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Abstract
The machine learning methodology is gaining immense exposure as a potential methodology for solving and modelling the
machining behaviour of advanced materials. The present paper deals with the application of machining learning approach in
analyzing and predicting the effect of reinforced silicon carbide (SiC) particle size on the erosion behaviour of silicon carbide
reinforced polymer composites. L27 orthogonal array was designed based on Taguchi’s methodology to execute the experiments.
Support vector machine (SVM) and multi-linear regression (MLR) approach were coupled with Taguchi’s methodology to
validate obtained optimized response characteristics. These machine learning-based SVM and MLR models are adopted to
analyze the absurdity among obtained experimental results and predicted response. Out of 27 experimental runs based on
experimental design, 19 experimental runs were selected for training models whereas 08 models were selected for the testing
phase. Impingement angle, workpiece reinforcement, standoff distance and slurry pressure were used as input process parame-
ters, whereas material loss was observed as response characteristics. The kernel functions, i.e. Pearson VII based universal kernel
(PUK) and radial based function (RBF) kernel were used with machine learning models to obtain the best performing machine
learning approach in predicting erosion behaviour of polymer composites.
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1 Introduction

The silicon carbide (SiC) reinforced polymer composite ma-
terials are widely used in those areas where climatic condi-
tions play a significant role in influencing the performance of
materials [1, 2]. These areas are subjected to constant attack of
abrasive slurry particles which diminishes the strength of ma-
terials by degrading material’s upper surface in operating con-
ditions. The erosion on the surface of components assembled
in marine and aerospace application degrades surface by caus-
ing wear [3]. During the erosion phenomenon, the impact of

abrasive particles initiates tiny cracks over the material sur-
face, which leads to substantial material loss. The presence of
solid erosion particles in the environment causes surface deg-
radation of the component of aircraft made up of polymeric
materials [4]. The surface damage due to erosion has emerged
as a severe problem for the component’s performance in dusty
and slurry environment [5]. The presence of dust particles in
air roots surface degradation of the component’s surface as-
sembled in aircraft [4] which results in costly maintenance as
well as security risks [6]. Erosion of surface mainly occurs in
industrial applications where components made from poly-
mers are used because of high stiffness and specific strength
[7]. The SiC reinforced polymer matrix composites have
gained immense popularity as industrial material due to im-
proved strength [8]. As far as glass fibre-based composites are
concerned, the erosion phenomenon consists of matrix remov-
al, fibre breaking and debonding of reinforcement frommatrix
[9]. The degradation in surface material depends upon several
factors like nature of erodent particles, impingement angle,
impact velocity etc. The fiber orientation significantly influ-
ences the erosion of fibrous composites as the unidirectional
fiber orientation shows semi ductile erosion behavior [8]. In
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comparison, the graphite/fiber polymer composite exhibits
brittle erosion behavior, and aramid fiber polymer composite
exhibits quasi ductile behavior [10]. Another study shows that
with an increase in glass fiber reinforcement, the ductile ero-
sion behavior changes into brittle erosion behavior [11]. The
small particle size (less than two μm) shows the minimal
effect on erosion loss, but an increase in particle size signifi-
cantly increases the erosion loss from the composite surface
[12]. The erosion loss in the fibrous composites can be re-
duced by reinforcing treated fibers. The treatment in the fibers
increases the interfacial strength, which improves the erosion
resistance [13]. Also, the impact at the angle of 90° shows
lesser erosion loss as compared to erosion loss at 30° [14].

From last few decades, various optimization techniques
like an artificial neural network [15], particle swarm optimi-
zation [16], genetic algorithm [17], grey relational analysis
[18] etc. were adopted by researchers for the optimization of
various engineering processes. But in recent years, the appli-
cation of machine learning approaches has emerged as a po-
tential contender for the modelling and validation of experi-
mentation results. Ushasta et al. [19] used a support vector
machine coupled with particle swarm optimization for model-
ling of EDM response parameters. Guangwei et al. [20] esti-
mated the height of the online workpiece during reciprocated
TW-EDM by using support vector machine and concluded
that the SVM method reduced the estimation error as well as
machining time significantly. Guofeng et al. [21] compared
Gaussian mixture regression (GMR) with radius basis func-
tion, multiple linear regression and neural network for tool
wear prediction. They concluded that GMR based model pro-
duces the best result in comparison. Sun et al. [22] implement-
ed a support vector machine to carry out multi-classification of
tool conditions and concluded that the SVM approach effec-
tively performs multi-classification of tool wear and improved
productivity.

2 Experimental Design and Planning

The glass fibers and silicon carbide particles reinforced poly-
mer composites were prepared by hand layup method [1]. The
variable sizes of SiC particles were used as reinforcement to
analyze the effect of particle size on the erosion characteristics

of the composite, as shown in Table 1. Themixture of Araldite
epoxy resin and hardener in the ratio of 5:4 was used as ma-
trix. The epoxy adhesive cures at temperature ranges from
68 °F (20 °C) to 356 °F (180 °C) with no release of volatile
constituents. ASTM G76 standard was adopted for the analy-
sis of erosion behaviour using in house fabricated abrasive
erosion test setup. The line diagram for abrasive erosion setup
is presented in Fig. 1. The parameters were studied at three
levels to analyze the non-uniform behaviour of input process
parameters. Taguchi’s methodology based L27 orthogonal ar-
ray was used to analyze parametric combination. Each exper-
iment was performed with three repetitions to validate the
erosion loss during experimentation. Depending upon re-
quired response characteristics, lower the better S/N ratio
criteria [23–25] is preferred and calculated using Eq. (1) as
follows:

ηij ¼ −10log
1

n
∑n

i¼1y
2
ij

� �
ð1Þ

Table 1 Process parameters at
different levels Sr. no. Process parameters Designation Level 1 Level 2 Level3

1 Abrasive Erodent (Type) A River Beach Desert

2 Impingement Angle (°) B 30 60 90

3 W. R. Size (mesh) C 400 320 220

4 Standoff Distance (mm) D 10 15 20

5 Slurry Pressure (bar) E 3 4 5

Fig. 1 Line diagram for erosion setup [1]
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Here yij is the ith experiment at jth test and n is the total
number of tests.

The impact angles (β) for the present test were varied from
30° to 90°. The erodent particles in the form of different types
of sands from different locations, i.e. river, beach and desert
were used for the experimentation. The high-pressure erodent
slurry comes out through nozzle and strikes the specimen each
time continuously for four minutes. The average erosion loss
from three replications was recorded for each specimen. The
variance in initial and final weight of specimens was termed as
weight loss. The several test settings engaged for erosion test
are presented in Table 1.

3 Taguchi’s Methodology

The experimental results for a signal to noise ratio with corre-
sponding erosion loss are plotted in Figs. 2 and 3. The signal
dominating the noise value corresponds to the higher S/N ratio
to generate healthier quality characteristics. Therefore, the
parametric setting where the S/N ratio comes out as supreme
value, the specimen will show high resistance to erosion. In
Fig. 3, the optimal conditions for minimum erosion loss are
A2B1C1D1E1. For numeral and classification terms, the opti-
mal values are found to be abrasive erodent, beach sand; im-
pingement angle, 30°; workpiece reinforcement size, 400
mesh; standoff distance, 10 mm and slurry pressure, 3 bar.
The analysis of variance (ANOVA) was used to identify the

parameters which affect the erosion loss significantly. The
ANOVA for erosion loss is shown in Table 2. The ANOVA
indicates that erosion loss is affected substantially by work-
piece reinforcement size (44.85%) followed by standoff dis-
tance (28.59%), impingement angle (15.70%) abrasive
erodent (9.22%) and slurry pressure (1.40%). The error asso-
ciated with the experimental results was found to be 0.28%.

4 Support Vector Machine (SVM)

SVM is resultant of algebraic learningmodel and grounded on
the optimal partition of modules for cataloguing problem. For

Fig. 2 Residual plots for erosion loss

Fig. 3 S/N ratio and raw data plots
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two-class cataloguing problem, SVM picks a classifier which
has smallest simplification miscalculation from unlimited
quantity of linear classifier or fixed higher boundary to error
which is attained from organizational menace minimisation.
Thus supreme margin between two classes could be attained
from the designated hyperplane and accumulation of distances
of the hyperplane from the adjacent point of two groups [26].
Additional planned model is ε-Support vector regression
(SVR) by giving an opportunity ε-insensitive damage func-
tion [27]. This damage function permits the indication of su-
periority to be used for regression concerns where verge is
categorized as the aggregate of the partings of the hyperplane
from the adjacent purpose of the two classes. The purpose of
the SVR is to determine a function having at highest ε devia-
tion from the real target vectors for all given information data
and must be as level as could sensibly expect [28]. Vapnik
[29] presented the impression of kernel function for non-linear
support vector regression.

4.1 Kernel Functions

In the analysis through machine learning, the term kernel is
generally referred to as a technique used to solve the non-
linear problem using the linear classifier. There are various

kernel functions associated with the SVM. By adjusting the
kernel parameters, the optimal kernel function can be obtain-
ed. In the present research, three kernel functions are used for
the analysis, i.e. radial basis kernel, Pearson kernel and poly-
nomial kernel.

4.1.1 Radial Basis Kernel (RBK)

In SVM, the most commonly used kernel function is the radial
basis kernel (RBK). The RBK for two samples as feature
vector viz. x and y can be expressed as

K x; yð Þ ¼ exp
x−yk2��
2σ2

 !
ð2Þ

Here ‖x − y‖2 is square of the Euclidean distance between
feature factors.

4.1.2 Pearson Kernel (PUK)

PUK is universal kernel function usually used for the SVM for
its flexibility and high adaptability. The PUK functions can
also be used to replace other kernel functions [30].

Table 2 ANOVA for Erosion
Loss Source DF SS MS F Value P Value % C

Abrasive erodent 2 0.000131 0.000066 53.36 0.000 9.22

Impingement angle 2 0.000223 0.000112 90.36 0.000 15.70

W. R. size 2 0.000637 0.000318 258.81 0.000 44.85

Standoff distance 2 0.000406 0.000203 164.82 0.000 28.59

Slurry pressure 2 0.000004 0.000002 1.42 0.270 1.40

Error 16 0.000020 0.000001

Total 26 0.001420

Table 3 Characteristics of the
data used for model development
and validation

Range Impingement angle Workpiece R.
size

SOD Slurry
pressure

Erosion
loss

Training data set

Mean 58.4211 308.4211 15.0000 4.0000 0.0156

Standard Deviation 25.4434 76.6857 4.0825 0.8165 0.0075

Minimum 30.0000 220.0000 10.0000 3.0000 0.0029

Maximum 90.0000 400.0000 20.0000 5.0000 0.0280

Confidence Level
(95.0%)

12.2633 36.9613 1.9677 0.3935 0.0036

Testing data set

Mean 63.7500 325.0000 15.0000 4.0000 0.0146

Standard Deviation 25.0357 74.6420 4.6291 0.9258 0.0076

Minimum 30.0000 220.0000 10.0000 3.0000 0.0038

Maximum 90.0000 400.0000 20.0000 5.0000 0.0241

Confidence Level
(95.0%)

20.9304 62.4023 3.8700 0.7740 0.0064
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4.1.3 Polynomial Kernel (POLY)

The POLY kernels are used in SVM to represent the similarity
of feature vector over polynomial of the actual parameter. It
can be represented as

K x; yð Þ ¼ ϕ xð Þ;ϕ yð Þh i ð3Þ

4.2 Multilinear Regression: (MLR)

Multiple regression (MLR) is also applied on more than one
predictor parameters. The general equation of the MLRmodel
is as follow:

E ¼ c0 þ c1x1 c2x2 þ……………cnxnn ð4Þ
where E = dependent variable, x1.,x2, x3,….,xn = independent
variables.

4.3 Performance Assessment Parameters

For the model performance assessment, four statistical param-
eters Coefficient of correlation (CC), root mean square error
(RMSE), mean absolute error (MAE) and scattering index (SI)
were used. The above-mentioned assessment parameters can
be calculated by the equations as follow:

CC ¼ a∑AZ– ∑Að Þ ∑Zð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a ∑Að Þ2− ∑Zð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a ∑A−∑Zð Þ2

q ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a

�
∑
a

i¼1
A−Zð Þ2

s
ð6Þ

MAE ¼ 1

a
jA−Zj ð7Þ

SI ¼ RMSE

A
ð8Þ

where A = Observed, Z = Predicted, A ¼ mean observed, a=
number of observations.

4.4 Data Set

Total 27 observations from solid particle erosion of SiC rein-
forced polymer composites are used for model development
and validation. The entire data set was splitting into two dif-
ferent groups. The process of splitting is arbitrary. A larger
group (70% observations) is considered as training data set for
models development, and the remaining group is considered
as testing data set for the model validation. Four independent
variables, namely as impingement angle (IA), workpiece r.
size (WR), SOD and slurry pressure (SP) were considered as
inputs. In contrast, Erosion Loss is considered as a target for
model development and validation. Characteristics of the data
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Fig. 4 Agreement plot among actual and predicted values using MLR
and SVM based models using the training data set
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Fig. 5 Agreement plot among actual and predicted values using MLR
and SVM based models using the testing data set

Table 4 Performance evaluation parameters using training and testing
data sets

Techniques CC RMSE MAE SI

Training data set

MLR 0.950096 0.002284 0.001994 0.146117

SVM_RBF 0.990524 0.001026 0.000526 0.065635

SVM_PUK 0.938489 0.002685 0.001316 0.171783

SVM_Poly 0.901313 0.003269 0.001737 0.209107

Testing data set

MLR 0.902072 0.003301 0.002881 0.22962

SVM_RBF 0.838722 0.004047 0.003375 0.281503

SVM_PUK 0.95972 0.002318 0.002125 0.16128

SVM_Poly 0.897396 0.003122 0.00275 0.217217
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used for model development and validation are listed in
Table 3.

5 Result and Discussions

The MLR is the empirical equation developed by least square
technique to drive regression coefficients using the training
data set. XLSTAT software is used for the development of
MLR based model.

E ¼ −0:07002þ 0:00091 IAþ 0:00039 WRþ
0:00262 SOD−0:00543 SP−0:000075 IA2−

0:0000007 WR2−0:00006 SOD2 þ 0:00072 SP2

ð9Þ

Figures 4 and 5 provide agreement plots between actual
and predicted erosion of polymer composites by MLR and
SVM based models for training and testing stages, respective-
ly. Forecast values from MLR and SVM based models are by
the actual values. Results of test data set Table 4 indicate that
the performance of SVM_PUK based model is best among
other kernel-based SVM and MLR approaches. Pearson VII
kernel function works better than polynomial or radial basis
kernel functions. Correlation coefficient values of 0.9597,
MAE as 0.00212, RMSE as 0.002318 and SI as 0.16128 were
achieved by Pearson VII kernel function based SVM model.
This model suggests a better performance in comparison to the
MLR based model. It also works better than polynomial and
radial basis kernel function based model for the prediction of
erosion loss. MLR based model achieved the correlation co-
efficient value of 0.902072 (RMSE = 0.003301). Single-

factor ANOVA results (Table 5) suggest that there is an insig-
nificant variation among actual and predicted values using
MLR and SVM based models. A performance plot is shown
in Fig. 6 using the testing data set. It can be noted out from this
figure that predicted values provided by SVM_PUK based
model were found to follow the same patterns of actual values
with minimum deviation.

6 Conclusions

The investigation was based on the adopting multi-linear re-
gression and support vector machine-based models in
predicting erosion behavior of SiC reinforced polymer com-
posites. Out of the detailed investigation, the following key
conclusions can be drawn:

& Taguchi’s analysis produces workpiece reinforcement size
as key dominating factor in the erosion behavior of the
SiC reinforced PMC followed by standoff distance, im-
pingement angle, erodent nature and slurry pressure.

& The optimum conditions for minimum erosion loss are
obtained as A2B1C1D1E1. The optimal values are found
to be abrasive erodent, beach sand; impingement angle,
30°; workpiece reinforcement size, 400 mesh; standoff
distance, 10 mm and slurry pressure, 3 bar.

& Taguchi is coupled with machine learning for the testing
and training of the experimental data.

& The comparative analysis shows that SVM_PUK based
model approach works better (CC = 0.95972, RMSE =
0.002318) as compared to other kernel described above
function based SVM models for this data set.

& The additional conclusive remark is that the MLR based
model is superior to the radial basis kernel function and
polynomial kernel function based SVM models.
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