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Abstract
The advanced manufacturing system is aimed to produce components at right quantity, quality and cost. Turnmilling is one of
the advanced machining techniques that combines turning and milling processes for high metal removal rate. In orthogonal
turn milling, bottom surface of the end mill cutter removes material from the surface of a rotating workpiece. Optimization of
process parameters plays an important role in machining to improve quality and productivity and reduce production cost. In
the present work, an advanced teaching learning based optimization (TLBO) technique was introduced to optimize process
parameters in orthogonal turn milling of Silicon Bronze. Experiments were conducted at five levels of cutting speed, feed
and depth of cuts. Experimental results of surface roughness and amplitude of cutter vibration were analysed using analysis
of variance. The experimental results were also used to optimize process parameters through TLBO. Experiments were also
conducted using TLBO optimized process parameters and the results were compared with TLBO results. The TLBO results
were found to be in good agreement with target values of the responses. Artificial neural networks were developed for the
surface roughness and amplitude of cutter vibration to verify optimization.
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1 Introduction

Silicon bronze is one of the copper-based alloys has excel-
lent mechanical and physical properties. These properties
make alloy suitable for many applications such as air-
crafts, marine, industrial, chemical and mechanical. How-
ever, machining efficiency for such metals to be improved
without compromising surface roughness and tool life.
Turnmilling is a machining process developed by Sandvik
Coromant to improve machining performance. The turn-
milling is defined as “The milling of a curved surface,
where the work piece is rotated around its centre point
using a fourth machining axis” [1]. Turnmilling processes
are divided into two types named as orthogonal turn milling
and tangential turn milling. End mill cutters are used to
perform both the turning and milling. In orthogonal turn
milling, bottom teeth of vertical mill cutter remove material
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from the surface of the workpiece. Whereas in tangential
turn milling, side teeth of end mill cutter remove material
from the surface of work piece. In conventional turning of
low machinability materials, surface roughness, low metal
removal rate, tool vibration are considered to be difficulties.
To overcome these difficulties, the concept of turn milling
was developed in 1990s for machining of large crankshafts
and landing gears which are made with low machinability
materials [2].

Surface roughness and tool life are two important
parameters in any machining process. In conventional
turning process, cutting point of the tool has continuous
contact with the workpiece to remove material in the form
chip. Therefore, friction and temperature develop between
workpiece and tool that results in tool wear and finally
surface roughness on the machined surface increases. In
the turn milling process, the end mill cutter has many
cutting edge and their contact with work piece is not
continuous and hence, the tool life increases [3]. Vedat and
Cetin [4] have studied the effect of cutting parameters on
surface roughness in turn milling using genetic algorithm.
Experiments were conducted on SAE 1050 steel at different
cutting speeds, depth of cuts and feeds. Surface roughness
was found to be increased with increase of depth of
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cut and feed rates. Junxue et al. [5] combined gray
relation analysis (GRA) with Taguchi technique for multi
response optimization of cutting parameters in the milling of
Titanium alloy. They studied the effect of the milling cutter
geometric parameters on surface roughness and residual
stress and optimized the process parameters. Sivasakthivel
et al. [6] investigated the effect of cutting parameters
on the amplitude of mill cutter vibration. According to
an orthogonal array of L25, milling experiments were
conducted on aluminum alloy at different cutting speeds,
axial depth of cuts, radial depth of cut, helix angles and
feed rate. They used two channel accelerometer to measure
the vibration of spindle and workpiece. Experimental data
were analyzed and process parameters were optimized using
Taguchi method based GRA for minimum vibration of the
cutter. They stated that end mill cutters are subjected to wear
and it results in a poor surface finish and tool life.

Compliance between tool and workpiece is considered
as an important factor in evaluation of vibration of milling
cutter as well as the workpiece. The tool-workpiece
compliance is affected by direction of feed and cutting
forces [7]. Amplitude of cutter vibration and relative friction
between workpiece and tool were found to be less at
starting of the operation and then they increase as the
machining progresses. Ratnam et al. [8] studied machining
characteristics such as surface roughness, surface hardness
and amplitude of cutter vibration in orthogonal and
tangential turn milling processes. As per orthogonal array of
L16, experiments were conducted on extruded brass using
high speed steels end mill cutter at different levels of spindle
speed, feeds and depth of cuts. During the experimentation,
they used Laser Doppler Vibrometer (LDV) to measure
amplitude of cutter vibration. The experimental results were
analyzed using Taguchi and analysis of variance (ANOVA)
techniques and concluded that the tool vibration decreases
as the spindle speed is increased. Resonance in the vibration
makes the cutting tool oscillate with more amplitude and
results in gradual tool wear and tooling cost. Mohammad et
al. [9] developed a 3-D nonlinear dynamic model to study
the effect of axial depth of cut, number of cutter teeth,
cutting tool length and cutting tool diameter on the tool
vibration in milling. They concluded that the steady state
vibration response of the tool tip was found to be increased
as the axial depth of cut was increased. In another study,
Sadaf et al. [10] reported that the higher values of the feed
rates cause higher amplitude of cutter vibration and results
in excessive tool wear and surface roughness.

Vibration is one of the machining characteristics that is
required to be controlled by changing process parameters.
Otherwise, it causes low productivity because it directly
affects the tool wear, surface roughness and dimensional
accuracy [11]. Khalil and Danesh [11] used undecimated
wavelet transform and gray-level co-occurrence matrix

texture features to identify cutter vibration levels. They
have used an accelerometer to measure the vibration of
cutters and a vision based was used to capture surface
image of machine component. Venkatarao et al. [12] have
also used LDV to measure the vibration of work pieces
in boring process and suggested for online tool condition
monitoring in industrial applications. Zahia Hessainia
et al. [13] established mathematical models for surface
roughness in turning of hardened steels. Experiments
were conducted at different levels of cutting speed, depth
of cut, feed rate and vibrations. ANOVA was used to
investigate effects of process parameters on tool vibration
on surface roughness. Among the process parameters, feed
rate was found to be a significant parameter on the surface
roughness.

Multi response optimization techniques are widely
used in manufacturing to optimize process parameters to
improve overall efficiency of the process. Subramanian
et al. [14] used response surface methodology (RSM) to
optimize cutting parameters based on the amplitude of mill
cutter vibration in the milling of Aluminum (AA 7075-
T6). They used two channels piezoelectric accelerometers
on spindle head to measure the vibration of cutter. A
mathematical model was developed in terms of cutting
speed, feed, radial rake angle and nose radius to predict
the amplitude of cutter vibration. Cutting parameters were
also optimized using RSM multi response optimization
for minimum cutter vibration. Zhou et al. [15] have
followed a hybrid multi response optimization technique
to optimize process parameters for minimum surface
roughness and maximum compressive residual stress in
multi axis ball milling of Inconel 718 metal. Experiments
were conducted at five levels of inclination angle, feed
and cutting speed. The two responses were converted in
single response using GRA and grey relation grade was
calculated for all the responses. Radial basis function
neural network was used to establish a relation between
process parameters and grey relation grade and particle
swarm optimization algorithm was used to optimize process
parameters. It was concluded that the proposed technique
can be generalized and implemented to other optimization
problems. Optimization techniques like Taguchi, RSM,
Grey relation analysis, particle swarm optimization, genetic
algorithm, simulated annealing, and ant colony algorithm
are used to optimize process parameters in machining
process. Some researchers have failed in handling of the
above optimization techniques and their outcomes were
also not accurate [16]. The above techniques give equal
weightage to the responses in multi response optimization.
But the responses should be given weightage as per user
preference for maximization of process performance [17,
18]. This method also has some limitations in optimization.
To overcome those difficulties, Teaching and learning based
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Table 1 Chemical
composition, physical and
Mechanical properties of
ASTM B98

Chemical composition Physical and mechanical properties

Si 3.8 Density 8.53 g/cc

Mn 1.2 Hardness, Rockwell B 95

Fe 0.8 Tensile strength, Ultimate 745Mpa

Zn 1.25 Tensile strength, Yield 415 MPa

Pb 0.02 Modulus of Elasticity 105 GPa

Cu Balance Poisson’s Ratio 0.346

optimization (TLBO) algorithm was developed by the
concept of knowledge transfer from the teacher to students
and from good student to slow learner in a class room. The
TLBO is carried out in two phases such as teacher phase and
learner phase. In teacher phase, knowledge transferred from
the teacher to students and in the leaner phase knowledge
is transferred from the good learner to slow learner through
interaction to improve overall performance of the class room
[19]. Rao et al. [16] stated that the TLBO is superior method
that gives better results than the results obtained by other
optimization techniques. Venkata rao and Murthy [20] have
used the SVM, along with ANN and RSM to analyze the
surface roughness and root mean square of work piece
vibration velocity in the boring of AISI 316 stainless steel.
They found that the ANN and SVM models have predicted
the responses very close to the experimental values. Hybrid
optimization approaches were also introduced by combining
some of the techniques like TLBO, Taguchi technique, bee
colony optimization approach, particle swarm optimization
algorithm, ant colony algorithm, immune algorithm, genetic
algorithm for multi response optimization of process
parameters [21–23].

In the present work, TLBO technique was used to
optimize process parameters for orthogonal turn milling
of Silicon Bronze metal. The optimization was validated
experimentally and also using artificial neural networks.
ANN models were developed for the surface roughness and
amplitude of cutter vibration to validate the optimization
performed by the TLBO.

2Materials and Experimentation

In this work, orthogonal turn milling experiments were
conducted on ASTM B98 Silicon Bronze metal. ASTM
B98 is a silicon bronze metal has excellent workability,

high strength, low magnetic permeability and very good
corrosion resistance [24]. The silicon bronze is used to
make hydraulic pressure line in aircrafts, pole line hardware
and rotor bars in electrical applications, screws, rivets,
nuts, nails, shafts, heat exchangers, bearing plates, chemical
equipments, pressure vessels in industrial applications
and propeller shafts in marine applications. Chemical
composition of Silicon Bronze is given in the Table 1.

In the present study, high speed steel (HSS) end mill
cutters were used for the turn milling. The cutters are having
cutting teeth at the bottom and sides also. Specifications of
the end mill cutter were given in the Table 2.

In the present work, 25 experiments were carried out
at five levels of cutter speeds, feeds and depth of cuts
on the Silicon Bronze metal on using four axes CNC
milling machine. Work piece with length of 90mm and
diameter of 50 mm was held between two centers on the
machine table. In machining, bottom teeth of end mill cutter
removed the material from surface of the workpiece under
dry condition. Each experiment was started with a new
mill cutter and machining was stopped at the end of each
pass. In each pass, amplitude of rotating mill cutter was
measured using a Polytech PDV 100 portable type LDV as
shown in the Fig. 1. During the machining, the vibration
of cutter was measured after 45mm length of machining
on the workpiece. At the end of each pass, the work piece
was removed and its surface roughness was measured using
SJ-210 model surftest. The surftest measures the surface
roughness over the sampling length of 2.5mm. The surface
roughness was measured at three places and an average
value was taken for the analysis. Experimental results of
surface roughness (Ra) and amplitude of cutter vibration
(Y) were shown in the Table 3. The experimental data
was analyzed with ANOVA to investigate the influence of
process parameters on surface roughness and the amplitude
of cutter vibration.

Table 2 Specifications of end
mill cutter Cutter Diameter (mm) Clearance angle (◦) Rake angle (◦) Helix angle(◦) No. of flutes

20 15 12 35 2
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a

b

Fig. 1 a Orthogonal turn milling on cylindrical workpiece. b
Experimental set up for orthogonal milling (PBR Visvodaya Institute
of Science and Technology, Kavali-India)

3 Results and Discussion

In this work, LDV was used for online acquisition of cutter
vibration data in the form of AOE signals. FFT analyzer
was used for generating features from online AOE signals as
shown in Fig. 2. The frequency domain spectrograph shows
changes in the vibration along with frequency of vibration.
In the present study, peak value was taken as the amplitude
of cutter vibration. The peak value of amplitude was shown
with a vertical red line at 1670Hz of frequency.

3.1 Analysis of Variance (ANOVA)

ANOVA is one of the widely used techniques in the analysis
of machining characteristics to investigate the influence of
the process parameters. The ANOVA separates the total
variability of machining characteristic into contribution of

each process parameters and error also. In the ANOVA
analysis, SSis the total sum of squared deviation that
represents the total deviation in the data [25, 26]. The
total sum of squared deviation is used to estimate the
contribution of the process parameters in percentage for
each performance characteristic. In this ANOVA, variance
ratio (F-value) represents significance of process parameters
on the machining characteristics. It is calculated as by
dividing the mean square with error mean square. The
ANOVA was carried out at 95% of confidence level and
the process parameters which are having p-value less than
0.05 are said to be significant. At the same time these
process parameters should have the F value more than 4
[27, 28].

Table 4 is the ANOVA for the surface roughness that
shows the effect of individual process parameters, square
of process parameters and interaction of the parameters
on the surface roughness. Based on the p-value and F-
value, the v, f, d, v2, f 2, d2and interaction of v and f
were found to be significant. The Silicon bronze metal
has good machinability, that’s why, the three parameters
have a significant effect on the surface roughness. Table 4
is the ANOVA for the amplitude of cutter vibration that
shows the effect of individual process parameters, square
of process parameters and interaction of the amplitude of
cutter vibration. Based on the p-value and F-value, the
v, f , and interaction of vand fwere found to be significant.
Shengguan et al. [29] have studied the effect of process
parameters on surface roughness and tool on wear high-
strength wear-resisting bronze alloy with YW1 cemented
carbide tool and YBC251 coated cemented carbide tool.
They found that the feed rate was found to be a most
significant parameter on surface roughness and too life
than the cutting depth and cutting speed. Mohamed et al.
[30] studied surface roughness and mechanical properties
in machining of silicon based copper alloy. They found
that the feed rate most significant parameter on the surface
roughness

3.2 Teaching Learning Based Optimization

In the present study, TLBO was adopted for multi
object optimization of process parameters. The TLBO was
performed in two phases such as teacher phase and learner
phase. In TLBO, the aim of the teacher is to improve average
result of the class for a subject which was taught by him.
In this method, number of subjects, number of students
and their previous results are taken into account to improve
mean results of the students. The teacher identifies good
learners and allows them to transfer their knowledge to the
slow learner to improve overall class result. The proposed
method was suggested to solve real life industrial problems
[19].
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Table 3 Experimental results
for five levels of process
parameters

S. No. Design of experiments Ra(µm) Y(µm)

v (m/min) f (mm/min) d (mm)

1 70 3 0.25 4.11 40.13

2 70 5 0.50 4.37 43.63

3 70 7 0.75 4.30 47.22

4 70 9 1.00 4.23 50.81

5 70 11 1.25 4.16 61.55

6 80 3 0.50 4.97 43.31

7 80 5 0.75 4.91 42.13

8 80 7 1.00 5.06 48.05

9 80 9 1.25 4.77 56.46

10 80 11 0.25 6.41 60.05

11 90 3 0.75 5.51 46.58

12 90 5 1.00 5.44 50.17

13 90 7 1.25 5.38 51.38

14 90 9 0.50 6.9 62.06

15 90 11 0.25 7.29 68.09

16 100 3 1.00 6.05 49.85

17 100 5 0.75 6.89 51.00

18 100 7 0.25 7.63 64.18

19 100 9 0.50 7.56 70.16

20 100 11 1.25 6.80 76.13

21 110 3 1.00 6.93 55.51

22 110 5 0.25 8.23 61.48

23 110 7 1.25 7.36 67.57

24 110 9 0.75 8.10 73.43

25 110 11 0.50 8.71 79.40

The process parameters, cutting speed, feed and depth
of cut were assumed to be subjects and the experiments
were considered to be a number of students. Objective
functions were taken as surface roughness and the
amplitude of cutter vibration. Twenty five experiments were
conducted at five levels of process parameters within the
given range. In each experiment, surface roughness and
amplitude of cutter vibration are measured and given in the
Table 3.

Parameter bounds:

Cutting speed: 50 ≤ v ≤ 150 (1)

Feed: 1 ≤ f ≤ 12 (2)

Depth of cut: 0.25 ≤ d ≤ 2.0 (3)

The objective functions for the surface roughness and
amplitude of cutter vibration were derived from the data
in the Table 3 using regression analysis. The aim of the

Fig. 2 Frequency domain
spectrograph for the first
experiment



696 Silicon (2019) 11:691–701

Table 4 ANOVA for surface
roughness and amplitude of
cutter vibration

Source Surface roughness Amplitude of cutter vibration

df F-Value P-Value Remark df F-Value P-Value Remark

Model 9 545.41 0.000 Significant 9 53.54 0.000 Significant

Linear 3 844.97 0.000 Significant 3 78.24 0.000 Significant

v 1 2358.2 0.000 Significant 1 82.50 0.000 Significant

f 1 250.40 0.000 Significant 1 76.29 0.000 Significant

d 1 212.62 0.000 Significant 1 0.12 0.738 Not significant

Square 3 6.07 0.013 Significant 3 3.40 0.062 Not significant

v*v 1 6.09 0.033 Significant 1 4.51 0.060 Not significant

f*f 1 5.24 0.045 Significant 1 8.82 0.014 Significant

d*d 1 11.25 0.007 Significant 1 0.08 0.781 Not significant

2FI 3 1.87 0.199 Not significant 3 4.11 0.038 Significant

v*f 1 5.18 0.046 Significant 1 4.32 0.042 Significant

v*d 1 1.99 0.189 Not significant 1 4.82 0.053 Not significant

f*d 1 3.60 0.087 Not significant 1 0.00 0.955 Not significant

Error 10 10

Total 19 19

present study is to minimize the objectives. There are two
constraints considered in this work as the surface roughness
and the amplitude of cutter vibration should not cross 3 µm
and 60 µm respectively.

Objective functions:

Minimize Ra = −1.80v0.0881f 0.137d−1.37 (4)

Minimize Y = 10.575v0.327f 2.9867d−9.5338 (5)

Constraints:
Surface roughness constraint:

−1.80v0.0881f 0.137d−1.37 ≤ 3μm (6)

Vibration constraint:

10.575v0.327f 2.9867d−9.5338 ≤ 60μm (7)

Initial population (Table 5) was set with five experiments
to reduce the time required for computation. The five
experiments were selected randomly from the Table 3.

The average value of the process variables was calculated.
The constraints ZRa, ZY and overall constraint violation Z′
values were calculated using the Eqs. 8-9 [19].

ZRa = Ra − 3μm (8)

ZY = Y − 60μm (9)

Z′ = ZRa

(ZRa)max
+ ZY

(ZY )max
(10)

(ZRa)max and (ZY )max were taken as 4.36 and 7.57
respectively to calculate Z′ value.

The difference means for the cutting speed, feed rate and
depth of cut were calculated using the process variables in
the 1st rank experiment. Random numbers for v, f and d
were selected as 0.91, 0.72 and 0.35 respectively, and Tf

was taken as 1 to calculate difference mean for the process
variable as follows [19]:

difference mean for v = 0.91 ∗ (70 − 90) = −18.2
difference mean for f = 0.72 ∗ (3 − 5) = −1.44

difference mean for d = 0.35 ∗ (0.25 − 0.75) = −0.175

New process variables (cutting speed, feed rate and depth
of cut) and their corresponding surface roughness and

Table 5 Initial population
(teacher phase) S. No. v f d Ra Y ZRa ZY Z′ Rank

1 70 3 0.25 4.11 40.13 1.11 0 0.254 1

2 80 5 1.00 5.06 48.05 2.06 0 0.472 2

3 90 6 0.50 6.90 62.06 3.90 2.06 1.166 4

4 100 4 0.75 6.89 51.00 2.89 0 0.662 3

5 110 7 1.25 7.36 67.57 4.36 7.57 2 5

Mean 90 5 0.75
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Table 6 Updated process
parameter, responses,
constraints and violations
(teacher phase)

S. No. v f d Ra Y ZRa ZY Z′ Rank

1 51.8 1.56 0.25a 2.634 29.78 0 0 0 1

2 61.8 3.56 0.825 3.602 33.54 0.602 0 0.138 2

3 71.8 4.56 0.325 4.705 44.57 1.705 0 0.391 3

4 81.8 2.56 0.575 4.969 39.48 1.969 0 0.451 4

5 91.8 5.56 1.075 5.576 46.94 2.576 0 0.590 5

a The values have crossed the limits, hence the bound value was taken

amplitude of cutter vibration values were calculated as
follows:

v1 = 70 + (−18.2) = 51.8
f1 = 3 + (−1.44) = 1.56

d1 = 0.25 + (−0.175) = −0.075

Ra = −1.80∗51.80.08811.560.1370.25−1.37 = 2.634

Y = 10.575 ∗ 51.80.3271.562.98670.25−9.5338 = 29.78

Similarly remain values were also calculated, the updated
process parameters and the objective values were given in
the Table 6. The values ZRa,, ZY and Zprime were also
calculated and presented in the Table 6. Based on the Z′
value, ranking was given to the experiments.

(ZRa)max and (ZY )max were taken as 4.36 and 7.57
respectively to calculate Z′ value. The initial solution
(Table 5) was combined with updated variables and
responses shown in the Table 6 and ranking was assigned to
them based on the Z′ value. Five experiments were selected
based on the non dominance rank and presented in the
Table 7.

In the next step, the students can transfer the knowledge
with others through interaction, which is called as learner
phase. The good rank student/learner will select slow learner
randomly and transfers knowledge to improve his/her result.
In this section, the interaction was made between, 1 and 2,
2 and 3, 3 and 4, 4 and 5 and 5 and 1 students. New process
variables and objective values after interaction were shown
in the Table 8.

As it is the minimization function, knowledge was
transferred from 1st rank student to the 2nd rank student.

Random numbers for v, f and d were selected as 0.86,
0.72 and 0.45 respectively, and new process variables after
interaction between 1 and 2 are obtained as follows:

New v = 51.8 + 0.86 × (51.8-61.8) = 43.2
New f = 1.56 + 0.72 × (1.56-3.56) = 0.12
New d = 0.25 + 0.45 × (0.25-0.825) = 0.0087
Similarly, knowledge was transferred between 2 and 3,

3 and 4, 4 and 5 and 5 and 1 students. Table 8 shows the
new value of the process parameters after interaction and
their corresponding responses. Again, ranking was given for
all the experiments based on Z′ value. (ZRa)max and (ZY )

max were taken as 4.36 and 7.57 respectively to calculate Z′
value.

Now the process variables and objective values obtained
in teacher phase (Table 7) and leaner phase (Table 8) were
again combined and presented in the Table 9. In Table 8,
process parameters for S. No. 1 and 5 were found to be
same, that’s why, S. No. 1 was removed in the Table 9.
Again, ranking was given based on Z′ value.

As shown in the Table 9, there were three combinations
of process parameters given first rank based on Z

′
value.

Now, it is required to calculate the crowding distance for the
three combinations to select the best solution. Calculation
of crowding distance for surface roughness, amplitude of
cutter vibration and overall crowding distance was shown in
the Tables 10 and 11. The objective values were arranged in
ascending order and the crowding distance was calculated
as follows [19]:

Crowding distances CD6 and CD1 were calculated as
follows:

CD6=0+ (Ra)1−(Ra)7

(Ra)max −(Ra)min

=0+ 2.639−2.077

4.969−2.077
=0.108

Table 7 Candidate solution
based on the non dominance
rank (teacher phase)

S. No. v f d Ra Y ZRa ZY Z′ Rank

1 51.8 1.56 0.25a 2.634 29.78 0 0 0 1

2 61.8 3.56 0.825 3.602 33.54 0.60 0 0.138 2

3 70 3 0.25 4.110 40.13 1.11 0 0.254 3

4 71.8 4.56 0.325 4.705 44.57 1.705 0 0.391 4

5 81.8 2.56 0.575 4.969 39.48 1.969 0 0.451 5

a The values have crossed the limits, hence the bound value was taken
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Table 8 New process variables
and objective values after
interaction (learner phase)

S. No. v f d Ra Y ZRa ZY Z′ Interaction

1 50.00a 1.00a 0.25a 2.3995 27.52 0 0 0 1 and 2

2 54.74 3.90 1.08 2.0772 29.82 0 0 0 2 and 3

3 68.40 1.87 0.25a 4.1397 36.14 1.139 0 0.261 3 and 4

4 63.20 6.0 0.25a 4.2474 46.77 1.247 0 0.286 4 and 5

5 50.00a 1.00a 0.25a 2.3995 27.52 0 0 0 5 and 1

a The values have crossed the limits, hence the bound value was taken

Table 9 Combination of
teaching and learning phases S. No. v f d Ra Y ZRa ZY Z′ Rank CD

1 51.8 1.56 0.25a 2.634 29.78 0 0 0 1 ∞
2 61.8 3.56 0.825 3.602 33.54 0.60 0 0.138 2 -

3 70 3 0.25 4.110 40.13 1.11 0 0.254 3 -

4 71.8 4.56 0.325 4.705 44.57 1.705 0 0.391 6 -

5 81.8 2.56 0.575 4.969 39.48 1.969 0 0.451 7 -

6 50.0a 1.00a 0.25a 2.399 27.52 0 0 0 1 ∞
7 54.7 3.90 1.08 2.077 29.82 0 0 0 1 ∞
8 68.4 1.87 0.25a 4.139 36.14 1.139 0 0.261 4 -

9 63.2 6.0 0.25a 4.247 46.77 1.247 0 0.286 5 -

Table 10 Calculation of
crowding distance for Ra and Y Surface roughness Cutter vibration

S. No. Ra CD S. No. Y CD

7 2.077 ∞ 6 27.52 ∞
6 2.399 0.194 1 29.78 0.119

1 2.639 ∞ 7 29.82 ∞

Table 11 Final solutions based
on the ranks and crowding
distances

S. No. v f d Ra CDRa Y CDY Overall CD

1 51.8 1.56 0.25a 2.634 ∞ 29.78 0.119 ∞
6 50.0a 1.00a 0.25a 2.399 0.194 27.52 ∞ ∞
7 54.7 3.90 1.08 2.077 ∞ 29.82 ∞ ∞

Table 12 Combination of
Initial population, teacher and
learner phases

S. No. v f d Ra Y

1 70 3 0.25 4.11 40.13

2 80 5 1.00 5.06 48.05

3 90 6 0.50 6.90 62.06

4 100 4 0.75 6.89 51.00

5 110 7 1.25 7.36 67.57

6 51.8 1.56 0.25a 2.634 29.78

7 61.8 3.56 0.825 3.602 33.54

8 71.8 4.56 0.325 4.705 44.57

9 81.8 2.56 0.575 4.969 39.48

10 91.8 5.56 1.075 5.576 46.94

11 68.40 1.87 0.25 4.1397 36.14

12 63.20 6.0 0.25 4.2474 46.77
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Fig. 3 Neural network
architecture (3-8-2)

CD1 = 0+ (Y )7 − (Y )6

(Y )max − (Y )min

= 0+ 29.82 − 27.52

46.77 − 27.52
= 0.08

Based on the constraints given in the Eqs. 6 and 7, the
surface roughness and the amplitude of the cutter vibration
were found to be less than the target values of 3µm and 60
µm respectively. The process variables in the Table 11 were
said to be better solutions for minimization of objectives.

3.3 Validation of Optimization

The TLBO optimization was validated with ANN technique
and experimentally also. Best combinations (1st rank) of

process parameters were selected from initial population,
teacher and learner phases and presented in the Table 12 to
train the ANN.

3.4 Artificial Neural Networks

The ANN is a technique used to predict more than one
response simultaneously [31]. In this study, a multilayer
perceptron ANN model was developed for surface rough-
ness and amplitude of cutter vibration using Easy NN plus
8.0 software. As shown in the Fig. 3, the ANN model
architecture constructed with three layers such as input

Fig. 4 Training of network with target and training errors
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Table 13 Validation of
optimization Optimized process parameters TLBO ANN Experimental

v f d Ra Y Ra Y Ra Y

51.8 1.56 0.25 2.634 29.78 2.937 31.29 2.531 29.10

50.0 1.00 0.25 2.399 27.52 2.541 28.57 2.348 40.76

54.7 3.90 1.08 2.077 29.82 2.186 29.03 2.049 30.95

layer, hidden layer and output layer. The input layer con-
sists of three neurons or nodes named as cutting speed,
feed rate and depth of cut, the output layer consists of
two neurons termed as surface roughness and amplitude of
cutter vibration and the hidden layer consists of eight neu-
rons. Number of neurons in the hidden layer was estimated
by examining different neural networks on trial and error
method.

The data in the Table 12 were used to train the neural
network. A feed forward back propagation algorithm was
used to train the proposed network. Information from the
neurons of input layer was transmitted to the output layer
through neurons of the hidden layer. As shown in the Fig.
4, the training graph was constructed with learning cycles
on X axis and target error on Y axis. The red line, green
line, blue line, dark green line and orange lines in the graph
represent maximum training error, average training error,
minimum training error, average validating error and target
errors respectively. Training of the ANN was performed by
adopting weights for the connections between the neurons.
The network was trained at a learning rate of 0.6 and
momentum by 0.8. The software itself selected weights for
the connections between the input and hidden layers as 24
and 16 for the connections between hidden layer and output
layer. Training error for the developed network was set at
0.01 and the training was stopped after 18,000 cycles when
the average training error reached the 0.00005499. Surface
roughness and amplitude of cutter vibration were predicted
for the best three solutions and presented in the Table 13.

Table 13 shows the validation of TLBO of process
parameters for minimum surface roughness and amplitude
of cutter vibration. Average error between the TLBO
optimized values and the ANN predicted values was found
to be less than 5%. The ANN was successfully applied
in different studies to predict and optimize machining
characteristics with less error [20, 31, 32]. The TLBO
optimization was validated with experimental results.
Again, experiments were conducted with the three best
combinations of process parameters. Each experiment was
conducted two times, surface roughness and amplitude
of cutter vibration were measured. Average values of the
surface roughness and amplitude of cutter vibration were
presented in the Table 13. Experimental values of surface
roughness and amplitude of cutter vibration were found

to be having good agreement with the optimized values.
The experimental results have verified the results of the
proposed approach and have improved the performance of
turnmilling.

4 Conclusions

In the present work, process parameters were optimized
for minimum surface roughness and amplitude of cutter
vibration using an advanced optimization algorithm called
as TLBO for orthogonal turn milling of Silicon Bronze
metal. Results obtained by the TLBO were validated with
the results of ANN. The following conclusions can be drawn
from the work:

The cutting speed, feed rate, depth of cut and
interaction of cutting speed and feed rate were found
to be significant on the surface roughness.
The cutting speed, feed rate and interaction of cutting
speed and feed rate were found to be significant on the
amplitude of cutter vibration.
Three best combinations of cutting speed, feed and
depth of cut were obtained for minimum surface
roughness and amplitude of cutter vibration by
considering the amplitude of cutter vibration and
surface roughness as 60µm (ISO 10816) and 3 µm
respectively as constraints. But, the combination of
cutting speed of 54.7m/min, feed rate of 3.9m/min and
depth of cut of 1.08mm has a low surface roughness
with tool vibration of 30.95µm. However remain two
combinations were found to be next best optimal
cutting conditions.
The optimization was validated by experimental
results. Experimental values of surface roughness
and amplitude of cutter vibration were found to be
having good agreement with the optimized values.
The experimental results have verified the results
of the proposed approach and have improved the
performance of turnmilling.
Based on the results and computational time, it can be
concluded that the TLBO is an useful tool for multi
response optimization of process parameter using less
experimental data.
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