks Ref

LPBF Electro less gold
plating

The surface roughness of built parts decreases with increasing the
thickness of the gold.

[303]

SLM Electro less silver
plating

The surface roughness of built parts decreases with increasing the
thickness of the silver.

[304]

SLM Chemical surface
finishing

The surface quality improved after the chemical surface finishing. [305]

SLM Ultrasonic peening
Treatment

The porosity, hardness, and stress corrosion resistance of the built
parts are improved.

[306]

SLM Shot peening The surface roughness and hardness of the built parts are improved. [307]

SLM Shot peening The fatigue resistance of the built parts is improved. [308]

SLM Shot peening The fatigue resistance of the built parts is improved. [309]

DMLS Abrasive fluidized
bed

The surface quality of built parts is improved after the abrasive
fluidized bed.

[310]

SLM Abrasive fluidized
bed

The surface quality improved by 1 μm at an impact angle of 0°. [311]

SLM Magnetic abrasive
machining

The surface quality of built parts increases from 7 μm to 0.155 μm
after magnetic abrasive machining.

[312]
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treatment, artificial aging, and T6 heat treatment
[314,325–336,346–353]. The porosity of the built parts is im-
proved after hot isostatic pressing, hot isostatic pressing
followed by T6 heat treatment, and laser shock peening
[315,316,323]. The micro hardness of the produced samples
decreases after annealing at 300°C for 2 hours [324], and it is
increased after solution heat treatment at 530°C and T6 heat
treatment [335]. Higher hardness occurred in solution heat
treatment with aging heat treatment [339]. The heat treatment
methods affect the relative density of the built parts. The rel-
ative density of built components was enhanced after solution
heat treatment (SHT) at elevated temperatures 530°C for 2

hours and artificial aging 155°C for 2 hours [341,344]. The
corrosion resistance of the built parts increases after the an-
nealing heat treatment [329, 332]. The built components' fa-
tigue resistance decreases after the solution heat treatment,
followed by water quenching [343,346].

The comparison of mechanical properties of 3D printed
AlSi10Mg alloy components before and after heat treatment
methods are reported in Table 12. The yield strength and ul-
timate tensile strength of built parts were decreased by 56 %
and 61% in hot isostatic pressing. The yield strength of the
built parts was decreased by 52% in stress relieving and hot
isostatic pressing at 500oC. The ductility of the produced parts

Table 9 Comparison of
mechanical properties before and
after post processing method
[306–308]

AM
technique

Built parts Post processing
method

After post processing method Ref

Micro
hardness
(HV)

Fatigue
strength
(MPa)

Micro
hardness
(HV)

Fatigue
strength
(MPa)

SLM 116 - Ultrasonic peening
treatment

141 - [306]

SLM 120 - Shot peening 154 - [307]

SLM 120 - Machining 128 - [307]

SLM 120 - Machining high
intensity shot
peening

147 - [307]

SLM 120 - Machining low
intensity shot
peening

145 - [307]

SLM - 60 Shot peening - 80 [308]

Table 10 Comparison of surface
roughness before and after post
processing methods [303–312]

AM
technique

Built parts Post processing method After post
processing

Ref

Surface roughness
(Ra) μm

Surface roughness
(Ra) μm

LPBF 17.03 Electro less gold plating 10 [303]

SLM 17.03 Electro less silver plating 15 [304]

SLM 11.96 Shot peening 5.82 [307]

SLM 11.96 Machining 0.22 [307]

SLM 11.96 Machining high intensity shot peening 5.34 [307]

SLM 11.96 Machining low intensity shot peening 2.05 [307]

SLM - Machining 1.75 [309]

SLM - Machining +Polishing 0.59 [309]

SLM - Shot Peening, steel balls 4.6 [309]

SLM - Shot peening, ceramic balls 3.58 [309]

SLM - Shot peening, steel balls + removal of
25μm by MP

2.15 [309]

SLM - Shot peening, steel balls + removal of
30 mm by EP 40s

1.77 [309]

DMLS 16.72 Abrasive fluidized bed (AFB) 1.5 [310]

SLM 7 Grinding process 0.6 [312]

SLM 7 Magnetic abrasive machining 0.115 [312]

Silicon (2022) 14:5751–5782 5763



Table 11 Mechanical properties of AlSi10Mg alloy after heat treatment
[313–353]

AM
technique

Heat treatment method Remarks Ref

SLM Hot isostatic pressing The irregular-shaped
voids are eliminated,
and a homogeneous
microstructure is
obtained.

[313]

SLM Hot isostatic pressing The ductility of the built
parts increased after the
heat treatment.

[314]

SLM Hot isostatic pressing The ductility of the built
parts increased after the
heat treatment.

[315]

SLM Hot isostatic pressing The porosity of the built
parts reduced after the
heat treatment.

[316]

SLM Hot isostatic pressing +
T6 heat treatment

The porosity of the built
parts was reduced after
hot isostatic pressing,
followed by T6 heat
treatment

[317]

SLM Stress relieving +Hot
isostatic pressing at
5000 C

The ductility of the built
parts was improved
after stress relieving,
followed by hot
isostatic pressing at
5000 C.

[318]

SLM Re melting The surface quality,
relative density, and
micro hardness of the
built parts were
improved after re
melting.

[319]

SLM Re melting The surface roughness of
the built parts decreases
after re melting.

[320]

SLM Re melting The ductility of the built
parts increases after re
melting.

[321]

SLM Laser polishing The surface roughness of
the built parts decreases
after laser polishing.

[322]

SLM Laser shock peening The porosity and fatigue
strength of the build
parts are improved after
the laser shock peening.

[323]

SLM Annealing at 300 °C for 2
hours

The micro hardness of the
built samples
decreased.

[324]

LPBF Stress relieving at 3000 C
for 2 hrs

The ductility and fatigue
resistance of the built
parts increased.

[325]

SLM Heated at 3000 C for 2 h The flow stress of the built
samples decreased.

[326]

SLM Stress relieve at 300°C
for 2 hours

The ductility of the built
parts increased.

[327]

SLM Heating temperature at
350°C and tempering
temperature at 200°C

The ductility of the built
parts increased.

[328]

SLM Stress relieve at
2000C-300°C for 2
hours

The corrosion resistance
increased after stress
relieving at at

[329]

Table 11 (continued)

AM
technique

Heat treatment method Remarks Ref

2000C-300°C for 2
hours

SLM Heating temperature of
320°C for 2 hours and
air cooling

The ductility of the built
parts increased.

[330]

SLM Stress relieves 25 to
400°C.

The yield strength and
ultimate tensile strength
of built parts decreased.

[331]

SLM Annealing The corrosion resistance
increased.

[332]

SLM Heating at 300°C/2h +
water quench

The yield strength and
ultimate tensile strength
of built parts decreased.

[333]

SLM 535°C/1h + water quench
+ 190°C/10h +furnace
quench

The yield strength and
ultimate tensile strength
of built parts decreased.

[334]

SLM SHT at 530 °C+T6 HT. The micro hardness of the
built parts increased
after solution heat
treatment at 530 °C and
T6 heat treatment.

[335]

SLM Stress release at 300°C
for 2 hours

The ductility of the built
parts decreased after
stress release at 300°C
for 2 hours.

[336]

SLM Annealing at 300 °C for 2
hours

The mechanical properties
are more compared to
the casting parts.

[337]

SLM Solution heat treatment at
550 °C for 2h

The ductility of the built
parts increased.

[338]

LPBF (SHT) at elevated
temperatures 530°C
for 5 hours and 170°C
aging

Higher hardness occurred
in solution heat
treatment with aging.

[339]

SLM Solution heat treatment at
5400C for 2 h.

The surface roughness of
the built parts decreased
after solution heat
treatment at 5400C for 2
h.

[340]

SLM (SHT) at elevated
temperatures 530°C
for 2 hours and
artificial aging 155°C
for 2 hours

The relative density of
built parts increased
after solution heat
treatment (SHT) at
elevated temperatures
530°C for 2 hours and
artificial aging 155°C
for 2 hours.

[341]

LMD Solution heat treatment
(SHT) for 2 hours

The tensile strength of the
built parts was
increased.

[342]

SLM Solution treatment +
water quench (ST).

The fatigue strength of the
built parts was
decreased.

[343]

SLM SHT at 530°C for 2 hours The relative density of
built parts increased
after solution heat
treatment (SHT) at
elevated temperatures
530°C for 2 hours.

[344]

SLM T5-like aging at 1700 C
for 90 minutes

The mechanical properties
of the build parts

[345]
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increases more in stress relieving and hot isostatic pressing
than hot isostatic pressing [314,318]. The yield strength and
ultimate tensile strength of the built parts decreases less in
heating at 300°C for 2h + water quench when compare to
the heating at temperature 350°C + tempering at temperature
200°C and heating temperature of 320°C for 2 hours + air
cooling [328,331,332]. The ductility of the built parts in-
creases more in heating at a temperature of 320°C for 2 hours
+ air cooling compares to the heating at 300°C for 2h + water
quench and heating at temperature 350°C + tempering at tem-
perature 200°C [328,331,332]. The yield strength and ultimate
tensile strength of SLMAlSi10Mg alloy parts were decreased
by 39% and 34% in the solution heat treatment method [338].
The ultimate tensile strength of LMD AlSi10Mg alloy parts
was increased by 17% in the solution heat treatment method
[339]. The yield strength of SLM AlSi10Mg alloy compo-
nents decreases less in solution heat treatment followed by
artificial aging at 170°C for 12 h than the solution heat treat-
ment and solution heat treatment followed by artificial aging
[338,343]. The yield strength and ultimate tensile strength of

built parts were decreased by 16 % and 22% in annealing at
300oC for 2 hours [343]. The ductility of the built parts was
increased by 46% in annealing at 300oC for 2 hours [343]. The
ultimate tensile strength of the SLM AlSi10Mg alloy compo-
nents decreases less in T6 heat treatment than the T2 heat
treatment, and T6 heat treatment followed by T2 heat treat-
ment method [347]. Built parts' yield strength and ultimate
tensile strength were increased by 26 % and 20% in T6 heat
treatment [348,350]. Among the heat treatment methods, the
yield strength and ultimate tensile strength of built parts de-
crease less in the annealing method. The yield strength and
ultimate tensile strength of built components improved in the
T6 heat treatment method. The micro hardness of the pro-
duced parts decreases in hot isostatic, annealing, and heating
temperature of 320°C for 2 hours and air cooling, solution
heat treatment, and solution heat treatment followed by artifi-
cial aging. Among the heat treatment methods, the micro hard-
ness of the built parts decreases less in annealing at 300°C for
60s [314,324,331,338,353], and it is increased in re melting,
RT+170°C for 2 hours, T5-like aging at 170°C for 90minutes,
and T6 heat treatment and, increases more in T6 heat treat-
ment [319,339,345,348]. [319,339,345,348].

The surface roughness of 3D printed AlSi10Mg alloy parts
before and after heat treatment methods was reported in
Table 13. The surface quality of the 3D printed AlSi10Mg
was increased after heat treatment methods, such as re melt-
ing, laser polishing, solution heat treatment, and a combina-
tion of solution heat treatment and artificial aging. Among the
heat treatment methods, the surface irregularities of the built
components were decreased by 92% in laser polishing
[319,320,322,340].

3.4 AlSi10Mg-200C Alloy

The DMLS AlSi10Mg-200C alloy parts are used in different
industrial sectors like medical [354] and aerospace [355]. In
the DMLS AlSi10Mg-200C process, the elongation of hori-
zontally built parts is more than vertical made parts due to the
recycled powder process, and this process does not influence
the microstructure and mechanical characteristics [356].
Compare to the casting process, the corrosion resistance of
AlSi10Mg-200C alloy components increases in the DMLS
method. In the DMLS technique, the AlSi10Mg-200C alloy
parts are made with fine microstructure due to the uniform
distribution of Si particles [357]. The surface quality of
DMLS AlSi10Mg-200C alloy parts improved through the
bead blasting method. The attained surface quality is high
compared to the pieces produced in the DMLS method
[358]. The surface roughness of the AlSi10Mg-200C parts
made by DMLS affects fatigue growth. The fatigue cracks
initiation and cracks elongation in AM parts due to sub cracks,
pores, and defects [359]. The fatigue life of AlSi10Mg-200C
parts produced in the DMLS method increased as the surface

Table 11 (continued)

AM
technique

Heat treatment method Remarks Ref

increased after aging at
at 1700 C for 90
minutes.

SLM Solution heat treatment +
room temperature
water quench + aging

The fatigue resistance of
the built parts was
decreased.

[346]

SLM T6 heat treatment The ultimate tensile
strength of the built
parts was decreased.

[347]

SLM T6 heat treatment The built parts' ultimate
tensile strength, yield
strength, and fatigue
resistance increased
after T6 heat treatment..

[348]

SLM Solution treatment +
aging.

Higher mechanical
properties occurred in
T6 heat treatment.

[349]

SLM T6 heat treatment The mechanical properties
of the build parts are
improved.

[350]

SLM T6 heat treatment The ductility of the built
parts is improved after
T6 heat treatment.

[351]

SLM T6 heat treatment The mechanical properties
of built parts are more
in T6 heat treatment
compared to
stress-relieving
treatment at 160 °C.

[352]

SLM T6 heat treatment The ductility of the built
parts is improved after
T6 heat treatment.

[353]
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Table 12 Comparison of mechanical properties before and after heat treatment methods [314–353]

AM
technique

Built parts Heat treatment method After heat treatment Ref

Yield
strength
(MPa)

UTS
(MPa)

Elongation
(%)

Hardness Yield
strength
(MPa)

UTS
(MPa)

Elongation
(%)

Hardness

SLM 268 474 7.8 130 Hot isostatic pressing 116 185 20.6 65 [314]

SLM 241 384 6 - Stress relieving and hot isostatic
pressing at 2500 C

186 233 22 - [318]

SLM 241 384 6 - Stress relieving and hot isostatic
pressing at 5000 C

115 141 35 - [318]

SLM - - - 117.7 Re melting - - - 121.6 [319]

SLM - 377 5.3 - Re melting - 368 8.3 - [321]

SLM 250 - - 131 Annealing at 300 °C for 60 s. - - - 105 [324]

SLM - - - - Annealing at 300 °C for 2 hours - - - - [324]

SLM - - - - Annealing 530 °C, for 60 seconds - - - - [324]

SLM 202.8 282.6 2.5 95 Annealing at 300°C for 2 hours 148.5 231 3.4 75 [327]

SLM - 387.4 3.22 - Heating at temperature 350°C +
tempering at temperature 200°C

- 168.8 1.95 - [328]

SLM - 443 - - Annealing - 448 - - [329]

SLM - - - - Annealing at 300°C for 2 hours - 346 - - [329]

SLM 287 413 5.5 134 Heating temperature of 320°C for 2
hours and air cooling

142 234 13.4 76 [331]

SLM 270.01 446.3 8.09 - Heating at 300°C/2h + water quench 169.9 273.18 15.27 - [332]

SLM 270.01 446.3 8.09 - 535°C/1h + water quench + 190°C/10h
+furnace quench

164.19 213.65 11.08 - [332]

SLM - - - 97 Annealing at 300 °C for 2 hours - - - 78 [335]

SLM - - - 97 SHT at 530 °C - - - 62 [335]

SLM - - - 97 SHT at 530 °C+T6 HT. - - - 115 [335]

SLM - - - - Annealing at 300 °C for 2 hours 212 325 14.2 - [337]

SLM 322.17 434.3 5.3 132.55 SHT at 450 °C for 2h 196.58 282.36 13.4 95.65 [338]

SLM - - - - Solution heat treatment 90.52 168.11 23.7 63.55 [338]

LPBF - - - 134 Solution heat treatment (SHT) at
elevated temperatures 530°C for 5
hours

- - - 75 [339]

LPBF - - - 134 SHT+170°C - - - 104 [339]

LPBF - - - 134 RT+170°C for 2 hours - - - 149 [339]

LMD - 292 - - Solution heat treatment for 2 hours - 342 - - [342]

SLM 319 477.5 4 - Annealing at 300°C for 2 h 266 369 7.5 - [343]

SLM 319 477.5 4 - Solution heat treatment followed by
artificial ageing

151 253 - - [343]

SLM 319 477.5 4 - SHT followed by artificial ageing at
170°C for 12 h (T6)

197.5 - - - [343]

SLM 288 414 5.6 138 T5-like aging at 1700 C for 90 minutes - - - 145 [345]

SLM - 312 4 - T6 heat treatment - 267 9 - [347]

SLM - 312 4 - T2 heat treatment - 171 12 - [347]

SLM - 312 4 - T6 +T2 heat treatment - 162 21 - [347]

SLM 210 325 - 136 T6 heat treatment 285 345 - 178 [348]

SLM - 382 2.3 125 Annealing at 300 °C - 220 - - [349]

SLM - - - - Solution heat treatment followed by
artificial ageing

248 307 9.3 101 [349]

SLM 159 160 1.59 107 T6 heat treatment 171 192 1.77 109 [350]

SLM - - - - Heating 160 0C for 4 h 321 471 8.6 - [351]

SLM - - - - T6 heat treatment 243 323 15.3 - [351]

SLM - - - - Heating of plat form at 160 0C 248 386 8.6 - [351]
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roughness reduced [360]. The surface roughness of the AM
parts is diminished with the laser re melting process [361].
Various process parameters control the surface quality of final
components, and the ANOVA method is used to study the
effect of varying process parameters on the absolute quality
of the specimens [362,363].

3.5 A357 Alloy

The AlSi7Mg (A357) alloy is a suitable material to be used in
different industrial applications. In the automotive industry,
A357 alloy is used to produce blocks, cylinder heads, and
suspension systems due to having good mechanical features,
more specific strength, significant corrosion, and fatigue resis-
tance [364]. Takahiro et al. studied the microstructure and
mechanical characteristics of A356 alloy parts produced by
Selective Laser Melting under the optimum irradiation condi-
tion. They concluded the mechanical characteristics of built
components are more than the casting parts due to fine den-
dritic cell microstructures; after the annealing (T5) process,
ultimate tensile strength, yield strength decreases and ductility
increases from 15% to 30%, and almost 100% relative density
achieved [365]. The relative density of SLMA357 alloy com-
ponents increases with increasing the laser power at a partic-
ular laser scanning velocity. At constant hatch distance and
layer thickness, the maximum relative density of 99.68% was

achieved inbuilt parts exact a laser power of 300W, laser scan-
ning velocity of 2000 mm/s with 35°C substrate temperature.
Substrate temperature affects the relative density; at 200°C,
the maximum relative density of built components is achieved
at 370 W laser power and 2000 mm/s laser scanning velocity.
Themaximum strength of the A357 alloy obtained in the SLM
process is more than that of the T6-casting process [366]. The
building platform temperature affects the ultimate tensile
strength, yield strength. Maximum occurs at build platform
temperature of 140°C and 170°C due to it can act as an aging
process and activates the precipitation of reinforcing phases.

The higher hardness-built parts were obtained in the SLM
process with a platform temperature of 100°C by applying a
heat treatment at 170°C for 3h [367]. During the fabrication of
A357 alloy parts by Selective Laser Melting, a very few gas
pores are formed; these are increases after the solution heat
treatment at 543°C. Enlargement of gas pores is reduced by
pre-drying of powder [368]. Different heat treatments affect
the yield strength and elongation of the SLMA357 alloy. The
higher yield strength is obtained in artificial aging when com-
pared to stress relieving and solution heat treatment. Higher
ductility parts are obtained in the stress-relieving than the ar-
tificial aging and solution heat treatment. The mechanical fea-
tures of SLM A357 alloy components are more than the cast-
ing components [369]. The fatigue strength of LPBF A357
parts 60 MPa was achieved at 2x106 cycles [370]. Higher

Table 12 (continued)

AM
technique

Built parts Heat treatment method After heat treatment Ref

Yield
strength
(MPa)

UTS
(MPa)

Elongation
(%)

Hardness Yield
strength
(MPa)

UTS
(MPa)

Elongation
(%)

Hardness

SLM 255 377 2.2 - Stress-relieving treatment at 160 °C/5
h)

158 256 9.9 - [352]

SLM - - - - T6 heat treatment 210 284 4.9 - [352]

SLM 268 333 1.4 125 1h SHT+ 6 h AA 239 292 3.9 100 [353]

SLM - - - - 6h SHT+ 7 h AA - - - 103 [353]

Table 13 Comparison of surface
roughness before and after heat
treatment [319,320,322,340].

AM
technique

Built parts Post processing method After post
processing

Ref

Surface roughness
(Ra) μm

Surface roughness
(Ra) μm

SLM 13.34 Re melting 9.94 [319]

SLM 20.67 Re melting 11.67 [320]

SLM 8.7 Laser polishing 0.66 [322]

SLM 4.23 Solution heat treatment 3.69 [340]

SLM 4.23 Solution heat treatment followed by
artificial ageing

4.51 [340]
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density and hardness SLM A357 alloy parts obtained with
powder pre-treated at 60°C than the powder pre-treated at
200°C due to the presence of Al2O3 in the powder pre-
treated at 200°C [371]. In the 3D printing techniques, the build
platform condition affects the mechanical properties, and the
tensile strength of built parts increases with increasing the
build form temperature from 0°C to 90°C and this tensile
strength more compare to post-build heat treatment methods
such as stress relieving, followed by solution heat treatment
and artificial aging [372]. The LPBF process successfully pro-
duced the high relative density A357 alloy parts. Heat treat-
ment affects ductility. The ductility of LPBF A357 parts in-
creases with stress-relieving, and its firmness, durability de-
crease. The micro hardness of the built parts improved by
stress-relieving, followed by T6 treatment and aging [373].

The process parameters used in AM of A357 alloy parts by
different techniques are reported in Table 14. Comparing the
process and optimum process parameters of SLM A357 alloy
parts concerning the relative density, higher relative density
obtained at a laser power of 300W, the laser scanning velocity
of 2000 mm/s, hatch distance of 100 μm, and layer thickness
of 30 μm [365,366,369,371,373].

The mechanical features of 3D printed A357 alloy parts
before and after heat treatment are reported in Table 15. The
yield strength and ultimate tensile strength of 3D printed A357
alloy parts were decreased, and their ductility increases after
heat treatment methods, such as annealing, solution heat treat-
ment, artificial aging, and T6 heat treatment [365–367,373].
Among the heat treatment methods, the ultimate strength of
the built parts was increased by 7% in natural aging at 160°C-
8h. The yield strength of the produced parts was increased by
7% in solution heat treatment, followed by artificial aging.
The ductility of the built components was increased by 98%
in stress relieved 300°C -2h [369].

3.6 AlSi10Mg composites

Aluminum-matrix composites (AMCs) are extensively
employed in aerospace, automotive, microelectronics, and ar-
chitectural construction due to their excellent metallic

characteristics, such as excellent ductility, high hardness, ex-
cellent durability, and tremendous specific strength, admirable
thermal and electric conductivities, and ceramic properties
[374–376]. In the traditional manufacturing process, infiltra-
tion, powder metallurgy, spray casting, and stir casting
methods are used to fabricate aluminum matrix composites.
Heterogeneous distribution of reinforcement, the significant
formation of porosity, and the poor wet ability between matrix
and reinforcement are the difficulties in infiltration, powder
metallurgy, and spray casting methods. The advantages of the
stir casting process are that it can break the Al-oxide layer and
produce the relatively homogeneous ceramic reinforced alu-
minum composite parts. The disadvantages are it needs ex-
pensive and dedicated tools and complicated preprocessing
and post-processing treatments, which causes the complexity
of the process [377,378]. Powder-based additive manufactur-
ing methods, such as Selective Laser Melting, Direct Metal
Laser Sintering, and Laser Powder Bed Fusion, successfully
fabricates the aluminum metal matrix composites. In laser
additive manufacturing, a high laser beam generates a high
temperature, breaking the Al-oxide layer [379,380].
Microstructure homogeneity occurred due to the marangoni
convection and response capillary effort for liquid flow. The
laser-make molten pool is characterized by highly rapid
melting/solidification [381–384]. The manufacturing flexibil-
ity of aluminum alloy parts in 3D printing is less due to their
high heat conduction and fewer lasers absorptive to the laser
beam. The laser absorbent of aluminum alloy to the laser beam
is only 9% [385]. The laser absorption of ceramic particles is
high compared to aluminum alloys. Thermal characteristics
and stability of the molten pool of the aluminum alloy im-
proved with the addition of ceramic materials due to the com-
plete melting [386–387].The composites produced in the ad-
ditive manufacturing process showing superior mechanical
properties [388–390]. The aluminummetal matrix composites
fabricated in a powder-based additive manufacturing process
show enhanced wear resistance [391]. The AlSi10Mg alloy is
mainly employed in automobile and aerospace sectors due to
its excellent weld and harden ability, corrosion resistance,
thermal conductivity, and good anti-oxidation properties

Table 14 Process and optimum parameters of additive manufacturing A357 Alloy [365,366,369,371,373].

Alloy AM technique Range of parameters Optimum parameters Relative density (%) Ref

P (W) v (mm/s ) h (μm) t (μm) P (W) v (mm/s ) h (μm) t (μm)

AlSi7Mg0.3 SLM 200-370 400-3000 - 30 - - - - 99.80 [365]

A357 SLM 100-370 500-5000 100 30 300 1000-2000 100 30 99.68 [366]

A357 SLM 750 1100 - - - - - - 99.40 [369]

A357 SLM 70-170 500-1200 70 30 170 500 - - 99.10 [371]

A357 LPBF 195 600-1200 100-200 30 - 1200 100 - 99.94 [373]
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[392–394]. Meanwhile, the mechanical and tribological char-
acteristics of 3D printed AlSi10Mg alloy components are im-
proved with the reinforcement particles listed in Table 16, and
their effects are reported in Table 17.

The list of reinforcing particles added to the 3D printed
AlSi10Mg alloy components is reported in Table 16. The

AIN, Al2O3, Fe2O3, TiB2, nano TiB2, Grapheme, nano TiC,
CNT, and TiN/ AlSi10Mg composites were successfully fab-
ricated by powder-based additive manufacturing techniques.

The mechanical and tribological characteristics of SLM
AlSi10Mg composite components produced by 3D printing
techniques are reported in Table 17. The wear resistance of

Table 15 Comparison of mechanical properties before and after heat treatment method [365–373]

Alloy AM
technique

Before heat treatment Heat treatment method After heat treatment Ref

Yield
strength
(MPa)

UTS
(MPa)

Elongation
(%)

Hardness
(HV)

Yield
strength
(MPa)

UTS
(MPa)

Elongation
(%)

Hardness
(HV)

A357 SLM 200 400 12-17 - Annealing(T5) 125 200 30 - [365]

A357 SLM - 426.4 9.8 - Subtract temperature 35oc - 307.7 7.1 - [366]

A357 LPBF - - - - Building plat form
temperature-100o C

249 392 5.4 - [367]

A357 LPBF - - - - Building plat form
temperature-140o C

287 413 5.1 - [367]

A357 LPBF - - - - Building plat form
temperature-170o C

295 406 4.1 - [367]

A357 LPBF - - - - Building plat form
temperature-190o C

250 364 4.5 - [367]

A357 SLM 225 375 7.8 - Direct ageing at 160o C -8
h

280 400 5.6 - [369]

A357 SLM 225 375 7.8 - Stress Relieved 300o C -2h 125 220 15.5 - [369]

A357 SLM 225 375 7.8 - Solution heat treatment
and artificial ageing

240 280 6.4 - [369]

A357 LPBF 245 386 5.2 119 Stress-relieved 189 288 8.2 80 [373]

A357 LPBF - - - 119 Stress-relieved + T6+
ageing at 170 C for 3 h

249 307 5.1 116 [373]

Table 16 List of reinforcement
particles added to the AlSi10Mg
alloy [395–409]

S. No Aluminum Alloy Reinforcement Weight Ratio AM Technique Ref

1 AlSi10Mg AIN 90 : 10 SLM [395]

2 AlSi10Mg AIN 99 : 1 SLM [396]

3 AlSi10Mg AIN 98 : 2 SLM [397]

4 AlSi10Mg Al2O3 80 : 20 SLM [398]

5 AlSi10Mg Al2O3 85 : 15 SLM [399]

6 AlSi10Mg Fe2O3 85 : 15 SLM [400]

7 AlSi10Mg TiB2 90 :10 DMLS [401]

8 AlSi10Mg TiB2 99 :1 DMLS [401]

9 AlSi10Mg TiB2 99:1 SLM [402]

10 AlSi10Mg Nano TiB2 7 volume% SLM [403]

11 AlSi10Mg Al-coated Grapheme 99 :1 SLM [404]

12 AlSi10Mg Grapheme 99 :1 SLM [404]

13 AlSi10Mg Grapheme 99.99 :0.1 LPBF [405]

14 AlSi10Mg Grapheme 99.98 :0.2 LPBF [405]

15 AlSi10Mg Nano Tic 97 : 3 SLM [406]

16 AlSi10Mg CNT 99.95 : 0.5 SLM [407]

17 AlSi10Mg CNT 49.5 : 0.5 SLM [408]

18 AlSi10Mg TiN 98 : 2 SLM [409]

Silicon (2022) 14:5751–5782 5769



SLMAlSi10Mg alloy increases with Al2O3 and AIN particles
[396,398]. The hardness of SLM AlSi10Mg alloy was im-
proved by adding Fe2O3, CNT, and TIN particles
[400,408,409]. The mechanical properties of SLM
AlSi10Mg alloy enhanced with TiB2, Grapheme, nano TiC,
CNT, and TiN particles [402–407].

4 Conclusions

The powder-based manufacturing techniques, such as
Selective Laser Melting (SLM), Laser Powder Bed Fusion
(LPBF), Direct Metal Laser Sintering (DMLS), are success-
fully employed for the manufacturing of Al-Si alloys and alu-
minum metal matrix composite components. Compared to
traditional manufacturing, the mechanical features of the built
components are improved in additive manufacturing and have
some drawbacks in surface finishing and dimensional accura-
cy, which are improved by post-processing and heat treatment
methods. The following conclusions are drawn from the ex-
tensive review and presented as follows..

1. The 3D printability of aluminum powder improved by
decorating a small amount of high laser absorbing cobalt

nano particles. The maximum strength of AM aluminum
components is close to medium strength aluminum alloys
components.

2. The 3D printability of Al-Si alloy parts is more than all-
aluminum alloy parts due to having silicon content, which
gives higher laser absorption. The yield strength and ulti-
mate tensile strength of the 3D printed Al-Si alloy parts
are more than the conventionally cast alloy parts. Its duc-
tility improved through the heat treatment process, such as
annealing and hot isostatic pressing. Higher relative den-
sity parts were obtained at high laser power and by pow-
der drying aspect. The relative density of AlSi25 and
AlSi50 alloy components increases with increasing laser
power and decreasing the laser scan speed..

3. The yield strength and ultimate tensile strength of the 3D
printed AlSi10Mg alloy parts are more than the conven-
tionally cast AlSi10Mg alloy parts. Its ductility improved
through hot isostatic pressing, annealing, solution heat
treatment, T6 and T2 heat treatment methods. The surface
roughness of the built pats decreased by post-processing
and heat treatment methods. Among the heat treatment
methods, the laser polishing method reduces the surface
roughness by 92%, and in the post-processing methods,
the magnetic abrasive machining process decreases the

Table 17 Mechanical and
tribological properties of
AlSi10Mg composite material
[395–409]

Aluminum
composite

AM
technique

Remarks Ref

sAIN/AlSi10Mg SLM The distribution of AIN in AIN/AlSi10Mg composite changes
from severe aggregation to homogeneous distribution as the
scanning velocity increases from 100 to 400 mm/sec.

[395]

AIN/AlSi10Mg SLM The wear resistance of built parts increased. [396]

Al2O3/AlSi10Mg SLM The wear resistance of the built parts decreased with increased
load.

[398]

Al2O3/AlSi10Mg SLM The loss rate of Al2O3 increased with increased laser energy
density.

[399]

Fe2O3/AlSi10Mg SLM The composite is more rigid than the corresponding casting Al
alloy.

[400]

TiB2/AlSi10Mg DMLS The wear rate of TiB2/AlSi10Mg composite is higher than the
casting AlSi10Mg alloy.

[401]

TiB2/AlSi10Mg SLM The mechanical properties and laser absorptivity of AlSi10Mg
alloy improved with the addition of TiB2 particles.

[402]

Nano
TiB2/AlSi10Mg

SLM The mechanical properties and laser absorptivity of AlSi10Mg
alloy improved with the addition of nanoTiB2 particles

[403]

Al-coated
graphene/AlSi10-
Mg

SLM Higher tensile strength was obtained when compared with alloy. [404]

Graphene/AlSi10Mg PBF The yield strength and hardness of the AlSi10Mg alloy increased
with the addition of graphene.

[405]

Nano
TiC/AlSi10Mg

SLM The tensile strength of the alloy increased. [406]

CNT/AlSi10Mg SLM The ultimate tensile strength of the AlSi10Mg alloy increased
with 0.5 wt % of carbon nanotube particles.

[407]

CNT/AlSi10Mg SLM The hardness of the AlSi10Mg alloy is improved with the
addition of carbon nanotube particles.

[408]

TiN/AlSi10Mg SLM The hardness of the AlSi10Mg alloy is improved with the
addition of TIN particles.

[409]
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surface roughness by 98%. Hot isostatic pressing and la-
ser shock peening are used to reduce the porosity of the
built parts.

4. The tensile and yield strength of the SLM A357 build
parts is more than the casting parts, and its ductility im-
proved in annealing. The higher yield strength is obtained
in artificial aging when compared to stress relieving and
solution heat treatment. The ductility of the 3D parts was
obtained in the stress-relieving more when compared with
the artificial aging and solution heat treatment.

5. Powder-based additive manufacturing techniques are suc-
cessfully used to manufacture the AlSi10Mg metal matrix
composites. In addition, the reinforcements such as AIN,
Al2O3, Fe2O3, TiB2, CNT, TiN particles are used to en-
hance the mechanical properties and wear resistance of
the 3D printed AlSi10Mg alloy components.

The metal 3D printing methods are a new manufactur-
ing process used to manufacture complex rapid
prototyping tools with design flexibility. The additive
manufacturing techniques allow the designers to apply
multi-material topology optimization of components used
in medicine such as dental prostheses, orthopedic im-
plants such as lightweight scaffold implants structures,
aerospace industry, and automotive and power sectors.
Small batch sizes are produced in additive manufacturing
at a reasonable cost. In the automobile sector, 3D printing
allows designers to design and fabricate lightweight com-
ponents to reduce fuel consumption and the emission of
CO2. The time gap between design and manufacturing is
reduced by reducing the wastages and replacing the pro-
cess sequence with a single process in additive
manufacturing. The potential applications of metal 3D
printing methods are expected to design, fabricate, and
repair components used in the aerospace, medical, auto-
motive, and power sectors.
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