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Abstract
In this study, the lanthanide-doping (Ce3+, Sm3+, Eu3+ and Tb3+) effects on the formation of leucite (KAlSi2O6) by sol-gel
synthesis were investigated. The phase purity and morphological properties of lanthanide-doped specimens have been estimated.
The proposed sol-gel synthesis route is suitable for the preparation of mixed leucite-kalsilite ceramics doped with Sm3+, Eu3+ and
Tb3+ (up to 10 M %). This simple and successful synthetic approach offers a feasible way to obtain lanthanide-doped potassium
alumosilicate ceramics with possible application in odontology. The synthesis products were characterized using thermal analysis
(TG/DTA), X-ray powder diffraction (XRD) analysis, infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).
Moreover, the optical properties of lanthanide-doped synthesis products were also investigated.
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1 Introduction

The development of new materials or new synthesis routes for
novel materials applicable in medicine still presents numerous
challenges [1, 2]. The ceramics, glasses, bulk materials and
thin/thick films are used in biotechnology and biomedicine for
many years, however, the search a novel biomaterials to sub-
stitute hard tissues and, consequently, to reach better quality of
life is the principle task for the scientists working in this area.
The huge number of different biomaterials is widely used in
orthopedics and odontology [3–8]. Current applications in-
clude total and partial replacements of hip, knee, teeth, and
different bone reconstructions after surgeries [9].

Silica based bioceramics are probably the largest group of bio-
materials. The system of SiO2-Na2O-CaO-P2O5 with additions of
B2O3 andCaF2was first demonstrated forming a strong bondwith
bone [10]. The porcelain fused to metal (PFM) crowns were
started to use already many years ago. Alkali-modified
alumosilicate glasses became the predominant matrix material
for dental restorations [11, 12]. The dental porcelains for metal–
ceramic systems contain leucite (K2O-Al2O3-4SiO2 or KAlSi2O6)
as the main crystalline phase to increase the thermal expansion
coefficient (CTE) and the mechanical resistance of the porcelain
[13, 14]. It was demonstrated, that the understanding of the inter-
connectivity between fatigue,wear and secondary caries formation
is essential key for the successful development of improved dental
restorative materials. Moreover, the dental porcelains containing
leucite are able to ensure required translucency similar to the nat-
ural tooth [14–18]. Summarizing the results presented in these
articles it is clear, that to maximize aesthetics and durability of
dental ceramics remain the most important problems. Additional
oxides could serve the formation of desired colour of porcelains to
avoid the darkness ofmetallic frameworks, since the dental ceram-
ic is fused to various metal alloys. The combination of two differ-
ent crystal phases including leucite and fluorapatite for the dental
ceramics was also suggested by several authors [19–24].

Natural leucite crystallizes at high temperature in a cubic
form, however, below 665 °C it transforms to tetragonal phase
[25, 26]. The leucite powders were synthesized by co-precip-
itation, hydrothermal and solid state reaction methods. The
synthesis of leucite by hydrothermal method was reported
elsewhere [27–31]. The crystallization of leucite using solid-

Highlights
• The lanthanide-doped leucite samples were synthesized using sol-gel
synthesis route.

• Leucite-kalsilite ceramics doped with Sm3+, Eu3+ and Tb3+ were obtained.
•Contraray, the single-phase undoped leucite ceramicwas obtained at 1000 °C.
• Luminescent properties of lanthanide-doped ceramics were investigated.
• Lanthanide-doped potassium alumosilicate ceramics could be applied
in odontology.

* A. Kareiva
aivaras.kareiva@chgf.vu.lt

1 Institute of Chemistry, Vilnius University, Naugarduko 24,
LT-03225 Vilnius, Lithuania

2 Department of Biomaterials, Faculty of Dental Science, Kyushu
University, Maidashi, Higashi-Ku, Fukuoka, Japan

https://doi.org/10.1007/s12633-019-00223-4
Silicon (2020) 12:1213–1223

Published online: 15 July 2019/

http://crossmark.crossref.org/dialog/?doi=10.1007/s12633-019-00223-4&domain=pdf
http://orcid.org/0000-0002-9375-7226
mailto:aivaras.kareiva@chgf.vu.lt


state reactions is reported in [32–36]. The precursor for the
preparation of KAlSi2O6 was synthesized also by sol–gel
method when KNO3, Al(NO3)3·12H2O and TEOS were used
as raw materials [37]. However, the synthesis of monophasic
leucite at relative low temperature is very problematic
[38–41]. The synthesis products additionally contained amor-
phous and kalsilite phases [38, 40] or unreacted starting ma-
terials along with kalsilite [39, 41].

Glasses and silicate materials are promising host materials to
investigate the influence of chemical environment on the optical
properties of the rare earth ions [42–46]. The alkaline earth
alumosilicates possess wide band gap energies at about 5.0 eV.
It makes them as suitable host materials to study specific inter-
actions in dopant rare-earth ions [47–50]. Several researchers
have noted that co-dopingwithAl3+ is effective for the dispersing
of rare earth ions in silicate matrices [51–54].

Previously, we developed an efficient and environmentally
friendly aqueous sol-gel synthesis method for the preparation
of monophasic leucite [55]. In this study, the formation pecu-
liarities and properties of lanthanide-doped (Ce3+, Eu3+, Sm3+

and Tb3+) K2O-Al2O3-4SiO2 ceramics are discussed.

2 Experimental

2.1 Materials

For the sol-gel preparation of lanthanide-doped and
undoped leucite, aluminium nitrate nonahydrate

Al(NO3)3∙9H2O (≥98% Aldrich), silica dioxide SiO2

(fumed, >99% Merck), samarium oxide Sm2O3 (99.9%
Alfa Aesar), europium oxide Eu2O3 (99.9% Alfa Aesar),
terbium oxide Tb4O7 (99,9% Alfa Aesar), ammonium
cerium nitrate (NH4)2Ce(NO3)6 (≥99% Fluka), potassi-
um hydroxide KOH (90% Aldrich), nitric acid HNO3

(67% Reachem) and 1,2-ethanediol C2H6O2 (EG)
(99,0% Alfa Aesar) were used as starting materials.

2.2 Synthesis

To study lanthanide substitution effects on the formation of
leucite, the Eu, Ce, Tb and Sm ions were selected as dopants
in the leucite matrix. The samples with different amounts of
dopants were prepared by previously developed sol-gel syn-
thesis method. In the sol-gel processing, the fumed silicon
dioxide was dispersed in small amount (~ 50 ml) of distilled
water and mixed with the potassium hydroxide dissolved in
25 ml of distilled water with 1, 2–ethanediol as complexing
agent. After few hours of stirring the opaque solution has
formed. The rear earth metal oxides were dissolved in nitric
acid to form soluble nitrates and mixed with 1, 2–ethanediol
and added to the above solution. After 1 h, the aluminium
nitrate dissolved in water with 1, 2–ethanediol was slowly
added to the solution. The 1,2-etahendiol was added in all
steps to ensure the homogeneity of the final sol. The sol was
then turned to the gel by slow evaporation of solution at ~
70 °C and then dried for 24 h at 100 °C. The dried gels were
heated at 500 °C for 5 h with a heating rate of 1 °C/min to

Fig. 1 A schematic diagram of
sol-gel processing of lanthanide-
doped leucite
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remove organic and nitrate components. The obtained pow-
ders were heated at 900 °C and at 1000 °C for 24 h with a
heating rate of 5 °C/min. The ceramic samples were named
using following labels leucite:Eu – E-005, E-01, E-02,
E-05, E-10, leucite:Ce – Ce-005, Ce-01, Ce-02, Ce-05,
Ce-10, leucite:Tb – Tb- 005, Tb-01, Tb-02, Tb-05, Tb-10
and leucite:Sm – Sm-005, Sm-01, Sm-02, Sm-05, Sm-10.
The number indicates rear earth ion concentration, e. g. Sm-
10 indicates that samarium concentration is 10 mol% in the
leucite matrix. The scheme of the sol-gel preparation of

lanthanide-doped leucite samples is presented in Fig. 1.
For the comparison, the synthesis of undoped leucite using
the same procedure was also performed.

2.3 Characterization

Thermogravimetry/differential thermal analysis (TG/DTA)
of the Ln:K-Al-Si-O (here Ln – is lanthanide element) pre-
cursor gels was carried out in air at a heating rate of
10 °C/min using Simultaneous Thermal analyser STA6000

Fig. 2 TG/DTA curves of
samarium-doped K-Al-Si-O gel
precursors

Fig. 3 XRD patterns of Eu:K-Al-
Si-O gel precursors annealed at
750 °C for 5 h. The main
crystalline phases are marked: * -
SiO2 and o – Al2O3·2SiO2·2H2O
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from PerkinElmer. Powder X-ray diffraction analysis
(XRD) was performed with Rigaku MiniFlex II (with the
Bragg-Brentano (θ/2θ) geometry) diffractometer. The data
was collected using CuKα radiation. The functional groups
in the samples were characterized by FTIR spectroscopy
using Perkin-Elmer FTIR Spectrum BX II spectrometer.
The morphology of the resulting products was determined
with a field emission scanning electron microscope FE-
SEM, Hitachi SU-70. The photoluminescence excitation
and emission spectra were measured with PerkinElmer
(LS 55 Fluorescence) spectrometer.

3 Results and Discussion

For the investigation of lanthanide substitution effects in
leucite four lanthanide elements Ce3+, Sm3+, Eu3+ and
Tb3+ were selected. The series of KAlSi2O6:Lnx (x =
0.005; 0.01; 0.02; 0.05 and 0.1 or 0.5; 1.0; 2.0; 5.0
and 10.0 mol%, respectively) were synthesized using
an aqueous sol-gel method. The thermal decomposition
of the lanthanide-doped K-Al-Si-O gel precursors was
studied from room temperature up to 950 °C. TG/DTA
curves of the representative samarium-doped K-Al-Si-O

gel are shown in Fig. 2. As seen, three important mass
losses could be determined in the TG curve. The first
step of mass loss (about 4%) up to 150 °C is associated
to the evolution of adsorbed moisture [56]. This is in a
good agreement with visible endotherm in the DTA
curve. The second and the main mass loss of about
35% is observed in the temperature range of 150–
380 °C and can be attributed to the thermal decompo-
sition of organic part of the gel. Evidently, this mass
loss step is accompanied by two very intensive exother-
mic signals in DTA curve. The last mass loss of about
14% is observed in the temperature range of 575–
650 °C due to the final decomposition of formed car-
bonate and possible crystallization of potassium
alumosilicate. The endothermic peak apparently proves
this assumption. No more mass losses could be ob-
served above 650 °C. The total mass loss was about
53%. Thermal decomposition behaviour of other
lanthanide-doped K-Al-Si-O gels was almost identical.

Taking into account the obtained TG results (full de-
composition at 650 °C), the initial synthesis of leucite
was performed at slightly higher temperature (700 °C).
The representative XRD pattern of europium-doped syn-
thesis product is demonstrated in Fig. 3. The XRD

Fig. 4 XRD patterns of
alumosilicate samples doped with
different amount of Ce3+ and
annealed at 1000 °C. Vertical
lines represent standard XRD
pattern of kalsilite
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results showed that after heating of Ln:K-Al-Si-O gel
precursors at 700 °C for 5 h partially amorphous mate-
rials were obtained. The separate crystalline phases of
silica and kaolinite could be detected from the XRD
pattern. Thus, further annealing of lanthanide-doped K-
Al-Si-O precursor gels was performed at higher temper-
atures. XRD patterns of the reaction products doped
with different amount of Ce3+, Eu3+, Sm3+ and Tb3+

ions and obtained at 1000 °C for 24 h are shown in
Figs. 4, 5, 6 and 7, respectively. The XRD patterns of
samples doped with Ce, however, mostly consist of dif-
fraction lines attributable to the kalsilite (KAlSiO4)
phase with no diffraction peaks of leucite (see Fig. 4).
The successful cerium doping only in bioactive glasses
was previously reported [57, 58]. Figure 5 shows the
XRD patterns of europium doped leucite samples. As
seen from XRD pattern at low concentration of europi-
um (0.5 mol%) the synthesis product is composed of
two crystalline phases of leucite and kalsilite. By in-
creasing concentration of europium to 1 mol% the leu-
cite phase becomes predominant and only traces of
kalsilite could be identified. However, with further in-
creasing concentration of Eu3+ to 10 mol% the mixture
of kalsilite and leucite phases has formed. Very similar

XRD results were obtained for the samples doped with
Sm and Tb (see Figs. 6 and 7, respectively). As seen,
the leucite crystallizes along with kalsilite phase in both
cases. In both cases the XRD patterns with dopant con-
centration of 0.5 mol% contain low intensity of leucite
and kalsilite peaks. By increasing concentration to
1 mol% the mixture of kalsilite and leucite phases could
be easily identified. With increasing of Sm3+ and Tb3+

to 2.0 mol% the intensity of diffraction peaks decreases,
whereas further addition of dopants to 5 and 10 mol%
increased the intensity of peaks. This could be due to
the intermediate role of dopant in the formation of ce-
ramic structure.

The obtained results inspired us to repeat the same
sol-gel synthesis of undoped leucite at slightly different
temperatures. The XRD patterns of the K-Al-Si-O gel
sample heated at 950 and 1000 °C are presented in
Fig. 8. The results clearly show that almost monophasic
leucite has formed at 950 °C and single-phase high
crystalline leucite was obtained at 1000 °C. Thus, the
question why lanthanide elements resist the formation of
pure leucite and promote at the same time the partial
formation of kalsilite still remains open. Due to the lack
of literature data the reason of formation of the mixture

Fig. 5 XRD patterns of
alumosilicate samples doped with
different amount of Eu3+ and
annealed at 1000 °C. Vertical
lines represent standard XRD
patterns of leucite and kalsilite
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of kalsilite and leucite phases induced by lanthanide
doping remains unclear.

The FTIR spectra of lanthanide-doped alumosilicate
samples are given in Fig. 9. It is obvious that all FTIR spec-
tra are very similar independent on the nature of dopant
element. The broad bands observed at 3500–3330 cm−1

and weak bands at 1620–1640 cm−1 correspond to O-H
stretching vibrations originated from adsorbed moisture
from atmosphere [59]. The Si-O-Si stretching vibrations
are located at around 1000–970 cm−1, and the Si-O-(Si,
Al) stretching vibrations are in the range of 670–580 cm−1

[37, 60, 61]. Nevertheless, the negligible shift of the Si-O
and Al-O vibration bands by introducing the lanthanide el-
ement has been observed [55]. On the other hand, all FTIR
spectra are almost identical independently on the used lan-
thanide element as dopant. The FTIR results are in a good
agreement with XRD data.

The surface morphology of all lanthanide-doped
alumosilicate samples was analysed by SEM. Since all sam-
ples possessed very similar surface morphology, only repre-
sentative SEMmicrograph of Eu-doped sample is presented
in Fig. 10. The formation of irregular plate-like shaped parti-
cles is determined for the sol-gel derived lanthanide-doped
alumosilicate ceramics. The size of particles varies from 0.5

to25μm.AccordingtoSEMimages,theinterconnectedpores
are also formed in the synthesized alumosilicates [62].

Figure 11 shows emission and excitation spectra of Eu3+-
doped (5 mol%) leucite-kalsilite sample. All europium con-
taining samples exhibited a maximum excitation peak at
~394 nm along with 364, 374, 381, 414 and 464 nm. The
broad and intensive band ranging from 250 to 350 nm is
attributed to the charge transfer (CT) transition which can
be written as Eu3+ + O2− ↔ Eu2+ + O− [63, 64]. Emission
spectrum was obtained upon excitation at 265 nm. The lu-
minescence spectrum consists of broad lines associated with
5D0→

7F0–4 transition (570–710 nm, orange-red region) of
Eu3+ ions with the hypersensitive line at 616 nm [63, 64].
The excitation and emission spectra of Tb3+-doped
bioceramic are shown in Fig. 12. The range from 200 to
310 nm comprises of [Xe]4f8→ [Xe]4f75d1 very intensive
transitions [65]. The range from 310 to 500 nm represents
[Xe]4f8→ [Xe]4f8 transitions [65]. Emission spectra were
obtained upon excitation at 260 nm. The spectra indicate
typical emission lines of Tb3+ ions at around 419, 440,
460, 487, 547, 550, 586 and 623 nm [65, 66]. The emission
peak at 547 nm is dominant. Interestingly, the potassium
alumosilicate samples doped with cerium and samarium
did not exhibit the photoluminescence properties. For

Fig. 6 XRD patterns of
alumosilicate samples doped with
different amount of Sm3+ and
annealed at 1000 °C. Vertical
lines represent standard XRD
patterns of leucite and kalsilite
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example, the reason for the lower photoluminescent activity
of cerium-doped samples was attributed to a great Ti3+/Ti4+

ratio and a large amount of hydroxyl oxygen found in pure
TiO2 [67]. It was also demonstrated that the Ce single doped

silica samples exhibited very poor emission [68]. The co-
doping is using to promote the luminescence of Sm3+ indi-
cating that energy could be transferred from other lantha-
nides to Sm3+ [69, 70].

Fig. 8 XRD patterns of leucite
obtained at different temperatures.
Vertical lines represent standard
XRD pattern of leucite

Fig. 7 XRD patterns of
alumosilicate samples doped with
different amount of Tb3+ and
annealed at 1000 °C. Vertical
lines represent standard XRD
patterns of leucite and kalsilite
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4 Conclusions

The sol-gel synthesis method was applied for the prep-
aration of lanthanide-doped (Ce3+, Sm3+, Eu3+ and
Tb3+) leucite (KAlSi2O6) samples. The Ce3+ doped sam-
ples, however, inhibited leucite formation favouring the
crystallization of kalsilite (KAlSiO4). Contrary, during

the sol-gel synthesis of Eu3+-, Tb3+- and Sm3+- doped
leucite samples the mixtures of both leucite and kalsilite
phases have formed. Interestingly, the single-phase
undoped leucite ceramic was obtained at 1000 °C using
the same aqueous sol-gel synthesis route. According to
the SEM measurements, all synthesized samples pos-
sessed very similar surface morphology. Luminescent

Fig. 10 SEM micrograph of Eu-
doped (2.5 mol%) alumosilicate
sample

Fig. 9 FTIR spectra of
lanthanide-doped (5 mol%)
alumosilicate (mixture of leucite
and kalsilite) samples
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properties of lanthanide - doped leucite-kalsilite samples
were also investigated. Emission spectrum of Eu3+-
doped (5 mol%) sample was obtained upon excitation
at 265 nm and consisted of broad lines associated with
5D0→

7F0–4 transition (570–710 nm, orange-red region)
of Eu3+ ions with the most intensive line at 616 nm.
The luminescence spectrum of Tb3+-doped ceramic upon
excitation at 260 nm showed the dominant emission

peak at 547 nm. The Eu3+ and Tb3+ containing
alumosilicate samples showed luminescence under UV
radiation, however, the similarly obtained Ce3+- and
Sm3+-doped samples did not exhibit any photol
uminescence properties. The Eu3+ and Tb3+ containing
alumosilicate samples could be used for the formation
of desired colour and shade of dental porcelains for the
aesthetics purposes.

Fig. 12 Excitation and emission
spectra of Tb3+-doped (5 mol%)
potassium alumosilicates sample

Fig. 11 Excitation and emission
spectra of Eu3+-doped (5 mol%)
potassium alumosilicates sample
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