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Abstract
Biocompatibility and biodegradability characteristics of some polymers make them an excellent candidate to fabricate porous
scaffolds for tissue engineering applications. However, the scaffold mechanical properties and biodegradation rate are vital for
bone tissue replacement applications, which can be improved using proper fabrication techniques and cross-linker. In this
investigation, Chitosan-polyvinyl alcohol scaffolds were prepared by freeze-drying technique utilizing various weight ratios of
3-Glycidoxypropyl trimethoxysilane (GPTMS) as a bioactive inorganic crosslinker. SEM micrographs indicated interconnected
porous structures of cross-linked scaffolds while the average diameter of pores increased as a function of cross-linker enhance-
ment. FTIR analysis was performed to confirm interactions among organic and inorganic components. The mechanical strength
test represented that increasing GPTMS content improves the compressive strength of samples. The absorption capacity of the
scaffolds in the PBS solution exhibited a decrease in water uptake and biodegradation by increasing silane coupling agent
concentration. The formation of needle-like apatite particles proved suitable bioactivity of cross-linked samples. Moreover,
MTT assay and ALP expression showed an acceptable adhesion, spreading, proliferation, and differentiation of MG-63 cells
on the silane-contained scaffolds. Obtained results warrant further preclinical and clinical evaluations.
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1 Introduction

In tissue engineering, scaffolds have been applied to obtain
a temporary artificial extracellular matrix (ECM) with the
purpose of supporting cell attachment and guiding three-
dimensional (3D) tissue formation. Developing new scaf-
folds by polymer blends has drawn a lot of attention in
recent decades [1, 2]. Polymeric blends create better

properties to regenerate the desired tissue structures in
comparison with single ones [3, 4]. Awide variety of poly-
meric blends have been investigated for the engineering of
soft tissues such as Poly(lactic-co-glycolic-acid) (PLGA)
and gelatin [5], corn starch and polystyrene [6], poly(lactic
acid) and poly(vinyl acetate) [7], poly (vinylidene fluoride)
and ultrahigh-molecular-weight polyethylene [8], etc.
Among these polymers, chitosan is playing an ideal role
in tissue engineering scaffolds and attracting a keen inter-
est in soft tissue engineering [2]. Chitosan is a linear poly-
saccharide of β-[1- 4]-linked 2-acetamido- 2-deoxy-D-
glucopyranose and 2-amino-2-deoxy-D-glucopyranose
and considered as second abundant biopolymer [3]. Due
to its biocompatibility, biodegradability, non-toxicity, and
antimicrobial properties, it has been used in many applica-
tions [9]. However, the weak mechanical strength of the
chitosan-based scaffolds limits its clinical applications
[10]. Thus, several investigators have attempted to develop
new chitosan scaffolds with desirable properties that can
replace the natural ECM. Recent evidence suggests that
blends of synthetic and natural polymers show a new type
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of materials and have attracted much attention [3].
Therefore, blending chitosan with other polymers would
be an effective way of producing new scaffolds. Poly (vi-
nyl alcohol) (PVA) is one of the most common synthetic
polymers and because of its biocompatibility, non-toxic,
and chemical properties have been attained great interest
for biomedical applications. Hydrophilicity of the PVA
plays a significant role in the extension of its bio-
applications owing to considerable improvement in biolog-
ical behavior [11]. A published study showed that chitosan
and PVA have many hydroxyl groups in their chemical
structure that lead to formation of hydrogen bonds between
the hydroxyl groups of chitosan and PVA and promote the
localized stability and improvement of the miscibility [12].

In most medical applications, the chain of hydrophilic
polymeric scaffolds should be cross-linked in order to
have better mechanical and biodegradation properties.
Different kinds of cytotoxic reagents have been used as
cross-linking agents such as epoxy compounds, formal-
dehyde, and glutaraldehyde, which may damage the bio-
compatibility of the scaffolds [13]. In fact, the possible
presence of some unreacted cross-linking agents inside
the scaffold may lead to the formation of toxic products
during in-vivo biodegradation [14]. For this reason,
growing interest has been recently attained to utilize
low toxic cross-linking agents. Furthermore, induction
of osteoconductivity through the scaffold can be profit-
able in bone regeneration [15]. Thus, many different bio-
active materials have been added to the scaffolds to im-
prove the bioactive properties of constructs [16–18] . So,
a combination of polymers and bioceramics to fabricate
hybrid scaffolds for bone tissue engineering applications
attracts many scientists. In fact, bioceramics, including
HA and other bioactive silicate glasses, exhibit
osteoconductivity and provide the ability of bonding with
connective tissues that can improve the bioactivity of
polymeric scaffolds [19, 20]. However, high values of
these bioactive particles as a dispersed phase in polymer-
ic solutions can enhance problems associated with weak
interfacial bonding and particle agglomeration, which
may cause more fracture, cytotoxicity problems related
to ion release from glasses and the lack of biodegradation
of HA in the body [21, 22].

The silane coupling agent named 3- glycidoxypropyl-
trimethoxysilane (GPTMS) includes epoxy and methoxysilane
groups, which is mostly used for modification of hydrophilic
materials [23]. A previous study clearly indicated that there is a
direct relationship between the amount of GPTMS density as a
cross-linker and the scaffolds biodegradation rate [14]. The
cross-linked composite scaffolds also showed bioactivity due
to the existence of silanol groups derived from GPTMS.
Besides, the released ions such as Si ions were not cytotoxic
after degradation of the scaffold [24].

In this study, the influence of GPTMS on the physicochem-
ical, mechanical, and cytocompatibility of PVA-chitosan scaf-
folds has been determined. In this regard, structures with var-
ious compositions were fabricated through the freeze-drying
process. The results may help the researchers in a similar field
of study to optimize the density of GPTMS in cross-linked
networks and hope to design a suitable tissue-regenerative
composite material.

2 Experimental

2.1 Materials

PVA (98% hydrolyzed, the average molecular weight of
72,000 g/mol), acetic acid (AA, Mw 60.05 g/mol), ethanol
(Mw = 46.07 g/mol), and 3-glycidoxypropyltrimethoxysilane
(GPTMS, Mw 236.34 g/mol) were purchased from Merck
(Germany). Chitosan (mediummolecular weight), sodium hy-
droxide (NaOH, Mw 40.00 g/mol), thiazolyl blue tetrazolium
bromide (MTT, Mw = 414.32 g/mol), dimethyl sulfoxide
(DMSO, 1X), L-glutamine (Mw = 146.14 g/mol), non-
essential amino acid solution (100X), and ethidium bromide
(Mw = 394.31 g/mol) were supplied from Sigma-Aldrich
(USA). Phosphate buffered saline powder (PBS, pH 7.2–
7.4) and simulated body fluid solution (SBF, pH 7.4) were
purchased from Aprin Advanced Technologies Development
Co. Ltd. (USA). Dulbecco’s modified eagle’s medium
(DMEM) was purchased from Mehregan Biotechnology Co.
Ltd. (Iran). Fetal bovine serum (FBS) and penicillin-
streptomycin were purchased from Gibco-BRL, Life
Technologies Co. Ltd. (NY). Alkaline phosphatase kit
(ALP) was purchased from MAN Co. Ltd. (Iran). All
chemicals were used directly without further purification.
Aqueous solutions were prepared with doubly distilled water.

2.2 Preparation of Scaffolds

An equal amount of chitosan and PVA (50:50 weight ratio)
were dissolved in 2% (v/v) acetic acid to obtain a concentra-
tion of 3% (w/v). Then GPTMS in a different weight ratio of
0.5:1, 1:1, and 1.5:1 (GPTMS:polymer) was added to the so-
lutions and stirred for 2 h at room temperature. The prepared
solutions were poured into cylindrical molds with 10 mm di-
ameter and frozen at −20 °C. Then all the frozen samples were
transferred into freeze-dryer (FD-10, Pishtaz Engineering Co.
Iran) and lyophilized at the temperature of −58 °C and pres-
sure of 0.5 Torr for 48 h to ensure that all the ice crystals have
been entirely sublimated. All the scaffolds were neutralized by
soaking in 0.1 M sodium hydroxide (NaOH) for 1 h, washing
with deionized water (3 times), and soaking again in deionized
water for half an hour. Table 1 shows a list of the prepared
solutions and their codes.
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2.3 Scaffolds Characterization

2.3.1 Morphology Determination

The morphology and microstructure of the synthesized struc-
tures (CP0.5G, CP1G, and CP1.5G) scaffolds were evaluated
using Scanning Electron Microscopy (SEM, Stereoscan S
360-Leica, UK) at the acceleration voltage of 15 kV. The
polymeric samples were coated with a layer of gold by
sputtering (Emitech K450X, Ashford, UK).

Image measurement sof tware (KLONK Image
Measurement Light, Edition 11.2.0.0) was used to character-
ize the SEM micrographs in the original magnification of
50X. At least five different SEM micrographs and 25 mea-
surements at each image were performed to determine the
average and standard deviation of the results.

The porosity of scaffolds was calculated by using the Eq.
(1) [5]. Where ρscaffold is the density of the freeze-dried scaf-
fold, ρsolid is the density of the bulk polymer. The apparent
density of the scaffolds was accurately measured by using a
density bottle method.

Porosity% ¼ 1− ρScaffold=ρSolidð Þ*100 ð1Þ

2.3.2 Fourier Transform Infrared Spectrum (FTIR)

Chemical characterization of scaffolds was examined by
Fourier transform infrared analysis with a Nicolet Is10 FTIR
spectrophotometer (USA). 1 mg of scraped samples mixed
with 300 mg of KBr and pelletized under vacuum. Then,
pellets were analyzed between 400 and 4000 cm−1 with a
resolution of 4.0 cm − 1 and 8 scans.

2.3.3 Mechanical Testing

Mechanical properties of the scaffolds were determined
by a compression strength test system (Santam, STM
−50, Iran) with a crosshead speed of 0.5 mm/min and a
load cell of 100 N. All the samples were cut to 12 mm

height. At least five samples were analyzed for each type
of scaffold to calculate the average and standard deviation
of the results.

2.3.4 Swelling Test

The swelling of the prepared cross-linked scaffolds was tested
with immersing the samples in falcon tubes containing 50 ml
of PBS solution incubating in-vitro at 37 ± 0.5 °C and the
rotational speed of 30 rpm for different period times (1, 3, 6,
9, and 24 h). After immersion of the scaffolds in PBS solution
at various times, the amount of PBS uptake was determined
after removing the samples from the medium and wiping off
the excess surface PBS with filter papers. The percent of
swelling is given by using the Eq. (2) [25]:

Swelling ratio% ¼ W−W0ð Þ=W0½ �*100 ð2Þ

Where W0 is the original weight, and W is the wet weight
of the sample. Each swelling examination was repeated five
times to determine the average and standard deviation.

2.3.5 Biodegradation Test

Biodegradation study of the scaffolds was performed with
incubating the samples in 50 ml PBS (pH 7.4) at 37 ± 0.5 °C
and the rotational speed of 30 rpm for different period times
(1, 2, 3, and 4 weeks). After each biodegradation period, the
samples were washed with distilled water and freeze-dried
(temperature of −58 °C and pressure of 0.5 Torr for 24 h). In
order to find out the biodegradation rate, the samples were
weighed, and the biodegradation index was calculated based
on the mass loss using the Eq. (3) [26]:

Biodegradation ratio% ¼ W−W0ð Þ=W0½ �*100 ð3Þ

WhereW0 is the wet weight, andW is the dry weight of the
samples after soaking in PBS. Each biodegradation experi-
ment was repeated five times to determine the average and
standard deviation.

2.3.6 In-Vitro Bioactivity Assay

In-vitro bioactivity of the composite scaffold (CP1G) was
evaluated by soaking samples in 50 ml SBF solution under
shaking at 37 ± 0.5 °C with the rotation speed of 30 rpm
(Thermoshaker, LS-100, Thermo Scientific, USA) for 3, 7,
and 14 days. The bioactivity analysis was performed as
described by Kokubo et al. [27]. So, the SBF solution
was refreshed every 2 days. After each immersion time,
samples were washed with deionized water and freeze-
dried (temperature of −58 °C and pressure of 0.5 Torr for
24 h) to keep their structure. Phase analysis of the compos-
ite scaffolds was conducted using XRD (XRD, Philips

Table 1 The components, notation, and ratio of different freeze-drying
scaffolds studied in this work

Codes Composition
(Weight ratio)

Freezing
temperature
( C)

Polymer: GPTMS
(weight ratio)

CP0.5G Chitosan:PVA
50:50

−20 1:0.5

CP1G Chitosan:PVA
50:50

-20 1:1

CP1.5G Chitosan:PVA
50:50

-20 1:1.5
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PW3710) analysis with monochromatic Cu-Kα radiation
under the operating conditions of 40 kV and 30 mA. A
comparison of XRD patterns with JCPDS standards was
carried out to identify the crystalline phases. The morpho-
logical and microstructural study of the apatite formation
on scaffolds after immersing in SBF was characterized by
SEM-EDX (SEM, Vega3, TESCAN, Czechoslovakia) at
an accelerating voltage of 15 kV. All samples were coated
with a thin layer of gold in double 30-s consecutive cycle
at 45 mA to reduce charging and produce conductive dried
surface. Chemical characterization of apatite-like layers on
the scaffolds was examined by Fourier transform infrared
analysis with a Nicolet Is10 FTIR spectrophotometer
(USA) between 400 and 4000 cm−1 with a resolution of
4.0 cm−1 and 8 scans.

2.4 In-Vitro Study in Contact with MG-63
Osteosarcoma Cells

The in-vitro cytotoxicity of the CP1G scaffolds was tested
using the MG-63 osteosarcoma cells. The cells were kept in
Dulbecco’s Modified Eagle Medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and streptomycin/penicillin
100 U/mL and 1.2% glutamine. The culture was kept at 37 C in
a wet atmosphere containing 5% CO2. When the cells reached
80% confluence, they were trypsinized with 0.25% trypsin
containing 1 mM EDTA. In the 24-well plate, 5*105 cells/ml
were seeded in each well. The scaffold specimens were steril-
ized under UV light for 2 h and then kept in 75% alcohol
solution overnight. After that, the samples were washed three
times with PBS and twice with cell culture medium. The ster-
ilized scaffolds were washed three times with sterile phosphate-
buffered saline (PBS) and transferred to individual 24-well tis-
sue culture plates. After 48 h of incubation, the samples were
rinsed with PBS twice, and then the cells were fixed with 3%
glutaraldehyde solution in PBS. After 30 min, the specimens
were rinsed again with PBS and kept in PBS at 40 °C. Then, the
specimens were fixed with 1%Osmium tetroxide (Polyscience,
Warmington, PA, USA) followed by dehydration through eth-
anol solutions of ascending concentrations (30, 50, 70, 90, and
100%) for about 20 min at each concentration. The specimens
were then dried in air. After being dried completely, the speci-
mens were mounted on copper stubs, coated with gold, and
observed by SEM (Philips XL30, Netherland) at an accelera-
tion voltage of 15 kV.

The cell viability assay of specimens was investigated by
MTT test, as described in our previously published work [28].
For the MTT test, the cells were exposed to the samples for 3
and 5 days, as described above. After each predetermined
incubation time, the DMEM was removed and replaced with
a fresh medium containing 10% MTT solution (3-(4, 5-
Dimethyl-2- thiazolyl) 2, 5-diphenyl-2Htetrazolium bromide)
and left for 2 h at 37 °C. The cells were then treated with

dimethyl sulfoxide DMSO for 30 min. The optical density
(OD) of the samples, as a cell viability indicator, was mea-
sured by ELISA (enzyme-linked immunosorbent assay) read-
er at a wavelength of 570 nmwith a reference filter of 620 nm.
The cells cultured in mediumwithout scaffolds were served as
a control (100% cell viability).

Alkaline phosphatase activity was evaluated according to
the method described by Lowry et al. [29]. To determine al-
kaline phosphatase (ALP) activity, 5 × 105 MG-63 cells were
seeded on scaffolds as described above. Lysing the cells
followed by 0.1% Triton X-100 to the scaffolds and freeze-
thawing at 37 °C to evaluate ALP activity at days 3 and 5 was
performed according to the MAN company instructions. The
lysis cells were incubated with p-nitrophenyl phosphate
(PNPP) solution at 37 °C for 30 min, and the reaction was
stopped with NaOH (1 N). ALP activity was determined at
405 nm.

2.5 Statistical Analysis

All experiments were performed in five replicates. The results
were given as mean ± standard error (SE). Statistical analysis
was conducted by one-way ANOVA and Tukey test with sig-
nificance reported when P < 0.05.

3 Result and Discussion

3.1 Morphology and Porosity of Scaffolds

SEM images (Fig. 1) depict high porosity and interconnected
pores for all chitosan-PVA-GPTMS (CPG) scaffolds and il-
lustrate homogeneous integrity of constructs. Furthermore, it
is shown that the concentration of GPTMS in the initial solu-
tion affect the final structure of scaffolds. The porosity of each
scaffold was also precisely obtained and they were around
91.23%, 89.87%, and 88.52% for CP0.5G, CP1G, and
CP1.5G scaffolds, respectively (Table 2).

Freeze-drying procedure lead to formation of cellular mor-
phology and interconnected pore networks due to the random
ice crystals growth [30]. However, the final properties of the
microstructure were affected by their compositions. Here, we
propose a cross-linked scaffold in which addition of GPTMS
resulted in a suitable microstructure of the prepared scaffolds
for bone tissue engineering. According to Fig. 2, with an in-
crease in GPTMS amount, larger pore size and more homog-
enous structure were created in the scaffolds, which facilitates
pore formation without plastic deformation. Moreover, a bet-
ter distribution of pores was obtained by the increase in
GPTMS content. Finally, the critical role of scaffold’s porosity
and pore morphology to allow migration and proliferation of
cells and to support the exchange of nutrients and waste prod-
ucts with the microenvironment should be considered [31].
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3.2 Chemical Bonding

Figure 3 shows the FTIR spectra of PVA, chitosan,
GPTMS, and CPG blends. For the chitosan sample, the
absorption peaks around 846 and 1150 cm−1 are assigned
to the saccharide structure [32]. Also, the peaks at 1740,
1480, and 1346 cm−1 are related to the vibration of amide I,
II, and III peaks, respectively [16, 33], and the peak is

shown at around 2899 cm−1 is because of the C-H stretch
vibrations. Moreover, the broad peak observed at
3447 cm−1 is due to amine N-H symmetrical vibration
and hydroxyl groups. The infrared spectrum of PVA
around 3440 cm−1 and 2921 cm−1 have been reported as
–OH and CH2 stretching vibrations, respectively [34, 35].
Also, the primarily observed absorption bands of PVA are
the result of the 1734 cm−1 stretch of C=O group and
1098 cm−1 of C-O and 850 cm−1 of C-C from acetate

Fig. 1 Typical SEM micrographs of the surface microstructure of the
freeze-drying CPG porous scaffolds with different GPTMS contents. a
CP0.5G, b CP1G, c CP1.5G. Magnification of a, c and e is 200X

Fig. 2 The pore size distribution of different cross-linked scaffolds a
CP0.5G, b CP1G, c CP1.5G. The pore size increased as a function of
GPTMS enhancement

Table 2 Porosity, mechanical
strength, absorption, and
biodegradation rate of the
prepared scaffolds

Sample codes Porosity

(%)

Compressive
strength

(MPa)

24-h PBS absorption rate

(%)

4-Weeks biodegradation rate

(%)

CP0.5G 91.23 0.38 ± 0.03 1633.12 ± 33.23 35.19 ± 6.36

CP1G 89.87 0.65 ± 0.02 1361.89 ± 34.64 33.72 ± 3.53

CP1.5G 88.52 0.71 ± 0.007 1140.52 ± 49.49 29.14 ± 0.70
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groups. Furthermore, the absorption peak at 1000–
1100 cm−1 is caused by the stretching vibration of C-O
groups in PVA. Furthermore, in the FTIR spectrum of
GPTMS, the vibration at 2962.02 cm−1 and 1094.24 cm−1

are related to C-H and C-O-C stretching, respectively [34].
The bonds at 1024 cm−1 indicate Si-O stretching vibration.
Another peak around 1261 cm−1 is the result of Si-C
stretching vibration, and oxirane ring vibration occurs at
905 cm−1. Also, the FTIR spectrum of CPG scaffolds il-
lustrates the O-H stretching vibration at 3434.48 cm−1 and
C-H stretching vibration at 2924.18 cm−1, respectively.
The disappearance of the absorption band at 910 cm−1 (ox-
irane ring) and an increase in the absorbance of the peak at
1000–1100 cm−1 indicate cross-linking reactions.
Broadening is due to the adsorption of the Si-O-C bonds,
which may be created following the condensation reactions
between Si-OH groups from hydrolyzed GPTMS and C–
OH groups from PVA or the amino group of chitosan [36,
37]. In addition, the absorption band at 920 cm−1 is caused
by the Si-OH stretching [14].

According to the previous studies [34, 38] and the
FTIR results, it can be concluded that in this study,
GPTMS successfully acted as a cross-linker and reacted
with amine groups of chitosan and the hydroxyl groups of
PVA. For this purpose, the ring-opening reaction of epoxy

groups of GPTMS and deprotonation of hydroxyl groups
of PVA and chitosan have occurred. This epoxy ring of
GPTMS can be reacted with the hydroxyl groups of PVA
or the hydroxyl or amine groups of chitosan and create
ether bonds. On the other hand, Trimethoxy groups of
GPTMS hydrate and acid-catalyzed reactions create pen-
dant silanol groups. The condensation reaction leads to
the formation of Si-O-Si.

3.3 Compression Test

The compression test was performed to evaluate the effects of
the GPTMS cross-linking degree on the mechanical properties
of the CPG scaffold. The compression test results are present-
ed in Table 2. It was well known that the porosity and com-
position of scaffolds are the most significant contributions to
the mechanical properties. Based on the results, the compres-
sion behavior was influenced by the compositions. Increasing
the inorganic phase (GPTMS) led to better compressive
strength. According to a previous study [39], the added values
of GPTMS to the solution lead to higher compressive strength,
and consequently, higher mechanical stress is needed to de-
form the structure. The compressive strength increased with
the enhancement of the GPTMS content (0.38 MPa to
0.65 MPa from CP0.5G to CP1G). Increasing the ratio of
polymer:GPTMS to 1:1.5, improved the scaffold strength to
approximately 0.71MPa (Fig. 4). The compressive strength of
CP1.5G was almost two times higher than that of CP0.5G
which shows the effect of cross-linking content on the strength
of scaffolds. The prepared constructs contain bridging skele-
tons like (Chitosan/PVA)-(GPTMS skeleton)-Si-O-
Si-(GPTMS skeleton)-(Chitosan/PVA). Therefore, the in-
crease in strength of samples could be related to the fact that
the larger content of GPTMS introduces many of Chitosan/
PVA-Chitosan/PVA-bridging bonds, which create tight

Fig. 3 FTIR spectra of chitosan, PVA, GPTMS, and different scaffolds:
CP0.5G, CP1G, and CP1.5G

Fig. 4 Compressive strength of CP0.5G, CP1G, and CP1.5G scaffolds.
(*P = 0.0002, **P = 0.00005; ANOVA, all pairs were compared using
Tukey’s test)
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intermolecular bonds [40]. Therefore, the CP1.5G scaffold has
a more rigid matrix and higher strength than the CP0.5G scaf-
fold does.

3.4 Swelling and Biodegradation Behavior

The maintenance of the scaffold shape and cell growth are
affected by the amount of water absorption. However, the
moisture content is one of the main factors showing the
biocompatibility of scaffolds, physiological stability, and
permeability to biomolecules [33]. The higher water ab-
sorption means having a larger area/volume ratio, which
might be suitable for cell infiltration as well as a cell at-
tachment [41, 42]. In this work, the effect of GPTMS con-
tent on the water absorption of CPG scaffolds was exam-
ined. The obtained data were recorded after the 1, 3, 6, 9,
and 24 h of the test (Fig. 5(a)). Hydroxyl groups of PVA
and both hydroxyl and amine functional groups of chitosan
provide proper sites for the formation of hydrogen bonding
between the substrate and water, which can improve the
scaffold hydrophilicity and water absorption capacity [43,

44]. The lower swelling rate for CP1.5G is due to the pres-
ence of more hydrophobic siloxane chains of GPTMS in-
stead of hydrophilic hydroxyl and amine groups and the
lower porosity. An increase in GPTMS content resulted in
a decrease in water uptake of samples after only 1 h incu-
bation in the PBS solution. It can be observed that the
changes in water absorption are related to the GPTMS
content and it decreased from 1633.12% for CP0.5G to
1361.89% for CP1G and 1140.52% for CP1.5G after 1 h.
The higher amount of GPTMS leads to more Chitosan-
PVA- Chitosan-PVA /bridging bonds. Thus, it was found
that CP1.5G has a more rigid matrix than CP0.5G and a
lower degree of water uptake [40]. Furthermore, a higher
amount of GPTMS led to lower porosity. So, the water-
absorbing capacity reduction can be attributed to the po-
rosity reduction of the structure. Higher structure porosity
enhances the water penetration in the structure and leads to
more swelling ratio [45]. However, by increasing the im-
mersion time from 1 h to 24 h, the water uptake slightly
changed.

The aim of biodegradation tests on CPG samples was
an investigation of their stability in the PBS solution. It
can be seen that CP0.5G, CP1G, and CP1.5G weight loss
were 35.19%, 33.72%, and 29.14%, respectively, after
1 week (Fig. 5(b)). According to the results, the reduction
of water uptake, an increase in mechanical strength, and
greater cross-linking extent in scaffolds were due to
higher values of GPTMS, which influenced the biodegra-
dation rate. Biodegradation ratio was slightly lower for
CP1.5G compared with CP1G and CP0.5G scaffolds.
Also, an increase in GPTMS content reduced the scaffold
porosity amounts. It means that higher GPTMS content
ends to lower porosity and absorption capacity and finally
prevent rapid biodegradation. The same results were ob-
served in Tonda-turo et al. [14] investigation. In fact, dif-
ferences in the biodegradation rate of scaffolds can also
be attributed to their matrix structure.

3.5 Bioactivity Behavior of SBF Solution

The final results of the analysis mentioned above demon-
strated that there is a balance between mechanical, swell-
ing, and biodegradation behavior of CP1G scaffolds.
Therefore, this study was followed on the scaffolds with
the best features compared to the other ones. The surface of
the CP1G scaffolds illustrated morphological changes after
immersion in the SBF solution. Many fine, needle-like
particles were formed on the surface of the samples within
14 days, which are observed SEM observation (Fig. 6).
According to the results, the number of precipitated parti-
cles increased, and apatite-like layers become denser as a
function of time. So, after 14 days, the surface of the scaf-
fold was almost entirely covered with needle-like particles.

Fig. 5 a Uptake capacity and b biodegradation rate of the composite
scaffolds in different time intervals. Increasing GPTMS content reduced
absorption capacity and degradation rate. (*P < 0.05, **P = 0.003,
***P = 0.006, ANOVA, all pairs were compared using Tukey’s test)
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EDX results (Fig. 7) confirmed that Ca and P covered the
surface of structures after 3 days and continued to increase
with the immersion time (7 and 14 days). The presence of
GPTMS in scaffolds plays the main role in apatite forma-
tion. GPTMS is known as one of the silane-coupling
agents, which contain an epoxy group and methoxysilane
groups. The epoxy group interacts with the hydroxyl group
of PVA as well as with amino groups of chitosan chains
[46]. Also, after hydrolysis of methoxysilane groups,
silanol groups create. The formation of these Si-OH groups
attracts Ca2+ ions from the SBF to form an amorphous
calcium silicate on the scaffolds [47]. So, after the soaking
period, the combination of calcium silicate with SBF ions
leads to the formation of amorphous calcium phosphate
particles. FTIR results are shown in Fig. 8(a). The band
at 1090 cm−1 is attributed to Si-O-Si vibrations. The broad-
band at 3440 cm−1 and the small peak at 1630 cm−1 are the
results of O-H stretching. The peak at 607 cm−1 is due to
phosphate absorption bands. Also, the band at 850 cm−1

caused by C-O vibration [48, 49]. These peaks are a func-
tion of apatite formation on the surface of the silane-
contained scaffolds, in which the observed peaks become
sharper with increasing immersion time. The XRD analysis
is shown in Fig. 8(b) described that after immersion of the
scaffold in SBF for 3 days, small peaks were detected in 2θ
angel of 26, 31.8, 39.8, 46.7, and 53.3 °. This event

corresponded to the dominant (210),(211), (130), (222)
and (004) reflection planes in a referenced HA (JCPDS
72–1243) [50, 51]. The intensity of these peaks increased
with immersion time.

3.6 In-Vitro Biocompatibility

In order to investigate the cell adhesion and proliferation
capability of the proper sample, MG-63 osteosarcoma
cells were cultured on the surface of CP1G samples, and
the morphology of the cultured cells was observed by
SEM. SEM image in Fig. 9(a) showed the morphology
of cultured-MG-63 cells on the CP1G scaffolds after
48 h. Accordingly, cells were attached well on the surface
of CP1G, and filopodia formation has occurred after 48 h.
The high swelling capacity and porosity of the fabricated
scaffold provide a suitable environment for cell adhesion
and proliferation.

The absorbance obtained from anMTTassay of theMG-63
cells is shown in Fig. 9(b). After 3 days, the absorbance inten-
sity of CP1G scaffold was 0.09, which increased to 0.22 after
5 days. The MTT assay results indicate the absorbance inten-
sity of the CP1G scaffold was higher than the control sample
after 5 days. Therefore, it was suggested that the samples were
nontoxic to MG-63 cells and may be as good samples to be
used as tissue scaffolds. Although Si ion release improves

Fig. 6 SEM micrographs of CP1G scaffolds after soaking in SBF solution for a 3, b 7, and c 14 days. Silane-contained scaffolds can support the
mineralization of hydroxyapatite-like layers
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collagen stabilizing, cell attachment, bone extracellular matrix
deposition, and induce osteoblastic differentiation, the effect
of Si ion on the postpone of cellular proliferation is noticeable
[13]. The amount of Si release is a critical factor and a high
concentration of Si ions leads to cell apoptosis [52]. In this
study, the low amount of cell proliferation on CP1G sample is
related to Si ion release, but the moderate Si ion release on the
following days accelerates cell proliferation in comparison to
the control group.

The results of the ALP activity of cultured-MG-63 cells on
the CP1G scaffold and the control group are presented in Fig.
9(c). The ALP activity reached 150 (U/L) after 3 days, follow-
ed by a slight increase on day 5. Enhancement in ALP activity
illustrates the fact that an osteogenic function on the scaffolds
can be carried out by cells. According to observation, the
higher ALP activity of CP1G scaffolds in comparison to the
control group showed a more exceptional ability to support
cell differentiation after an incubation time of 3 and 5 days.
These observations are compatible with the results of theMTT
assay and cell culture, which reveal suitable biocompatibility

properties of CP1G scaffolds for cell viability and
proliferation.

4 Conclusion

Chitosan-PVA/GPTMS scaffolds with a different weight ratio
of GPTMSwere prepared by the freeze-drying method. In this
investigation, the effect of cross-linker content on the perfor-
mance of fabricated structures was studied. Based on SEM
images, interconnected pores in scaffolds were illustrated in
which the diameter of pores increased as a function of
GPTMS content. The FTIR results showed that the blends of
chitosan and PVAwere cross-linked through the amine group
of chitosan and C-OH of PVA with the epoxide ring of
GPTMS. Increasing GPTMS content promoted the compres-
sive strength of the samples. The degradation study indicated
that enhancing the GPTMS content causes a decrease in water
absorption as well as the degradation of scaffolds network.
Immersion of the constructs in the SBF solution resulted in
the formation of needle-like particles on the surface of sam-
ples, revealing the excellent bioactivity of the scaffolds. The
MG-63 cells-scaffolds interactions indicated a desired

Fig. 7 EDX analysis of CP1G scaffolds after soaking in the SBF solution
for a 3, b 7, and c 14 days

Fig. 8 a FTIR spectra and b X-ray diffraction pattern of CP1G scaffolds
after different immersion time in the SBF solution
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spreading of cells after 48 h. MTT assay showed that the
portion of viable cells seeded onto the CP1G scaffold was
much more than those seeded onto the control sample. This
observation confirmed the biocompatibility of CP1G scaffolds
with MG-63 cells. Finally, ALP activity results demonstrated
that CP1G scaffolds might be a good choice for bone tissue
engineering applications and further in-vivo studies.
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