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Abstract
Silicon (Si) is a beneficial element for plants and can increase plant resistance. In the present work, a hydroponic experiment was
carried out to study the effects of Si on the growth and photosynthesis of rice (Oryza sativaL.) seedlings under simulated acid rain
(SAR) stress. The growth, photosynthesis and chloroplast ultrastructure of rice seedlings treated with combined or single weak
SAR (pH 4.0) and/or Si (1, 2 or 4 mM) were improved. Spraying with moderate or severe SAR (pH 3.0 or 2.0) significantly
inhibited the growth and photosynthesis and severely damaged the chloroplast ultrastructure of rice seedlings. The incorporation
of exogenous Si increased the growth and photosynthesis and improved the chloroplast ultrastructure of rice seedlings treated
with moderate or severe SAR (pH 3.0 or 2.0). The 2.0 mMSi treatment had more significant promoting or alleviating effects than
the 1 and 4 mM Si treatments. The stomatal conductance (Gs), chlorophyll content, maximum quantum efficiency of PSII
photochemistry (Fv/Fm), actual photochemical quantum efficiency of PSII photochemistry (Y) and chloroplast ultrastructure
were improved with the addition of Si to the SAR treatment, which indicated that the positive effect of Si on photosynthesis was
partly associated with stomatal and non-stomatal factors. Thus, Si fertilization improves rice resistance to acid rain.
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1 Introduction

Acid rain is a by-product of the rapid development of modern
industry, and damage to the ecological environment caused by
acid rain has drawn considerable attention from scholars and
policymakers across the world; thus, the prevention and con-
trol of the damage from acid rain have become important
tasks, especially in Europe, North America and Asia [1–3].
Acid rain limits the growth and yield of crops when the pH
level reaches a certain damage threshold, which results in
enormous economic losses [4]. Therefore, exploring the injury
mechanisms in plants and enhancing plant resistance to acid
rain have become the subject of many scientific studies.
Simulated acid rain (SAR) experiments have demonstrated

that acid rain reduces the chloroplast content and net photo-
synthetic rate (Pn) of plants and damages the chloroplast ul-
trastructure in rice [5–7], soybean [8], maize [9], tomato [10],
bamboo [11], and other plant species [12]. Since plant produc-
tivity and yield strongly depend on the Pn, plant productivity
and yield under stress can be maintained by maintaining nor-
mal Pn [13].

Silicon (Si) is known to alleviate many plant stresses [14].
The Si content in different plant species is significantly differ-
ent [15, 16], and studies have shown that the content ranges
from 0.1 to 10.0 SiO2 per dry weight or higher [17, 18]. Si
promotes plant growth, improves chlorophyll content and
photosynthesis, alleviates oxidative damage, especially in
plants under stress, such as salt, heavy metal, drought and high
temperature stress [19–24]. In accordance with these previous
studies, we hypothesized that Si could potentially maintain
photosynthesis to some extent and mitigate the deleterious
effects of acid rain.

Rice (Oryza sativa L.) is the most consumed staple grain
crop in southern China, which is one of the most severe acid
rain regions in the world [25]. Rice, as an important food crop
[21, 26], has been extensively studied as a model crop for its
value in future potential applications. Moreover, rice is a
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heavy Si-accumulator, even when compared to many other Si-
accumulators [15, 27]. A number of studies have investigated
the influence of Si or acid rain on rice (Song et al. 2015; [5,
20]; Liang et al. 2015; [8]); however, the compound effects of
Si and acid rain on rice need to be explored. Our previous
study showed that under acid rain stress, Si could improve
rice resistance by regulating mineral absorption, thus
impacting on the activity of antioxidant enzymes and increas-
ing the mechanical barriers in the leaf epidermis [2, 28, 29].
Therefore, in the present work, the effects of different concen-
trations of Si and acid rain on the growth, photosynthesis and
chloroplast ultrastructure in the cells of rice seedlings were
investigated.

2 Materials and Methods

2.1 Plant Culture and Treatments

Plant cultures were prepared according to our previous study
[2, 28]. Rice seeds were sterilized with 1‰ KMnO4 for
30 min and germinated in an incubator at 24 ± 2 °C for 6 days.
On the sixth day, uniform rice seedlings were collected and
transferred into turnover boxes (300 × 200 × 100 mm). The
planting density was 48 holes, with 96 rice plants per box.
With plant growth, 1/4-, 1/2- and full-strength the
International Rice Research Institute (IRRI) nutrient solutions
(pH 5.5) [30] were prepared according to Ju et al.'s [2] de-
scription, replaced successively every 9 days and renewed
every 3 days, and water was added daily to maintain solution
volume. The experiment was carried out in a greenhouse with
relative humidity at 50% to 70% and a natural photoperiod of
14.5 L:9.5D in June and July in central and eastern China.

SAR (pH 2.0, 3.0, 4.0 and 6.5) and Si solutions (0, 1, 2 and
4 mM) were prepared according to previous work [2, 28]. The
ionic composition in SAR was derived from rainfall data in
central and eastern China [31, 32]. The pHwas adjustedwith a
mix of H2SO4 and HNO3, where the mole ratio of [SO4

2−] to
[NO3

−] was 2.7:1 [33, 34]. The Si element was provided by
Na2SiO3·9H2O. The experiment used a full factorial design in
which the SAR and Si controls were pH 6.5 and 0 mM, re-
spectively, and it included 16 total treatments with three rep-
licates per treatment. Rice seedlings were treated with SAR
and/or Si solutions according to previous work [2, 28]. Six-
day-old seedlings were initiated to treat with Si, and 24-day-
old seedlings were sprayed with SAR. After 7 days of SAR,
the rice seedlings were collected for further analysis.

2.2 Determination of Dry Weight (DW)

Whole-plant rice seedlings were collected and dried to a con-
stant weight at 80 °C in an oven, and then the DW was mea-
sured [8, 35].

2.3 Measurements of Chlorophyll Content

Rice leaves were cut into pieces and soaked in a solution
containing 95% ethanol and 80% acetone (V:V = 1:2).
Chlorophyll was extracted under dark conditions until the
green colour disappeared from the leaf tissue. Absorbance of
the supernatant was read at 663, 645 and 470 nm. Chlorophyll
content was calculated using the corrected equation of
Lichtenthaler [36].

2.4 Measurements of Photosynthesis and Chlorophyll
Fluorescence Parameters

Photosynthesis parameters (photosynthetic rate (Pn), stomatal
conductance (Gs), and intercellular CO2 concentration (Ci))
were measured from 9:00 to 11:00 a.m. using a portable pho-
tosynthetic system (GFS-3000, Heinz Walz Gmbh, Effeltrich,
Germany). Measurements were performed on the second fully
expanded leaves under conditions of 19.0–20.7 °C tempera-
ture, 60–75% ambient relative humidity, 453–512 ppm atmo-
spheric CO2 concentration, and 1000 μmolm−2 s−1 photosyn-
thetically active photon flux density (PPFD) saturating light
[6, 7].

According to the method described by Wegener and
Vicherováet et al. [37], the chlorophyll fluorescence parame-
ters (maximum quantum efficiency of PSII photochemistry
(Fv/Fm) and actual photochemical quantum efficiency of
PSII photochemistry (Y)) were measured on the second fully
expanded leaves using a GFS-3000 instrument equipped with
a fluorescence imaging unit (LED-Array/PAM module 3050-
F, GFS-3000, Heinz Walz Gmbh, Effeltrich, Germany). The
rice seedlings were dark-adapted overnight. Fluorescence in-
duction was initiated with actinic light (100 μmolm−2 s−1) and
sup e r impo s ed w i t h 800 ms s a t u r a t i n g pu l s e s
(10,000 μmol m−2 s−1) at 20 s intervals.

2.5 Observation of Chloroplast Ultrastructure

Transmission electron microscopy (TEM) were used to ob-
serve the chloroplast ultrastructure of rice seedlings. Material
selection and treatment referred to previous methods [29]. The
middle sections of the 2nd set of leaves were cut into pieces,
and then the leaf pieces were successively soaked with 4%
glutaraldehyde and 2% osmic acid for fixation and then in an
ethanol gradient for dehydration. Using an LKB-Vultramicro-
tome (Bromma, Stockholm, Sweden), the samples embedded
in 100% Epon-812 were cut into ultrathin sections, which
were then passed through 250 mesh grids and post-stained
with uranyl acetate and lead citrate. Finally, a transmission
electron microscope (JEM-2100, JEOL, Japan) was used to
observe the chloroplast ultrastructure.
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2.6 Statistical Analysis

In this experiment, the number of rice seedlings per treatment
was 3 boxes×96 seedlings and 3 seedlings were randomly
selected to measure index for per treatment. The significance
of the differences among treatments and interactions between
Si and SAR were analysed by one-way and two-way analyses
of variance (ANOVAs) using SPSS 19.0. A correlation anal-
ysis was performed using Origin 8.0. The means were com-
pared using Student’s test at the 5% probability level (P ≤
0.05).

3 Results

3.1 Biomass Accumulation of Rice Seedlings Exposed
to Si and SAR

The DW of rice seedlings exposed to1, 2 or 4 mM Si signif-
icantly increased compared with that of the control (CK), and
under increasing Si concentrations, the DW gradually in-
creased but then decreased. When the rice seedlings were
exposed to pH 4.0 or 3.0 SAR, the DW did not clearly change,
and in the pH 2.0 SAR treatment, the DW clearly decreased
compared with that of the CK (Fig. 1). The incorporation of Si
(1, 2 or 4 mM) into SAR (pH 4.0, 3.0 or 2.0) clearly increased
the DW compared with the corresponding single SAR treat-
ments. Under the same SAR pH, the DW gradually increased
but then decreased with increasing Si concentrations. Under
SAR stress, Si could increase the DW of rice seedlings and

alleviate SAR stress. Moreover, the 2 mM Si treatment had a
better effect than the 1 and 4 mM Si treatments. The interac-
tive effect between Si and SAR on DW was obviously (F =
55.027, p < 0.01) (Fig. 1).

3.2 Photosynthetic Parameters of Rice Seedlings
Exposed to Si and SAR

For the single 1 mM Si treatment, the Pn, Gs and Ci signifi-
cantly increased compared with the CK. For the single 2 mM
Si treatment, the Pn and Gs significantly increased while Ci

was unchanged compared with the CK. When the concentra-
tion of Si increased to 4 mM, the Pn, Gs and Ci did not signif-
icantly differ from the CK. For the single pH 4.0 SAR treat-
ment, the Pn and Gs significantly increased while Ci was un-
changed compared with the CK. When the SAR pH values
decreased to 3.0 (or 2.0), the Pn and Gs decreased and Ci

significantly increased compared with the CK (Table 1).
Under the SAR pH 4.0 condition, the addition of 1 mM

(2 mM) Si significantly increased the Pn and Gs, but Ci un-
changed, with Si concentration increased to 4 mM, the Pn, Gs

and Ci did not change relative to the single pH 4.0 SAR treat-
ment. When the rice seedlings were exposed to 1 mM (2 mM)
Si and the SAR pH 3.0 treatment, the Pn was unchanged, Gs

increased significantly and Ci decreased significantly relative
to the corresponding single SAR treatment. As the Si concen-
tration increased to 4 mM, the Pn and Gs were unchanged but
Ci decreased remarkably compared to the single pH 3.0 SAR
treatment. Under the SAR pH 2.0 condition, the addition of
1 mM (2 and 4 mM) Si significantly increased the Pn and Gs
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but decreased the Ci remarkedly. Under the same pH SAR
condition, as the Si concentration increased, the Pn and Gs

increased first but then decreased while the opposite effect
was observed for Ci (Table 1). This study showed that Si could
alleviate SAR stress and the 2 mM Si treatment produced the
best effect (Table 1).

The analysis showed an obvious interactive effect between
Si and SAR on the Pn, Gs and Ci of rice seedlings. The results
of the linear regression equations and correlation coefficients
(r) indicated that DWwas positively correlated with Pn and Gs

but negatively correlated with Ci and the relationships were
significant (p < 0.01) (Table 2).

3.3 Chlorophyll Content of Rice Seedlings Exposed
to Si and SAR

The 1, 2 or 4 mM Si treatments increased the chlorophyll
content significantly compared to the CK, and with an in-
crease in the Si concentration, the chlorophyll content in-
creased first and then decreased, and it reached the highest
value in the 1 mM Si treatment. The SAR pH 4.0, 3.0 or 2.0
treatments reduced the chlorophyll content in rice seedlings,
and with a decrease in the SAR pH, the chlorophyll content
decreased gradually and reached a significant level at SAR
with pH values of 3.0 and 2.0. Under SAR stress, the addition
of Si increased the chlorophyll content, and with an increase
of Si concentration, the chlorophyll content increased first and
then decreased, and it reached the maximum in the 2.0 mM Si
treatment (Fig. 2). The interactive effect between Si and SAR
on chlorophyll content was obvious (Fig. 2), and the correla-
tion analysis revealed that Pn was positively and significantly
(p < 0.01) related to the chlorophyll content.

3.4 Chlorophyll Fluorescence Parameters of Rice
Seedlings Exposed to Si and SAR

The addition of exogenous Si (1, 2 or 4 mM) increased the Fv/
Fm and Y values in rice seedlings compared with the CK and

Table 2 Relationship of Pn, Gs and Ci with DWof rice seedlings treated
with Si and SAR

Linear regression equation Correlation coefficient (R)

Pn = 186.850DW-7.470 0.691* *

Gs = 1324.177DW+ 19.526 0.690* *

Ci = −1281.244DW+ 616.549 −0.463* *

Abbreviations: SAR simulated acid rain, Si, silicon, Pn photosynthetic
rate, Gs stomatal conductance, Ci, intercellular CO2 concentration, DW
dry weight
** Significant at the 0.01 level

Table 1 Effects of Si and SAR on the Pn, Gs and Ci in rice seedlings

SAR (pH) Si (mM) Pn (μmol m−2 s−1) Gs (μmol m−2 s−1H2O2) Ci (ppm)

6.5 0 17.671 ± 0. 845 fg (100.00) 191.504 ± 8.817 ef (100.00) 414.856 ± 8.242 h (100.00)

1 18.754 ± 0.927 cde (106.13) 218.128 ± 6.934 ab (113.90) 431.780 ± 7.661 efg (104.08)

2 18.787 ± 0.953 cd (106.32) 210.196 ± 7.953 bcd (109.76) 429.450 ± 7.930 fgh (103.52)

4 17.833 ± 0.574 efg (100.92) 199.467 ± 7.856 de (104.16) 422.913 ± 9.587 gh (101.94)

4.0 0 19.934 ± 0.728 b (112.81) 211.940 ± 4.399 bc (110.67) 427.605 ± 9.884 gh (103.07)

1 21.237 ± 0.581 a (120.18) 226.528 ± 8.917 a (118.29) 434.904 ± 8.396 efg (104.83)

2 21.146 ± 0.725 a (119.66) 227.109 ± 6.518 a (118.59) 433.916 ± 5.172 efg (104.59)

4 19.405 ± 0.416 bc (109.81) 213.378 ± 7.347 bc (111.42) 428.024 ± 11.654 gh (103.17)

3.0 0 16.855 ± 0.921gh (95.38) 177.090 ± 5.152 gh (92.47) 467.203 ± 11.075 bc (112.62)

1 18.242 ± 0.520 defg (103.23) 190.010 ± 5.947 ef (99.22) 444.558 ± 7.628 def (107.16)

2 18.534 ± 0.708 cdef (104.88) 203.457 ± 4.417 cd (106.24) 438.065 ± 6.443 efg (105.59)

4 17.538 ± 0.609 g (99.25) 184.896 ± 7.130 fg (96.55) 446.431 ± 9.106 de (107.61)

2.0 0 9.915 ± 0.750 j (56.11) 157.603 ± 4.650 i (82.30) 506.211 ± 12.462 a (122.02)

1 13.353 ± 0.757 I (75.56) 169.854 ± 4.767 h (88.69) 479.861 ± 5.672 b (115.67)

2 15.849 ± 0.688 h (89.69) 183.814 ± 9.016 fg (95.98) 457.306 ± 13.063 cd (110.23)

4 14.018 ± 0.755i (79.33) 172.173 ± 8.232 h (89.91) 468.554 ± 16.056 bc (112.94)

F 57.587 58.147 19.819

p <0.001* <0.001* <0.001*

Abbreviations: SAR simulated acid rain, Si silicon, Pn, photosynthetic rate, Gs stomatal conductance, Ci intercellular CO2 concentration

Values are means ± standard deviation errors, n = 3. Values in the parentheses are the percentage of treatment in control

Significanty differences at p < 0.05 were showed with different letter in the same line
* Significance at 0.05 levels
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reached a significant level at 1 and 2 mMSi treatments. As the
Si concentration increased, the Fv/Fm and Y increased first and
then decreased. The SAR pH 4.0 treatment did not significant-
ly increase the Fv/Fm and Y compared with the CK. As the pH
of SAR decreased to 3.0 and 2.0, the Fv/Fm and Y decreased
significantly compared with the CK. Under SAR stress, the
addition of exogenous Si (1, 2 or 4 mM) increased the Fv/fm
and Y compared with the corresponding single SAR treat-
ment. With the increase of Si concentration, the Fv/Fm and Y
increased first and then decreased, and it reached the maxi-
mum in the 1.0 and 2.0 mMSi treatments (Fig. 3). An obvious
interactive effect was observed between Si and SAR on the Fv/
Fm and Y. The correlation analysis revealed that Pn was pos-
itively and significantly (p < 0.01) related to the Fv/Fm and Y.

3.5 Chloroplast Structure of Rice Seedlings Exposed
to Si and SAR

The chloroplasts of the control plants had an intact organized
structure, numerous healthy grana an a thick matrix, and one
or two enlarged starch granules had intact membranes
(Fig. 4A). The starch granules in the chloroplasts of Si-
treated rice seedlings became elongated at normal size, and
the grana thylakoids, stroma thylakoids and lamellar structure
of the thylakoid appeared healthier than that of the CK (Fig.
4B, C and D).

The structure of the chloroplasts after exposure to pH 4.0
SAR was intact, the thylakoid was regularly arranged, the
lamellar structure of the thylakoid was clearer and thicker,
and the starch granules became elongated at a normal size
compared with that of the CK (Fig. 4E). The chloroplasts of
rice seedlings exposed to 1 mM (2 or 4 mM) Si and SAR

pH 4.0 were intact, the thylakoids of the grana, stroma and
lamella were clearer and thicker compared with that of the CK
as well as the corresponding single Si and SAR (Fig. 4F, G
and H). The chloroplast structure of rice seedlings indepen-
dently exposed to SAR pH 3.0 was swollen, the number of
basal thylakoid layers decreased, the lamellar structure was
loose, and the number of starch granules and osmium signif-
icantly increased compared with that of the CK, and the matrix
in the chloroplast was thinner (Fig. 4I). The simultaneous
exposure of Si and SAR pH 3.0 (Fig. 4J, K and L) regained
the chloroplast structure, grana thylakoids and lamellar struc-
ture of the thylakoids to a certain extent, the number of starch
granules and osmium significantly decreased relative to the
single pH 3.0 SAR treatment, and the matrix in the chloroplast
was thicker. For the pH 2.0 SAR treatment (Fig. 4M), the
chloroplast membrane was broken, the matrix flowed out-
ward, and the grana thylakoids and lamellar structure of the
thylakoids were deformed and collapsed. Moreover, under the
combined treatment with 1 mM Si and SAR pH 2.0 (Fig. 4N),
the chloroplast structure remained intact but somewhat disor-
ganized; the chloroplast membrane was uneven and wave-
like; and the grana thylakoids and the lamellar structure of
the thylakoids appeared to be damaged and difficult to discern.
The chloroplasts of rice seedlings subjected to 2 mM Si and
SAR pH 2.0 (Fig. 4O) remained intact despite some swelling
and displayed a relatively clear grana and lamellar structure.
The extent of damage of the chloroplast and thylakoids was
less than that of the treatments with the single SAR pH 2.0 or
the combined 1 mM Si and SAR pH 2.0. The chloroplasts in
rice seedlings subjected to 4 mM Si and SAR pH 2.0 (Fig. 4P)
narrowed to an abnormal shape. The inner structure of these
chloroplasts was damaged and difficult to discern.
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4 Discussion

This study analysed the effects of acid rain and Si on
the DW of rice seedlings, and the results showed that
SAR spraying affected rice seedlings, with the light
SAR promoting the growth of rice seedlings, which
might be related to the absorption and utilization of

the anions and anions in acid rain by plants as nutrient
elements. However, the severe SAR (pH 2.0) signifi-
cantly inhibited the growth of rice seedlings, which
could be related to the physiological and molecular
damage caused by severe acid rain, which limits plant
growth. This conclusion has been accepted by many
researchers [9, 38–40]. Under SAR stress, exogenous
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Si addition, especially a moderate concentration of Si
(2 mM), promoted rice growth (Fig. 1), which indicated
that Si could improve the resistance of rice to acid rain.
This finding might be related to the ability of Si to
protect the photosynthetic system, improve plant stress
resistance and increase the DW under environmental
stress [41–43]. Moreover, this study showed that exog-
enous Si increased the Pn under SAR stress, and the
correlation analysis showed that DW is positively corre-
lated with Pn (Table 2). This result suggests that under
acid rain stress, the addition of exogenous Si helped
regulate the photochemical process and promote photo-
synthesis, which were among the important strategies
for increasing the resistance of rice seedlings.

The correlation analysis showed that Pn was signifi-
cantly related to Gs and Ci (Table 3). Stomatal factors
affect Pn [44], and the correlation indicated that

exogenous Si could regulate stomatal factors to affect
the Pn of rice seedlings under acid rain stress. In the
present work, when Si and SAR acted on rice seedlings,
the changes in Pn and the stomatal and non-stomatal
factors were dependent on the Si concentration and the
SAR pH value. The single treatments or combination
treatments with Si (1, 2 or 4 mM) and SAR pH 4.0
increased the Gs and Ci in rice leaves; thus, stomatal
factors played an important role and ultimately promot-
ed photosynthesis, which might be related to the ability
of Si and nutrient elements in the SAR treatments to
promote the morphogenesis of tissues and organs in
leaves. However, the SAR pH 3.0 and SAR pH 2.0
treatments decreased the Gs but increased the Ci; more-
over, non-stomatal factors played an important role and
ultimately inhibited photosynthesis, which might be re-
lated to SAR-induced injury to the PSII system,
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Fig. 4 TEM of the chloroplast structure in rice seedlings under different treatments
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chloroplast structure and thylakoids [45]. The incorpora-
tion of Si (1, 2or 4 mM) with SAR pH 3.0 or 2.0
alleviated the damage of SAR, increased the Gs, de-
creased the Ci and promoted photosynthesis in rice
seedlings.

The correlation analysis showed that Pn was positive-
ly correlated with the chlorophyll content, Fv/Fm and Y
in rice seedlings exposed to Si and SAR (Tables 2, 3),
which indicated that exogenous Si could increase Pn by
improving non-stomatal factors (chlorophyll content, Fv/
Fm and Y) in rice seedlings under acid rain stress. In
the present study, the single or combined treatments
with Si (1, 2or 4 mM) or SAR (pH 4.0) increased the
Pn, which might be related to the ability of Si and
nutrient elements in the SAR treatments to promote
plant growth and development and improve chloroplast
electron transport activity in leaves, including the ab-
sorption of light energy and the conversion of light
energy, which resulted in improved photosynthetic pro-
cesses. Under the moderate or severe SAR (pH 3.0 or
2.0) stress, the decrease in Pn might be due to the in-
hibition of both the absorption of light energy and the
conversion of light energy (Fig. 3). The addition of Si
(1, 2 or 4 mM) to the SAR pH 3.0 or 2.0 treatments
increased the chlorophyll content, Fv/Fm and Y (Figs. 2,
3), which led to increased photosynthesis (Table 1)
compared to the corresponding single SAR treatment.
This finding indicates that exogenous Si application
can maintain a higher photosynthetic efficiency in plants
under environmental stress [42, 43], which may be re-
lated to the improved absorption of light energy and
conversion of light energy capacity to a certain extent.

Chloroplasts, as non-stomatal factors, are the sites of
photosynthesis in plant cells [13, 46]. This study
showed that when rice seedlings were treated with Si
and SAR, the Pn was closely related to the damage
and development of the chloroplast structure. When rice

seedlings were exposed to the single Si and SAR
(pH 4.0), the Pn increased, which might have been re-
lated to the ability of the Si and nutrient elements in the
SAR treatments to promote the development of the
chloroplast structure. The grana thylakoids and lamellar
structure led to an increase in chlorophyll content and
improvement of the absorption of light energy and con-
version of light energy capacity (Fig. 3). Moderate and
severe SAR damaged the chloroplast structure (Fig. 4I),
which led to a decrease in the photosynthetic and the
chlorophyll fluorescence parameters. Hu et al. [5] re-
ported similar results. Under moderate and severe SAR
stress, the Si addition improved the structure of chloro-
plasts and thylakoids, which led to an increase of the Pn
and DW, which might have been related to the ability
of the relatively complete chloroplast structure to main-
tain a high absorption of light energy and conversion of
light energy capacity.

The starch content in the chloroplasts was obviously
different in the leaves of the rice seedlings treated with
Si and SAR. When the rice seedlings were exposed to
the single Si and SAR (pH 4.0), the volume and num-
ber of starch grains decreased, which might be related
to the ability of the Si and nutrient elements in the
SAR treatments to promote the growth of rice seed-
lings by metabolizing a large number of photosynthetic
products, thereby reducing the accumulation of starch
in the chloroplasts. When rice was exposed to moder-
ate SAR, the volume and number of starch grains were
markedly increased; this finding could be related to
acid rain’s interference with the physiological metabo-
lism of rice and damage to the cell and tissue structure
of rice seedlings, which blocks photosynthate transport.
When the SAR pH increased to 2.0, the starch grains
disappeared, which might be related to the inhibition
of photosynthesis [47, 48]. The addition of Si to mod-
erate or severe SAR was significantly improved the
accumulation of starch in chloroplasts, which could
be because the exogenous Si improved the chloroplasts
structures, increased the Pn, and promoted photosyn-
thate transport.

In this study, we mainly focused on the crop seedling stage
under hydroponic conditions, However, as basic research, this
study provides good theoretical guidance for applied research.
In short, acid rain affected the growth of rice seedlings. The
incorporation of exogenous Si increased the Pn, Gs, chloro-
phyll content, Fv/Fm and Y; decreased the Ci; and improved
the chloroplast ultrastructure. The photosynthesis effects were
due to the changes in stomatic (Gs and Ci) and non-stomatic
(chlorophyll content, Fv/Fm, Y, and chloroplast ultrastructure)
factors, which are dominant depending on the concentration
of Si and the pH of acid rain. The moderate concentration of Si
was the most effective.

Table 3 Relationship of the CC, Fv/Fm,Y, Gs and Ci with the Pn of rice
seedlings treated with Si and SAR

Linear regression equation Correlation coefficient (R)

CC = 0.104 Pn + 0.553 0.775* *

Fv/Fm = 0.018 Pn + 0.399 0.872* *

Y = 0.010 Pn + 0.288 0.895* *

Gs = 6.556 Pn + 81.728 0.844* *

Ci = −7.091 Pn + 569.408 −0.732* *

Abbreviations: SAR simulated acid rain, Si silicon, Pn photosynthetic rate,
Gs stomatal conductance,Ci intercellular CO2 concentration, Fv/Fm, max-
imum quantum efficiency of PSII photochemistry, Y, actual photochem-
ical quantum efficiency of PSII photochemistry, CC chlorophyll content
** Significant at the 0.01 level
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