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Abstract
A field study was conducted to evaluate performance of late sown wheat to overcome the adversities of heat stress by the foliar
applied silicon (Si) at Agronomic Farm, University of Agriculture, Faisalabad, Pakistan during two consecutive years. The study
was consisted of three different sowing dates at optimum (10th November), late (10th December), very late (10th January) and an
optimized dose of Si (100 mg L−1) was sprayed at different growth stages (control, tillering, booting and heading). Temperature
was increased in late and very late sown condition at all growth stages when compared to the normal sowing. Results indicated
that wheat sown under late and very late sown conditions significantly reduced the relative water content (RWC), turgor potential,
osmotic potential, water potential and chlorophyll contents of flag leaves. While Si applied at heading stage offsets the adverse
impact of high temperature by raising RWC water potential, osmotic potential, turgor potential and photosynthetic pigments of
flag leaves. Similarly, Si alleviated the adversities of high temperature on late sown wheat by inhibiting the oxidative membrane
damage due to high antioxidant enzymes activity i.e. catalase (CAT) and superoxide dismutase (SOD) which ultimately enhanced
the yield of wheat under both normal and late sown conditions. Results indicate that foliar application of Si alleviates the
detrimental effect of heat stress on late sown wheat by improving the antioxidants systems. From the results, it is suggested that
foliar applied Si at heading stage may ameliorate the negative impacts of high temperature in late sown wheat.
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1 Introduction

In Pakistan, sowing of wheat becomes late due to maturity of
fine rice varieties sown under rice-wheat cropping system.
This is the major reason of low yield of wheat in Pakistan
[1]. Owing to these reasons, wheat is not timely sown by the
farmers and become impossible for them. Generally, yield of
early sown wheat varieties are more as compared to the late

sown varieties. This is because both the varieties (early and
late sown) take same maturing time to produce higher yields.
Early sown wheat provided longer growth period and more
photosynthetic process as compared to late sown. Growth,
yield and quality grain of late sown wheat decreases each
day delay after 20th November because of shorter growth
span and inadequate temperature [2].

Temperature fluctuations in the environment changes func-
tions at cellular level, which ultimately influence the crop
yield. Sudden temperature increase mainly at crop maturity
like from pre-heading and post-anthesis are supposed to be
crucial yield limiting factor. High rise in temperature adverse-
ly affects the crop normal physiological functions and influ-
ence the growth and development of plants by altering cell
division, cell elongation and cell differentiation processes.
Mainly, after anthesis, influence of high temperature at cell
membrane level is a complex phenomenon and wheat assim-
ilates respond in an integrate way with moderate high temper-
atures (25 °C) [3] and plant behaviors for short period with
high temperatures (>32 °C) [4, 5]. Mitochondrial functions
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also badly influenced because of oxidative stress induced by
high temperature [6–8]. Heat stress, protein level and steady-
state transcriptome in plants elevates many reactive oxygen
species (ROS) scavenging enzymes [8–12]. Evidence and in-
volvement of Si has not identified in enzyme constitution
that’s why it is not listed in the essential nutrients [13–15].
Nevertheless, Si importance as an essential crop nutrient is
also reported in several studies especially for grasses
[16–19]. Several studies also reported that Si plays a vital role
in alleviation of abiotic stresses in crops and getting more
attention [18, 20–24]. Application of Si even in small quantity
enhanced stress tolerance in wheat (Triticum aestivum) [25],
barley (Hordium vulgare) [16–18, 26], and mesquite
(Prosopis juliflora) [27]. Principally, under stress conditions
Silicon absorption brings several modifications in plants: cell
wall thickness, increasing resistance and suppress transpira-
tion [28–30]. Permeability of leaf cell plasma membrane de-
creases by addition of Si [16, 17, 31] and notably enhanced the
chloroplasts ultra-structure, which were severely harmed by
the temperature increase with the twofold membrane
vanishing and the grannae being deteriorated without Si [32,
33]. Plant defense mechanism is also increased by application
of Si by enhancing antioxidant activity, SOD activity and sup-
pression of lipid peroxidation in plant leaf. Different theories
were presented by several authors to highlight the role of Si in
plant growth and development. Some scientists suggested that
application of Si changes the morphological and biochemical
characteristics of plants under stress conditions and promote
the plant growth. Foliar Si application changes the leaf mor-
phology and increase the plant growth.

Though, data is as yet insufficient with respect to the im-
pacts of foliar utilization of Si on cell reinforcement action in
charge of rummaging the dynamic oxygen species delivered
because of enhanced temperature actuated oxidative damage.
Therefore, the current examination planned to explore the ac-
tivity of foliage associated Si on water relations of the plant,

photosynthetic pigment production and antioxidant defense
mechanism in late sown wheat.

2 Materials and Methods

Proposed field study was conducted at agronomic farms,
University of Agriculture Faisalabad, Pakistan during the
years 2010–2011 and 2011–2012. Weather data was ob-
tained from observatory of Agro-meteorological Cell,
Department of Agronomy, University of Agriculture
Faisalabad, Pakistan. Maximum, minimum and mean tem-
perature was measured at each growth stage during the
both years (Table 1).

Randomized complete block design in split-split was ap-
plied to arrange the treatments in three replications. Two va-
rieties (Sehar-2006 and Faisalabad-2008) at a rate of
125 kg ha−1 were sown at three different sowing dates; opti-
mum (10th November), late (10th December), very late (10th
January). At various stages (tillering, booting and heading)
stage of wheat growth,, optimized dose of Si was sprayed as
foliar application. Silicon was not applied in control treatment.
Source for the Si used was calcium silicate (16% Si). Before
sowing the seeds, soil was pulverized well and sowing was
done at a row to row distance of 25 cm with the help of hand
drill. Plots were maintained at net size of 1.5 m × 5 m. The
recommended dose (100–90 kg NP ha−1) of fertilizers were
applied. Wheat crop was irrigated with tap water at four crit-
ical stages i.e. tillering initiation, stem elongation, heading and
grain filling. Suitable plant protection measures were adapted
to weeds and pests.

To determine the relative water contents, leaves of
wheat at heading stage after the last spray were plucked
and equal weight of all samples (0.5 g) were bathed to
obtained the leaves’ constant weight. These weighed
water saturated leaves were dried for twenty four hours

Table 1 Mean maximum and
minimum temperature under
normal, late and very late planting
at different growth stages during
2010–11 and 2011–12

Tillering stage Booting stage Heading stage

Max Min Means Max Min Means Max Min Means

Temperature (°C) during 2010–11

Normal sowing 20 09 14.5 24 18 21.0 29 23 26.0

Late sowing 23 16 19.5 31 22 26.5 37 25 31.0

Very late sowing 29 18 23.5 35 26 30.5 42 30 36.0

Means 24.0 14.0 30.0 22.0 36.0 26.0

Temperature (°C) during 2011–12

Normal sowing 18 08 13.0 22 15 18.5 25 20 22.5

Late sowing 20 14 17.0 28 19 23.5 30 23 26.5

Very late sowing 24 16 20.0 31 22 26.5 37 27 32.0

Means 20.5 12.5 27.0 18.5 30.5 23.5
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at 80 °C for measuring dry weight. Following formula
was used to calculate the RWC [34].

RWC %ð Þ ¼ Wfresh−Wdry

� �
= WSaturated−Wdry

� �� 100

Pressure bomb (Santa Barbara, CA, USA) was availed to
record the water potential of the flag leaf. Osmometer (Digital
Osmometer,Wescor, Logan, UT, USA) was availed to record
the osmotic potential, same leaves were first frozen then
thawed and sap was centrifuged at 5000 g. By taking the
difference of both potentials, pressure potential was measured.

To determine the amount of chlorophyll a and b contents,
method of [35] was used. For extraction, fresh leaves (half
grams from each sample) were kept overnight in 5 mL acetone
(80%) at a temperature of −4 °C.After centrifugation ofthe ex-
tract at 10,000 g for five minutes, absorbance of supernatant
obtained after centrifugation was measured at 645 and 663 nm
by using Hitachi-U2001 spectrophotometer (Tokyo, Japan).
Chlorophyll a and b were recorded using formulae, respectively.

Chl a ¼ 12:7 OD 663ð Þ−2:69 OD 645ð Þ½ � � V=1000�W
Chl b ¼ 22:9 OD 645ð Þ−4:68 OD 663ð Þ½ � � V=1000�W

Where:

V volume of the extract taken in mL
W weight of the healthy green leaf taken in g

Healthy fresh green leaves (0.5 g) were taken to determine
the total soluble sugars. Each sample was grounded using
1 mL extraction buffer having 7.2 pH in a prechilled mortar
pestle. Before extracting the proteins from the samples, cock-
tail protease inhibitors having 1 μM concentration was added
in the saline phosphate buffer containing the 2 mM KH2 PO4,

and1.37 mMNaCl10 mM Na2 HPO4 and 2.7 mMKCl. All
these ingredients were dissolved in di-ionized water and vol-
ume was made up to 1 L. The pH of the phosphate buffer was
adjusted using HCl and then autoclaved [36]. Extract obtained
from samples was centrifuged at 12000 g for 5 min. Pellet was
discarded and supernatant was stored in centrifuge tube for
measuring the quantity of soluble proteins. Bradford assay
was used to determine the amount total soluble proteins.
Different dilutions (10, 20, 30, 40, 50, 60, 70,80, 90 and
100 μg μL−1) of Bovine serum albumin were used to con-
struct standard curves. After adding the 400 mL μL Dye stock
and DI water, tubes were vortexed and incubated at room
temperature up to 30 min. UV 4000 UV-VIS spectrophotom-
eter was used to record the absorbance of the samples and
compared with standard curves to measure the total soluble
proteins using formula:

Slope X absorbance=mL of extract used

For measuring the activities of enzymatic antioxidants, flag
leaves were used as samples to get extract by grinding in five
mL of phosphate buffer (pH 7.8, 50 mM). Extract from each

sample was centrifuged at 15000 g for 20 min and supernatant
was used to determine the activities of CAT [37] and SOD
[38] by measuring the absorbances at 560 and 240 nm,
respectively.

Nitroblue tetrazolium can be reduced photochemically at
560 nm and SOD activity has the ability to reduce this reduc-
tion. Therefore, by measuring the rate of inhibition in any
reaction, SOD activity can be measured. For this assay, reac-
tion mixture contained 50 μL enzyme extract 1 mL NBT
(50 μM), 1 mL riboflavin (1.3 μM), 500 μL methionine
(13 mM) 950 μL (50 mM) and 500 μL EDTA (75 mM),
phosphate buffer. To start a reaction, mixture was kept under
a fluorescent lamp having 30 W illuminations. After 5 mi-
nutes, lamp was turned off to stop the reaction.
Photochemical reaction produced the blue formazane. Upon
measuring the amount of blue formazane at 560 nm and com-
paring that with same sample remained in the dark, SOD ac-
tivity was determined as IU min−1 mg−1protein [38].

For the determination of CAT, reaction mixture was made
using phosphate buffer (50 mM) and 900 μL H2O2 (5.9 nM).
By adding the 100μL extract of enzyme extract to the reaction
mixture. Assay for determining the CAT activity was done by
measuring the putrefaction of H2O2 and dilution in the con-
centration of H2O2 was recorded after every 30 s for 5 min
using a UV-visible spectrophotometer. Standard curves were
made using different concentrations of H2O2 and CATactivity
was shown as μmol of H2O2 min−1 mg protein−1 [37].

Data from all the parameters was analysed using statistical
software Statistix 8.1 by Fisher’s analysis of variance tech-
nique. Means were calculated in Microsoft excel and compar-
ison of treatments’ means were made at 5% level of probabil-
ity by applying the least significant difference (LSD) test [39].

3 Results

Statistical analysis revealed that different sowing dates and Si
application that was applied at different stages of both wheat
varieties significantly affect the chlorophyll a, b and total chlo-
rophyll during both years (2010–11 and 2011–12). Maximum
chlorophyll content a, b and total chlorophyll were recorded in
early sown wheat (10th November) treated with Si foliar ap-
plication at heading stage which was statistically at par with
same day sown wheat with Si at booting stage (Figs. 1 and 2).

Similarly, maximum chlorophyll contents of late sown
wheat (10th December) and very late sown wheat were ob-
served where Si was applied at heading stage of wheat as
compared to respective control of each sowing date during
2010–11 and 2011–12 (Fig. 3). Further, significant improve-
ment in total soluble protein of wheat has been observed be-
cause of sowing date and time of foliar application of Si dur-
ing both years. Both verities in were also statistically different
in producing total soluble proteins. Moreover, interaction of Si
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application and sowing date was statistically significant for
the years 2010–11 and 2011–12. However, all other interac-
tions for both years were non-significant (Fig. 4).

Upon comparison of treatment means, it was shown that
foliar application of Si at heading stage of wheat wheat gave
maximum total soluble protein irrespective of the sowing date

as compared to control treatment of each respective sowing
date (Fig. 4). Foliar spray of Si applied at different growth
stage of wheat significantly increased the SOD activities dur-
ing the years (2011–12). High SOD activity was observed in
wheat variety sehar-2006 in response to Si application at head-
ing stage which was statistically similar to Si applied at
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Fig. 1 Meteorological data of the wheat season 2010–11 and 2011–12
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booting stage in the same variety (Fig. 4). A very high signif-
icant value of SOD and CAT was recorded in very late sown
wheat (10th of January) treated with foliar Si at heading stage
of late sown wheat (10th and 10th December) produced max-
imum amount of both antioxidants when compared with con-
trol at different sowing dates during both years (Table 2).

4 Discussion

Role of water is more vital factor in fluctuating temperatures
[40]. Present research revealed that rise in temperature is due
to delaying of crop sowing which minimize the relation
among water attributes (Fig. 1). Increasing temperature as
often as possible related with decreased water accessibility
[41] which become the reason of more noteworthy decrease
in turgor potential and water potential of leaf [42]. Exposure of
high temperature on late sown wheat increased the transpira-
tion rate and resulted in increased water stress in wheat plants
[43] Water potential and osmotic capability of plants turn out
to be more negative because of recently sowing of wheat.
Various conceivable instruments are proposed by which Si
can build obstruction in plant against high temperatures under

late sown conditions. Present outcomes uncovered that Si ap-
plication at various phases of wheat altogether expandedwater
relations generally sown wheat [44] Silicon saved in the tis-
sues of the plant eases water worry by diminishing transpira-
tion and enhances the qualities of light capture attempt keep-
ing the leaf sharp edge erect [13]. Researchers have normally
demonstrated that relative water substance are significantly
enhanced by the utilization of Si [45]. This increase in the
relative water content was explained by the deposition of thick
layer of silica gel associated with the cellulose present in the
dividers of epidermal cells. This layer can decrease water
wastage, while epidermal cell mass of silica gel enables water
to escape at a quickened pace [46, 47]. Further, it was revealed
that Si enhanced water usage and prolonged the development
of plants in waterlogged conditions. Photosynthesis is a cru-
cial process in photo-systems of plants and chl a and chl b
(photosynthetic pigments) are major components which plays
vital functions [48]. Decrease in photosynthetic pigments like
chl a and chl b identified in late sown wheat crop on 10th of
December and 10th of January due to rise in temperature at
reproductive stage (Fig. 2). Due to increase in temperature
(32/24 °C and 34/22 °C) oxidative damage takes place in flag
leaf due to chlorophyll contents loss [49] in spring wheat
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cultivars, Yangmani-9 and Xuchou-26, at 7 d after anthesis.
Flag leaf chlorophyll contents reduction (11–38%) was ob-
served in synthetic hexaploid wheat riseased when tempera-
ture increased (30/25 °C) at 10 days after anthesis [50].

Chlorophyll was remained the thylakoid membranes, and de-
crease chlorophyll contents may be because of increased tem-
perature that was the reason of enhanced electrolytic leakage
of thylakoid membrane [51, 52] and lipid peroxidation of
chloroplast membranes [53]. Present research revealed that
chlorophyll a, b and total chlorophyll contents reduced due
to high temperature in late sown wheat (Fig. 2). Foliar appli-
cation of Si at various wheat growth stages significantly im-
proved the chlorophyll a, b and total chlorophyll content as
compared with control, as revealed in the present study
(Fig. 2). Under early and late sown conditions, most extreme
change in chl a, chl b and aggregate chlorophyll content was
acquired when Si was showered at booting or heading period
of wheat when contrasted with control of each sowing date.
This expansion in chlorophyll substance by the use of Si may
be because of expanded photosynthetic effectiveness by per-
suading the movement of photosynthetic catalysts like
Rubisco. These outcomes are predictable with the discoveries
that Si foliar application upgraded that photochemical produc-
tivity of PSII in tomato under distressing condition [54]. In
this respect, Si application increments 22.2% more photosyn-
thetic effectiveness in maize when contrasted with control
[55]. Additionally, Si treatment enhanced the chlorophyll

Table 2 Physio-chemical properties of soil used in the experiment

Soil analysis Value

Mechanical analysis

Sand (%) 52

Silt (%) 22

Clay (%) 27

Textural class Sandy loam

Chemical analysis

Soil pH 8.5

EC (dSm−2) 2.32

Cations exchangeable capacity (dSm−2) 2.01

Organic matter (%) 0.78

Calcium carbonate (%) 2.96

Available K (mg kg−1 Soil) 162

Available Si (mg kg−1 Soil) 16
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focuses and deferred leaf senescence that further added to CO2

obsession under pressure condition [56].
It is clear from present investigation that distinctive sowing

dates fundamentally affected the protein and defence mecha-
nism as SOD and CAT activities in the flag leaf at wheat
heading stage (Fig. 4). Defence mechanism against oxidative
stress is not inadequate reactive oxygen species damage en-
hanced due to plant susceptibility [57] which may be purged
by several enzymatic and non-enzymatic antioxidants [58].
Numerous Scientist explained that plant oxidative stress and
antioxidants expression is just because of high temperature
[59, 60]. As the concentration of reactive oxygen species in-
creases, antioxidants’ enzymes synthesis activates by disrup-
tion of cellular homeostasis [61]. High activity of SOD guar-
antees plant ability to tolerate against high temperature. This
study revealed that foliar applied Si enhanced the SOD and
CAT action. It suggested that rise in temperature causes oxi-
dative damage in late sown wheat due incredible rise of SOD
and CAT and decline of H2O2 content when Si foliar applied
[16, 62] and stated that in drought conditions, application of Si
increased activity the SOD, CATand reduced H2O2 activity in
late sown wheat [63, 64].

5 Conclusion

It can be concluded from the above study that foliar applica-
tion of Si significantly improved the water relations, enzymat-
ic antioxidants activity (CAT and SOD), photosynthetic pig-
ments of wheat leaves at heading stage under early and late
sown conditions. Further, suggestions were made from the
experiment to use Si foliar spray at heading stage of late sown
wheat to ameliorate the adverse effects of high temperature.
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