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Abstract
The purpose of this work is to introduce a new modified model for photo-thermoelasticity with regard to a new consideration of
generalized heat conduction equations with time-fractional order. We consider an isotropic semiconductor half-space which
rotating with uniform angular velocity and subjected to a magnetic field. By applying the technique of normal mode analysis,
the analytical expressions for the distribution of the displacement components, temperature, carrier density, the thermal stresses,
and Lorentz force are obtained and represented graphically. Comparisons are made between the results expected by the modified
new fractional model and the classical one. Also, the effects of rotation, the lifetime of the photo-generated, magnetic field and
fractional parameter on all the field variables are investigated.
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1 Introduction

Fractional order differential equations of had been the focal
point of many studies because of their common look in nu-
merous applications in viscoelasticity, biology, fluid mechan-
ics, engineering and physics. The most significant improve-
ment by using the usage of differential equations of fractional
order in several applications is their nonlocal property.
Fractional calculus is a natural extension of classical mathe-
matics. In fact, since the foundation of the differential calcu-
lus, the generalization of the concept of derivative and integral
to a non-integer order has been the subject of distinct ap-
proaches. Due to this reason, there are several definitions
[1–3] which are proved to be equivalent. Fractional calculus
has been applied in many fields, ranging from statistical phys-
ics, chemistry, biological sciences, and economics. In recent
years, there has been a great deal of interest in fractional dif-
ferential equations. Several definitions of the fractional deriv-
ative have been proposed. The history and classic transform

rules on this subject are well covered in the monograph by
Podlubny [4].

During recent years, fractional calculus has also been in-
troduced in the field of thermoelasticity. Povstenko [5] has
constructed a quasi-static uncoupled thermoelasticity model
based on the heat conduction equation with a fractional-
order time derivative. He used the Caputo fractional derivative
[6] and obtained the stress components corresponding to the
fundamental solution of a Cauchy problem for the fractional-
order heat conduction equation in both the one-dimensional
and two-dimensional cases. In 2010, a new theory of general-
ized thermoelasticity in the context of a new consideration of
heat conduction with a fractional-order has been proposed by
Youssef [7]. In the same year, Sherief et al. [8] have construct-
ed another model in generalized thermoelasticity theory by
using fractional time derivatives. Based on the fractional-
order thermoelasticity theory, several authors considered
thermoelastic problems as given in [9–12].

The classical thermoelastic theory depends on Fourier’s
law which predicts an unlimited speed of heat propagation.
With a specific end goal to wipe out this paradox of infinite
speed of thermal propagation, Lord and Shulman [13] intro-
duced a modified thermoelastic theory which is hyperbolic
type. The thermoelasticity theory without energy dissipation
is a new generalized model introduced by Green and Naghdi
[14]. It contains the gradient of thermal-displacement between
its independent constitutive variables, and varies from the
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earlier theories in that it does not accommodate a dissipation
of thermal energy.

Investigation of a thermoelastic plane wave in a nonrotat-
ing medium is accepting significant attention in later years.
Since most huge bodies like the moon, the earth, and different
planets have angular velocity, it appears to be more reasonable
to discuss the spread of thermoelastic and plane waves in the
case of a rotating body. The effect of rotation on heat plane
waves is previously considered by several authors [15–19].

Photothermal spectroscopy is a set of great sensitivity
methods applied to calculate the thermal characteristics and
optical absorption of a specimen. The foundation of
photothermal spectroscopy is a photo-generated variation in
the condition of the thermal of the specimen. Light energy is
absorbed and not missed by subsequent radiation effects in
sample heating. This heating causes a change in the tempera-
ture as well as changes in the thermodynamic parameters of
the sample that are associated with the temperature.
Measurements of the pressure, temperature, or density varia-
tions caused by the optical absorption are ultimately the basis
for the photothermal spectroscopic techniques [20].

There have been various uses of photothermal techniques
for material and chemical analysis. Tam [21–23] is maybe first
responsible for classifying through the great measure of writ-
ing and indicating the purpose of these techniques. A consid-
erable lot of these applications are canvassed in a book pro-
posed by Sell [24]. Spectroscopy is the science offered to the
analysis of the interaction of the energy with the matter. The
most established orderly technique of the effect of
photothermal is accepted to be the correspondence gadget,
the photophone, developed by Bell [25, 26]. Bell found that
noticeable sound could be heard arriving from the tube ful-
filled with different materials when the light shining on the
diaphanous tube was modified. The sound was noisy when the
tube was fulfilled with radiation assimilating solids or gases,
and feeble when loaded with a liquid. The operational stan-
dards are currently well understood.

Viengerov [27] used the photoacoustic effect to consider
the absorption of light in gases and attained quantitative ap-
proximations of concentration in gas blends depend on the
signal size. Rosencwaig et al. [28] displayed an examination
of the thermoelastic deformations which occur at the surface
of the sample due to the excitation by an engaged test beam.
Under the generalized thermoelasticity theory, Song et al. [29,
30] presented the bending of semiconducting cantilevers un-
der the thermal optical excitation.

In this work, a newmathematical model of magneto-photo-
thermoelasticity has been constructed considering, taking into
account a new consideration of heat conduction with non-
integer order derivative (fractional derivatives). Based on this
model, we have investigated an isotropic semiconductor me-
dium, which is rotated with uniform angular velocity and sub-
jected to a magnetic field. Numerical results of temperature,

displacement and stresses are obtained using the normal mode
method. Also, the effect of the fractional parameter, magnetic
field, rotation and the lifetime of photogenerated on the phys-
ical quantities is illustrated graphically and discussed.

2 Basic Equations

Semiconductors are insulator with a dependably little
shrouded gaps and shallow vitality levels of electrons bound
to polluting influences. The fundamental advantage of a semi-
conductor is their extraordinary affect ability to debasements:
a concentration of impurities like one for each million of host
atoms may decide the electrical conductivity and its tempera-
ture dependence. The equations of motion of an isotropic
magneto-photo-thermoelastic semiconductor material which
is rotating with uniform angular velocity Ω = Ωn, (n the di-
rection of the rotation axis) are given by [31, 32]:

λþ μð Þ∇ div uð Þð Þ þ μ∇2u−γ∇θ−dn∇N þ F

¼ ρu
::þ ρΩ� Ω� uð Þ þ ρ 2Ω� u˙

� � ð1Þ

The absorption of light in a semiconductor causes the op-
tical power to decrease with distance. This effect is described
mathematically by the coupled plasma wave equation [28, 29,
33]:

DE∇2N ¼ ρ
∂N
∂t

þ 1

τ
N þ χθþ G ð2Þ

The strain-displacement relations are:

eij ¼ 1

2
ui; j þ uj;i
� � ð3Þ

The constitutive equations in the photo-thermal medium
are:

σ ¼ λ div uð Þð ÞI þ μ ∇uþ ∇uTr
� �

− γθþ dnNð ÞI ð4Þ

During recent years, several interesting models have been
developed by using fractional calculus to study the physical
processes, especially in the field of heat conduction, diffusion,
viscoelasticity, mechanics of solids, control theory, electricity,
dielectrics and semiconductors through polymers to fractals,
glasses, porous, and random media, porous glasses, polymer
chains, and biological systems. It has been realized that the use
of fractional order derivatives and integrals leads to the for-
mulation of certain physical problems which is more econom-
ical and useful than the classical approach.

There exist many materials and physical situations like
amorphous media, colloids, glassy and porous materials,
man-made and biological materials/polymers, transient load-
ing, etc., where the classical thermoelasticity based on Fourier
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type heat conduction breaks down. In such cases, one needs to
use a generalized thermoelasticity theory based on an anoma-
lous heat conduction model involving time-fractional (non-
integer order) derivatives.

The Riemann-Liouville fractional integral is introduced as
a natural generalization of the convolution type integral
[34–37]:

Iα f tð Þ ¼ ∫t0
t−τð Þα−1
Γ αð Þ f τð Þdτ ; α > 0 ð5Þ

Whereα, (0 <α < 1) is the fractional order parameter, f(t) is
a Lebesgue integrable function, Γ(α) is the Gamma function
and t is the time. In the case that f(t) is absolutely continuous,
then

lim
α→1

d
dα

f tð Þ ¼ f 0 tð Þ ð6Þ

The classical thermoelasticity is based on the principles of
the classical theory of heat conductivity, specifically in the
traditional Fourier law, which relates the heat flux vector q
to the temperature gradient as follows:

q ¼ −K∇θ ð7Þ

The energy equation is given by

ρCE
∂θ
∂t

þ γT0
∂
∂t

div uð Þð Þ ¼ −div qð Þ þ Eg

τ
N þ Q ð8Þ

Equation (7) together with (8) yields a parabolic heat equa-
tion. Ezzat [38] constructed a new Fourier model based on the
Jumarie Taylor series expansion for fractional-time-derivative
[39] given by

1þ τα0
α!

∂α

∂tα

� �
q ¼ −K∇θ ð9Þ

Taking divergence of both sides of Eq. (7), we get

1þ τα0
α!

∂α

∂tα

� �
div qð Þð Þ ¼ −K∇2θ ð10Þ

From Eqs. (8) and (10), we can get the generalized frac-
tional heat conduction

K∇2θ ¼ 1þ τα0
α!

∂α

∂tα

� �
ρCE

∂θ
∂t

þ γT0
∂
∂t

div uð Þð Þ−Eg

τ
N−Q

� �

ð11Þ

In Eqs. (1)–(11), u displacement vector, N is the carrier
density, θ = T − T0 denote the thermodynamic temperature,
T0 is the reference temperature, δij is Kronecker’s delta, ρ is the
mass density, σ is the stress tensor and F is the Lorentz force.
Also, DE is the diffusion coefficient, Eg is the semiconductor
gap energy, dn are the difference in deformation potential of

the conduction and valence bands, χ is the thermal activation
coupling parameter, τ is the lifetime of photogenerated
electron–hole pairs, γ = (3λ + 2μ)αt is the volume coefficient
of thermal expansion, αt is the coefficient of linear thermal
expansion, λ, μ being Lamés constants, eij is the strain tensor,
ekk = e is the cubical dilatation CE is the specific heat at con-
stant strain, Q is the heat supplied per unit volume from the
external world, K is the thermal conductivity of the solid.

As a result of the application of an initial magnetic fieldH,
induced magnetic and electric fields h and E. The simplified
linear equations of the electrodynamics of a slow-moving me-
dium for a thermally and electrically conducting homoge-
neous elastic solid are given below (neglecting the charge
density)

J ¼ ∇� h−ε0
∂E
∂t

; ∇� E ¼ −μ0
∂h
∂t

; E

¼ −μ0
∂u
∂t

�H
� �

; ∇ � h ¼ 0 ð12Þ

where ∇ the Hamilton arithmetic operator (nabla), J is the
current density μ0 is the magnetic permeability and ε0 is the
electric permeability.

The Maxwell’s stress equation is given by the relation

τ ij ¼ μ0 Hih j þ H jhi−Hkhkδij
� 	 ð13Þ

The Lorentz force F (for a perfect conductor) induced by
the magnetic field H is

F ¼ μ0 ∇�Hð Þ ð14Þ

3 Statement of the Problem

We consider a semiconductor material to be a homogeneous
and isotropic with a rectangular coordinate system (x, y, z).
The semiconductor medium is rotating regularly with angular
velocity Ω = (0, Ω, 0) about the y-axis and under an initial
fixed magnetic field H0. Given that the problem is two-
dimensional and therefore all functions depend on the spatial
variables x and z as well as on the time t. Then the displace-
ment components are

u≡ u; 0;wð Þ ð15Þ

The cubical dilatation given by

e ¼ div uð Þ ¼ ∂u
∂x

þ ∂w
∂z

ð16Þ

Using the Maxwell’s equation (12), the components of
Lorentz force can be expressed as:
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Fx ¼ μ0H
2
0

∂2u
∂x2

þ ∂2w
∂x∂z

−μ0ε0
∂2u
∂t2

� �
; Fz

¼ μ0H
2
0

∂2w
∂z2

þ ∂2u
∂x∂z

−μ0ε0
∂2w
∂t2

� �
ð17Þ

Also, the constitutive equations (4) may be reduced to

σxx ¼ λþ 2μð Þ ∂u
∂x

þ λ
∂w
∂z

−γθ−dnN

σzz ¼ λþ 2μð Þ ∂w
∂z

þ λ
∂u
∂x

−γθ−dnN

σxz ¼ μ
∂u
∂z

þ ∂w
∂x

� � ð18Þ

The equations of motion can be obtained by using Eqs. (1),
(17) and (18) in the form:

λþ μþ μ0H
2
0

� � ∂e
∂x

þ μ∇2u−γ
∂θ
∂x

−dn
∂N
∂x

¼ ρþ ε0μ
2
0H

2
0

� � ∂2u
∂t2

−ρΩ2uþ 2ρΩ
∂w
∂t

ð19Þ

λþ μþ μ0H
2
0

� � ∂e
∂z

þ μ∇2w−γ
∂θ
∂z

−dn
∂N
∂z

¼ ρþ ε0μ
2
0H

2
0

� � ∂2w
∂t2

−ρΩ2u−2ρΩ
∂u
∂t

ð20Þ

The fractional equation of heat conduction (11) can be
written as (Q = 0)

K
∂2θ
∂x2

þ ∂2θ
∂z2

� �

¼ 1þ τα0
α!

∂α

∂tα

� �
ρCE

∂θ
∂t

þ γT0
∂e
∂t

−
Eg

τ
N

� �
ð21Þ

In addition, the coupled plasma equation (3) in x-z plane
will be

DE
∂2N
∂x2

þ ∂2N
∂z2

� �
¼ ρ

∂N
∂t

þ 1

τ
N þ χθ ð22Þ

The displacement vector u can be expressed as

u ¼ ∇Φþ curl Ψð Þ ð23Þ
where Φ and Ψ are the displacement potentials which are
associated with displacement components u and w as,

u ¼ ∂Φ
∂x

−
∂Ψ
∂z

; w ¼ ∂Φ
∂z

þ ∂Ψ
∂x

ð24Þ

Substituting Eq. (24) into Eqs. (19)–(21), we obtain

c20∇
2 þΩ2− 1þ ε0μ0a

2
0

� � ∂2

∂t2

� �
Φ

¼ 1

ρ
γθþ dnN þ 2Ω

∂Ψ
∂t

� �
ð25Þ

c23∇
2 þΩ2− 1þ ε0μ0a

2
0

� � ∂2

∂t2

� �
Ψ ¼ 2Ω

∂Φ
∂t

ð26Þ

K
∂2θ
∂x2

þ ∂2θ
∂z2

� �

¼ 1þ τα0
α!

∂α

∂tα

� �
ρCE

∂θ
∂t

þ γT0
∂
∂t

∇2Φ
� �

−
Eg

τ
N

� �
ð27Þ

Where

c20 ¼ c21 þ a20; c
2
3 ¼ c22 þ a20; c21 ¼

λþ 2μ
ρ

; a20

¼ μ0H
2
0

ρ
; c22 ¼

μ
ρ
:

By introducing Eq. (24) into Eq. (18), we get

σxx ¼ λ∇2Φþ 2μ
∂
∂x

∂Φ
∂x

−
∂Ψ
∂z

� �
−γθ−dnN

σzz ¼ λ∇2Φþ 2μ
∂
∂z

∂Ψ
∂x

þ ∂Φ
∂z

� �
−γθ−dnN

σxz ¼ 2μ
∂2Φ
∂x∂z

þ μ
∂2Ψ
∂x2

−
∂2Φ
∂z2

� � ð28Þ

For further attention it is appropriate to introduce the fol-
lowing defined dimensionless quantities:

x
0
; z

0
; u

0
;w

0
n o

¼ η0
c0

x; z; u;wf g; t
0 ¼ η0t; θ

0
;N

0
n o

¼ 1

ρc20
γθ; dnNf g;

Φ
0
;Ψ

0
n o

¼ η20
c20

Φ;Ψf g; Ω
0 ¼ Ω

η0
; σ

0
ij ¼

σij

γT0
; η0 ¼

ρCEc20
K

ð29Þ

The basic governing equations after using the non-
dimensional forms (29) and suppressing the primes reduce to

∇2 þΩ2− 1þ ε0μ0a
2
0

� � ∂2

∂t2

� �
Φ ¼ θþ N þ 2Ω

∂Ψ
∂t

ð30Þ

c23∇
2 þ c20Ω

2−c20 1þ ε0μ0a
2
0

� � ∂2

∂t2

� �
Ψ ¼ 2c20Ω

∂Φ
∂t

ð31Þ

∂2θ
∂x2

þ ∂2θ
∂z2

¼ 1þ τα0
α!

∂α

∂tα

� �
∂θ
∂t

þ ε1
∂
∂t

∇2Φ
� �

−ε2N
� �

ð32Þ

∇2N ¼ g1
∂N
∂t

þ g2N þ g3θ ð33Þ
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σxx ¼ ∂u
∂x

þ C12
∂w
∂x

−θ−N

σzz ¼ ∂w
∂z

þ C12
∂u
∂x

−θ−N

σxz ¼ C13
∂u
∂z

þ ∂w
∂x

� � ð34Þ

where

ε1 ¼ γ2T0

ρ2c20CE
; ε2 ¼ γEg

ρCEτdn
;C12 ¼ λ

λþ 2μ
;

C13 ¼ μ
λþ 2μ

;

g1 ¼
ρc20
DEη0

; g2 ¼
c20

DEη0τ
; g3 ¼

κdnc20
DEη20

:

4 Solution of the Problem

The solution of the considered physical quantities can be ob-
tained by applying the normal mode analysis, defined by

u;w; θ;Φ;Ψ;N ;σij

 �

x; z; tð Þ

¼ u*;w*; θ*;Φ*;Ψ*;N*;σ*
ij

n o
xð Þeωtþiaz ð35Þ

where ω is the (complex) frequency constant, i ¼ ffiffiffiffiffiffi
−1

p
, a is

the wave number in the z direction, and u∗(x), w∗(x), θ∗(x),
Φ∗(x), Ψ∗(x), N∗(x), and σ*

ij xð Þ are the amplitudes of the field

quantities. Using Eq. (35), Eqs. (30)–(33) take the forms

D2−ζ1
� �

Φ* ¼ ζ6Ψ
* þ θ* þ N* ð36Þ

D2−ζ2
� �

Ψ* ¼ ζ5Φ
* ð37Þ

ζ7 D2−a2
� �

Φ* ¼ D2−ζ3
� �

θ* þ ζ8N
* ð38Þ

D2−ζ4
� �

N* ¼ g3θ
* ð39Þ

where

ζ1 ¼ ω2 1þ ε0μ0a
2
0

� �þ a2−Ω2; ζ2 ¼ a2 þ c20ω
2

c23
1þ ε0μ0a

2
0

� �
−
Ω2c20
c23

;

ζ3 ¼ a2 þ ω 1þ τα0
α!

ωα

� �
; ζ4 ¼ a2 þ ωg1 þ g2; ζ5 ¼

2Ωc20ω
c23

;

ζ6 ¼ 2ωΩ; ζ7 ¼ ωε1 1þ τα0
α!

ωα

� �
; ζ8 ¼ ε1 1þ τα0

α!
ωα

� �
:

Eliminating θ∗(x), Ψ∗(x) and N∗(x) from Eqs. (36)–(39),
one obtains

D8−AD6 þ BD4−CD2 þ E
� �

Φ* xð Þ ¼ 0 ð40Þ

with

A ¼ ζ2g3 þ ζ14ð Þ
g3

; B ¼ ζ2ζ14 þ ζ15−ζ5ζ12ð Þ
g3

; C ¼ ζ2ζ15 þ ζ16−ζ5ζ12ζ9ð Þ
g3

;E ¼ ζ2ζ16−ζ5ζ12ζ10ð Þ
g3

;

ζ16 ¼ ζ1ζ10g3 þ a2ζ11ζ13; ζ15 ¼ ζ1ζ9g3 þ ζ11ζ13 þ a2ζ11 þ ζ10g3; ζ12 ¼ ζ6g3;
ζ14 ¼ ζ1g3 þ ζ9g3; ζ13 ¼ ζ4−g3; ζ11 ¼ ζ7g3; ζ10 ¼ ζ8g3 þ ζ3ζ4; ζ9 ¼ ζ3 þ ζ4

Equation (40) can be moderated to

D2−k21
� �

D2−k22
� �

D2−k23
� �

D2−k24
� �

Φ* xð Þ ¼ 0 ð41Þ

where k2n, n = 1, 2, 3, 4 are roots of

k8−Ak6 þ Bk4−Ck2 þ E ¼ 0 ð42Þ

The solution of Eq. (41) when Φ∗ is bounded at x → ∞, is
obtained as

Φ* xð Þ ¼ ∑4
n¼1Cn a;ωð Þe−knx ð43Þ

And in the same way we can get

N*; θ*;Ψ*
 �
xð Þ ¼ ∑4

n¼1 C
0
n;C

0 0
n;C

0 00
n

n o
a;ωð Þe−knx ð44Þ

where C
0
n, C

0 0
n and C

000
n are different parameters that are defined

as

C
0
n a;ωð Þ ¼ HnCn a;ωð Þ; C

0 0
n a;ωð Þ

¼ LnCn a;ωð Þ;C 0 00
n a;ωð Þ ¼ MnCn a;ωð Þ;

with

Hn ¼
ζ11 k2n−a2

� �
k4n−ζ9k

2
n þ ζ10

; Ln ¼
ζ11Hn k2n−ζ4

� �
g3

; Mn

¼ ζ5
k2n−ζ4
� �

Thus, one obtains

N*; θ*;Ψ*
 �
xð Þ ¼ ∑

4

n¼1
Hn; Ln;Mnf gCne

−knx ð45Þ

By introducing expressions (43) and (45) into Eq. (24) after
using (35), we get
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u* xð Þ ¼ − ∑
4

n¼1
kn þ iaMnð ÞCne

−knx

w* xð Þ ¼ ∑
4

n¼1
ia−knMnð ÞCne

−knx
ð46Þ

Substituting Eqs. (45) and (46) into Eqs. (34) after using
(35), then solution for thermal stresses are given by

σ*
zz xð Þ ¼ ∑

4

n¼1
RnCne

−knx

σ*
xz xð Þ ¼ ∑

4

n¼1
QnCne

−knx
ð47Þ

Where

Rn ¼ − k2n−a
2

� �
2β2−1
� �

−2iaβ2knMn−2a2β2−Ln−Hn;

Qn ¼ 2iaβ2kn þ a2β2 þ β2k2nMn; β2 ¼ c22
c21

:

5 Applications

We assume that the half-space is exposed to a normal force on
the plane (x = 0) which depends on time t and the coordinate x
such that (− ∞ < x <∞). TheMechanical boundary conditions
on the surface x = 0 are

σzz 0; z; tð Þ ¼ −P; σxz 0; z; tð Þ ¼ 0: ð48Þ

The non-dimensional thermal boundary condition at x = 0
is given by

∂θ x; z; tð Þ
∂x






x¼0

þ hθ 0; z; tð Þ ¼ 0: ð49Þ

where h is the surface heat transfer coefficient; h → 0 corre-
sponds to thermally insulated boundaries and h→ ∞ refers to

isothermal boundaries.
The boundary condition for the carrier density can be given

below [32, 33]:

DE
∂N
∂x






x¼0

¼ s f N 0; z; tð Þ; ð50Þ

where sf is the surface recombination velocity.
Substituting the solutions of σzz, σxz, θ and N into the

boundary conditions (48)–(50), yields the following equations
satisfied by the parameters Cn, (n = 1, 2, 3, 4):

∑4
n¼1RnCn ¼ −Pe− ωtþiazð Þ ¼ P1; ð51Þ

∑4
n¼1QnCn ¼ 0; ð52Þ

∑4
n¼1knCne

−knx ¼ 0; ð53Þ
∑3

n¼1GnCn ¼ 0; Gn ¼ Ln DEkn þ s f
� �

: ð54Þ

We can put Eqs. (51)–(54) in the following system equation

C1

C2

C3

C4

8><
>:

9>=
>; ¼

R1 R2

Q1 Q2

R3 R4

Q3 Q4
G1 G2

k1H1 k2H2

G3 G4

k3H3 k4H4

2
64

3
75
−1 −P1

0
0
0

8><
>:

9>=
>;: ð55Þ

After applying the inverse of matrix method, we get the
values of the four constants Cj, j = 1, 2, 3, 4. Hence, we get
the final expressions for the temperature and displacement
distributions, in addition the distributions of other physical
quantities.

6 Numerical Results

In order to discuss the theoretical results obtained, we now
present some numerical results. For the purpose numerical
analysis, we consider the value of the relevant parameters
for isotropic thermoelastic solid as [40].

λ ¼ 2:696� 1010kg m−1s−2; μ ¼ 1:639� 1010kg m−1s−2; ρ ¼ 1740 kg m−3;
K ¼ 2:510 W m−1K−1; CE ¼ 1:04� 103 J kg K−1; dn ¼ −9� 10−31 m3;

Eg ¼ 1:11 eV; DE ¼ 2:5� 10−3 m2 s−1; s f ¼ 2 m s−1; τ ¼ 5� 10−5 s; T0 ¼ 298K

The other magnetic constants are taken as

ε0 ¼ 10−9

36π
Fm−1; μ0 ¼ 4π� 10−7 Hm−1;H0

¼ 107

4π
Am−1:

Since ω is complex (ω = ω0 + iω1), we can take ω0 = 1 and
ω1 = − 1. Also, the calculations are performed with a small

value of time t = 0.02 and h→ 0. The real part of the temper-
ature distribution θ, components of normal displacement u,
tangential displacement w, normal force stress σzz, tangential
stress σxz, carrier charge density N are taken versus distance x
at the plane z = 1. The variants of the studied field variables
h a v e b e e n d i s p l a y e d i n F i g s .
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23-
,24. It might have been found that the wave of heat moves
forward with a limited velocity in the medium with the
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passage of time. Comparisons of these non-dimensional phys-
ical fields are committed to four different categories.

6.1 Influence of the Fractional Order of Derivative

The present subsection is given over to the display the devel-
opment of theory of photo-thermoelasticity of a derivative
with fractional order and investigates its application to dynam-
ic problems of solid and structural mechanics. The obtained
results have been shown, the thermoelastic fractional deriva-
tive has been widely applied to generalized thermal problems
in solid mechanics.

Figures 1–6 depict the variations of the normal displace-
ment u, tangential displacement w, normal force stress σzz,
tangential stress σxz, temperature distribution θ and carrier
charge density N versus x when z = 1, τ = 0.002, the rotation

parameter Ω = 0.2 and in the absence and presence of frac-
tional derivative (0 < α ≤ 1). When α = 1 indicates the old
situation (normal conductivity) and when 0 < α < 1 indicates
the proposed new theory (weak conductivity). From the
graphical representations, it is evident that all curves are coin-
cident when x tends to infinity, all physical fields satisfy
boundary conditions. From calculations, we have a significant
influence of fractional derivative in the range 0 ≤ x ≤ 10. From
the figures we found that:

& The distributions of all studied physical quantities tends to
zero when the distance x attend to infinity.

& The temperature field starts with positive values and at-
tains its peak values near the surrounding surface, for the
three cases (α = 1,α = 0.7 andα = 0.4), which investigates
the effect of fractional derivative and show that the parti-
cles transfer heat to other particles readily. This

Fig. 1 Variation of temperature θ with distance x for different values of
fractional parameter order α

Fig. 2 Variation of displacement u with distance x for different values of
fractional order parameter α

Fig. 4 Variation of the stress σzz with distance x for different values of
fractional order parameter α

Fig. 3 Variation of displacement w with distance x for different values of
fractional order parameter α
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corresponds to Ezzat’s observation in [37]. Also, as x in-
creases, the value of θ decreases to zero value which is
quite reasonable (see Fig. 1).

& The fractional derivative has noticeable effects on the pro-
file of the temperature field. However, this field has qual-
itatively similar behavior for the three cases.

& It is evident that the parameter α acts to decrease the dis-
tribution of the temperature field. The time when the tem-
perature reaches the steady-state is approximately the
same for each α value.

& As given in the reference [41], it is clear from Fig. 2 that,
under the influence of the fractional derivative, the normal
displacement u increases with decreasing values of the
fractional parameter α.

& The real part of displacement field w starts with values
0.0695263, 0.0749603 and 0.092605 for the three values

of the parameter α (1.0, 0.7, and 0.4), which clearly show
that that the fractional parameter has a significant effect on
the displacement w profile.

& Obviously, as fractional parameter values increase, they
having an obligation to decrease pattern of numerical
values of displacement w.

& Figure 3 investigates that when the conductivity is normal
(α = 1), the variation of the magnitude of w profile is the
maximum.

& As shown in Fig. 4, the stress component σzz starts with a
negative value and decreases exponentially with the pas-
sage of time and then finally decreases to zero as the dis-
tance x increases.

& The stress σzz start with the value σzz = − P = − 1 at x = 0
which verifies that it satisfies the surface condition at the
boundary x = 0.

Fig. 5 Variation of the stress σxz with distance x for different values of
fractional order parameter α

Fig. 7 Variation of temperature θ with distance x for different values of
rotation Ω

Fig. 6: Variation of carrier density N with distance x for different values
of fractional order parameter α

Fig. 8 Variation of displacement u with distance x for different values of
rotation Ω
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& Figures 4 show that the distribution of stress σzz is higher
when α = 0.4 than the values in the case α = 0.7, 1 which
verify that the fractional parameter has a decreasing effect
on field σzz.

& The variations of the stress σxz having a common starting
point of zero magnitudes which conforms to the surface
boundary condition.

& The profile of σxz is compressive in nature near the plane x
= 0 and with the increase of x, the stress σxz decreases to
zero value which is quite acceptable.

& The fractional parameter α increases the amplitudes of the
stress σzz.

& The fractional parameter α has a significant effect on car-
rier density distribution N.

& The carrier density N increases initially and starts to de-
crease at x = 1 (maximum) and finally converges to zero
values with x increasing.

& The phenomenon of limited velocities of the thermal sig-
nals in the fractional photo-thermoelasticity theory can be
clearly understood by all these figures [12, 42].

& Except for the stress σxz, all distributions have only non-
zero values in a surface area of the body. Outside this
region, distributions vanish typically which is in confor-
mity with the experimental results. This demonstrates that
the design depends on the hyperbolic heat conduction
model is a greater amount physically sensible over that
depend on the Fourier law of heat conduction.

& According to our results and the corresponding results in
[10, 11, 43], we need to develop a new classification to
every one of the materials as per their fractional coeffi-
cient, where this parameter turns out to be new pointer of
its capacity to conduct the thermal energy.

Fig. 11 Variation of stress σxzwith distance x for different values of
rotation Ω

Fig. 12 Variation of carrier charge density N for distance x for different
values of rotation Ω

Fig. 10 Variation of stress σzz with distance x for different values of
rotation Ω

Fig. 9 Variation of displacement w with distance x for different values of
rotation Ω
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6.2 Influence of the Rotation

When the medium rotates with an angular velocity Ω, we
establish the centripetal acceleration and Coriolis increas-
ing speed as two further terms in the equation of motion,
affecting the thermoelastic response. In this case, we con-
sider three different values of the rotation parameter Ω =
0, 0.1, 0.2, while the other parameters are taken as z = 1, τ
= 0.002, and α = 0.7. Figures 7-12 are plotted to give a
comparison of the results obtained for normal displace-
ment u, tangential displacement w, normal force stress
σzz, tangential stress σxz, temperature distribution θ and
carrier charge density N against positions x in the absence
and presence of the angular velocity (rotation parameter)
Ω. From all these figures, it is evident that

& All curves coincident when x tends to infinity, all physical
fields satisfy boundary conditions.

& The rotating field has noticeable effects on all the profiles
of the studied fields.

& The rotation increase the magnitudes of the temperature θ
and then decrease their values. This important observation
is consistent with the result in [44].

& Also agree with the result in [44], the rotation parameterΩ
acts to increase the displacements u, w, the stress σxz and
the carrier charge density field N whereas reducing the
normal stress σzz.

& It is concluded from Figs. 7-12 that all variables depend on
time t and space (x, z) as well as the characteristic param-
eter of the angular velocityΩ. As a result, the study of the
displacements and stresses as well as temperature in the
presence rotation is very significant in such designs.

Fig. 13 Variation of temperature θ with distance x for different values of
carrier lifetime parameter τ

Fig. 14 Variation of displacement uwith distance x for different values of
carrier lifetime parameter τ

Fig. 16 Variation of stress σzz with distance x for different of carrier
lifetime parameter τ

Fig. 15 Variation of displacementwwith distance x for different values of
carrier lifetime parameter τ
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6.3 Influence of the Photo-Generated Carrier Lifetime
Parameter

The distribution of normal displacement u, tangential dis-
placement w, normal force stress σzz, tangential stress σxz,
temperature distribution θ and carrier charge density N due
to the influence of the photo-generated carrier lifetime param-
eter τ with distance x are shown in Fig. 13-18. The computa-
tions are performed when as z = 1, Ω = 0.1, and α = 0.7. It is
observed that:

& The parameter of carrier lifetime τ has significant effects
on all physical fields [45, 46].

& The effect of the carrier lifetime parameter increases the
profile of all field variables along the horizontal distance x.

& The phenomenon of limited speeds of heat propagation is
emerged in all of these graphs.

& The results achieved, in this case, can be valuable for
designers of new materials and other fields in material
science and physical engineering to meet special engi-
neering requirements for design of various semicon-
ductor elements, in the presence of the plasma and
elastic waves

6.4 Effects of Time Instant on the Studied Field
Variables

In the context of the fractional heat conduction model,
Figs. 19-24 exhibit the 3D curves for study of the distributions
of displacements, temperature change, stress forces and carrier
charge density with the change in distance x and instant time t.
From the figures, it is noticed that:

& The instant time t has significant effects on all the fields.
& The parameter t plays a vital role in the development of

temperature, stresses, carrier charge density and displace-
ments fields.

& The physical fields at in any fixed point (x, z) increase
when t increases.

& Figures 17, 18 show that stress components σzz and σxz
satisfy the boundary condition at x = 0 and have a different
behavior.

& The comparison of these figures shows the effect of instant
time t on the field variable.

& The field quantities including temperature, conductive
temperature, displacement components u, w, carrier
charge density N and stress components σzz and σxz de-
pend not only on spaces x and z, but also on the time t.

Fig. 17 Variation of stress σxzwith distance x for different values of carrier
lifetime parameter τ

Fig. 19 Variation of temperature θ with distance x for different values of
instant time t

Fig. 18 Variation of carrier charge density N with distance x for different
values of carrier lifetime parameter τ
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7 Concluding Remarks

In this work, we introduce a new mathematical model of
photo-thermoelasticity with fractional order of time deriva-
tives as a new branch of research. In literature, there are only
a few numbers of investigations based on our model. Analysis
of normal displacement, tangential displacement, normal
force stress, tangential stress and temperature distribution
due to mechanical load in a generalized thermoelastic semi-
conductor medium is an interesting problem of mechanics.
The following results can be deduced according to the results
obtained from our study:

1. The technique used in the current work is suitable for a
wide range of problems in photo-thermoelasticity and
thermodynamics.

2. The presence of the centripetal acceleration and Coriolis
field plays an important role in the physical quantities.
The displacements, temperature, and thermal stress of all
the physical quantities decrease or increase while the
rotating parameter increases. Therefore, studying the ex-
istence of the rotation field in this current modified mod-
el is of great importance.

3. The presence of photo-thermal field has affected all the
considered physical variables. It increases the tempera-
ture and the stresses while it reducing the displacements
magnitude.

4. The effect of the coefficient of the fractional order of
time derivative was observed in all the physical
quantities.

Fig. 20 Variation of displacement
u with distancex for different
values of instant time t

Fig. 21 Variation of displacementwwith distance x for different values of
instant time t

Fig. 22 Variation of stress σzz with distance x for different values of
instant time t
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5. It is seen that the values of all the fields studied are
strongly dependent on the carrier lifetime parameter.

6. A significant difference in the values of the studied fields
is noticed for different instant time values.

7. All the physical quantities of the body depend on the
nature of the applied magnetic field as well as the nature
of the boundary conditions

8. This work can useful for investigating and designing
materials covered by the thermal, plasma and pulse laser.

9. The results presented in this work will be extremely
useful to researchers in terms of physical sciences, ma-
terial designers, as well as for those working in thermal
development and in practical states as in the physics of
the earth.

10. Also, this paper suggests that the generalized model of
phot- heat transfer of fractional order heat transfer

describes the behavior of the thermoelastic body more
realistically than the classical theory of phot-
thermoelasticity with integer order.
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