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Abstract
An Artificial Neural Network (ANN) model is presented for the Simultaneous prediction of density, viscosity and electrical
conductivity of pyridinium-based hydrophobic ionic liquids. Data density, viscosity and electrical conductivity obtained
from paper and from a three layer feed forward artificial neural network is used to estimate them. The optimal ANN model
consisted of, two neurons in the input layer, ten neurons in the hidden layer and three neurons in the output layer. This
model predicts the density with a Mean Square Error (MSE) of 7.5714 × 10−7 and the coefficient of determination (R2) of
1.0000, viscosity with a Mean Square Error (MSE) of 1.1332 × 10−4 and the coefficient of determination (R2) of 0.9982
and electrical conductivity with a Mean Square Error (MSE) of 2.2668 × 10−6 and the coefficient of determination (R2)
of 0.9999. The results show that the Simultaneous predicted of density, viscosity and electrical conductivity of pyridinium-
based hydrophobic ionic liquids by using artificial neural network well done. The artificial neural network model shows
lower errors and higher precision compared to statistical models while use of ANN is easier and quicker than statistical
methods.

Keywords Density · Viscosity · Electrical conductivity · Artificial neural network · Ionic liquids

1 Introduction

Recently, the ionic liquids have been considerably paid into
attention by the researchers due to their unique properties.
Although determination of thermodynamic properties is of
high importance due to be used in industry, achievement of
such data is costly and time-wasting. Despite wide techno-
logical advances, most of analytical devices cannot directly
analyze slight amount of analyte in actual samples (com-
plex tissues) [1]. Therefore, in order to solve this problem,
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those preparation steps are taken before analysis that in
addition to separation of species from their complex matrix,
they can concurrently provide analyte concentration, as
well. Therefore, analyte may be measured even in very low
concentrations. Liquid-liquid extraction is a classic prepa-
ration approach used in most of standard methods. Despite
wide applications and popularity, it has such defects as for-
mation of emulsion, time-wasting and tiring. Consequently,
it is classified as multistage preparation method which
requires high volumes of expensive and toxic organic sol-
vents which may cause serious damages for human health
and environment. Solid phase extraction is another clas-
sic preparation method. Although this method needs less
organic solvent compared to the former, it suffers time-
wasting, high cost, low repeatability and high usage of
organic solvent [2]. Looking for new preparation meth-
ods never has been interrupted. For this reason, plenty of
studies are conducted for the separation associated with
modern techniques of sample preparation which provides
such advantages as high speed, simplicity and high effi-
ciency and has been successfully able to overcome the
problem of use of organic solvents. The ionic liquids are the
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compositions which have revolutionized chemical indus-
tries and the corresponding researches. They are considered
as green chemicals which play a very important role as a
solvent to reduce use of hazardous, toxic and harmful com-
pounds for the environment. The ionic liquids can be an
alternative for plenty of conventional solvents in pharma-
ceuticals. Nowadays, the ionic liquids are accounted for the
organic compounds formed by ions and be liquid in a tem-
perature of 100 ◦C. One of the reasons of increased studies
on ionic liquids is the goal of scientists to look for a suitable
alternative for volatile organic solvents among the indus-
tries. Volatile organic solvents are the known as the most
important resource of environmental pollution in chemical
and pharmaceutical industries [3–5]. However, this does not
mean that the ionic liquids are entirely considered as green
solvents, some of them are even substantially toxic. There
are diverse types of ionic liquids including those in the room
temperature, chiral ionic liquids, hydrophobic ionic liquids,
and so on. The former are those being liquefied at the room
temperature with a wide application in ionic liquids chem-
istry. The extensive use of toxic and volatile solvents in
chemical industries may cause to seriously damage the envi-
ronment. Therefore, it makes sense among pharmaceutical
and chemical industries to find a suitable alternative for
such solvents which are environmentally proper and have
conventional solvents properties. Supercritical carbon diox-
ide and ionic liquids are of the new solvents well-known as
the green catalysts. The ionic liquids contain some organic
compounds which are wholly composed of ions. These
compounds are usually liquid at the temperatures under
100 ◦C, while lack of considerable vapor pressure is their
most important advantage and for this reason, it is volatile
and makes no problem for the environment [6–9]. Molec-
ular structure of ionic liquids consists of diverse Cations
and Anions. The role of Cation is typically played by a
bulky organic compound (positively charged) while the lat-
ter has an inorganic structure and is far smaller than the
former in terms of size (negatively charged). Due to dif-
ferent size of Anions and Cations, the bond between these
two components of ionic liquids is poor while such com-
pounds are liquid-formed at the temperatures under 100 ◦C.
The structure of ionic liquid is same as that of sodium chlo-
ride but the latter has a strong crystal structure and is molten
in a temperature of 800 ◦C due to strong bond between
Cation and Anion (high similarity of Cations and Anions in
terms of size, load and nature) [10–13]. The temperature of
100 ◦C is considered for classification of ionic liquids: those
being liquid at the temperatures above 100 ◦C are known
as molten liquid and those having liquid mode at a tem-
perature under 100 ◦C are called ionic liquids. There exist
two major group of ionic liquid including the compounds
which are respectively made of organic molecules of Imi-
dazolium (Imidazole compound with C3H4N2 formulation)

and Pyridinium (Pyridinium compound with C5H5N for-
mula) as Cation. The structures of both groups are shown
in Fig. 1. Diverse Cations and Anions are used to pre-
pare ionic liquids, making ionic liquids with dedicated uses
or strengthened physico-chemical properties. The conven-
tional Anions include BF4, BF6, Br−, Cl−, etc. [14].

2Methodology

2.1 Collecting Density, Viscosity and Electrical
Conductivity of Pyridinium-Based Ionic Liquids

The required data was found from the paper with
temperature-based density, viscosity and electrical conduc-
tivity amounts Table 1 [15].

2.2 Educational (Trainings) Process for Artificial
Neural Networks

The success in artificial neural network modeling depends on
two factors: 1- quantity of data, 2-data distribution at tests
conducting range [16]. In case of large databases and simi-
lar training models, the educational/training process will be
disrupted. Hence, it makes sense to design tests to disperse
pattern among necessary independent value ranges. In order
to review and evaluate diverse networks, the databases are
divided into two groups: 1- Training, 2- Test. It is noteworthy
to mention that assessment models are used to review gen-
eralization performance of the used networks, while general
patterns are employed to prevent Over Training. Selection
of network architecture is the first step to create artificial
neural networks after which the networks trainings are
conducted using the input-output models made in the test
such that artificial neural networks will learn the relation
between neurons at every training cycle using training data
during the training, approaching predicted values to suitable
output data and lowering the specified error values. The
combinational parameters (e.g. hidden layers, number of
neurons, number of training cycles, learning rate and
momentum) are specified within the neural network training
process by trial and error method. The generalization
capability of the trained neural network is the last step in
development of artificial neural network model. In this
step, the trained neural network models are tested through
assessment data sets which are independent from training
data. In order to find a network with a suitable architecture
using training models, mean squared error benchmark is
used which is defined by Eq. 1. ERMS It is accounted for the
primary benchmark for selection of suitable architecture
[17] Where, ERMS is the mean square error at training step,
Sip is the network output in ith neuron and pth model, Tip
is the target output at ith neuron and pth model, np is the



Silicon (2018) 10:2617–2625 2619

Fig. 1 Ionic liquids Cation with
a Imidazolium b pyridine [14]

(a) Imidazolium

(b) Pyridinium

number of models, no is the number of neurons of output
layer, N is number of output neurons and M is number
of training models. The objective is to minimize errors.
Several benchmarks were used to assess artificial networks
learning as self-training generalization to reach the best
possible results. The statistical values to assess general-
izability include coefficient of determination (R2), mean
absolute error (Ema), standard deviation of mean absolute
error (SDma), mean relative error (Emr), standard deviation

of mean relative error (SDmr) which are respectively calcu-
lated by the following equations:

ERMS =
√∑M

p=1
∑N

i=1(Sip − Tip)2

np × no
(1)

Tm =
(∑n

k=1Sk

n

)
(2)

Table 1 Density, viscosity and electrical conductivity values of Pyridinium-based ionic liquids [15]

T(◦K) [C33mpy][ntf2] [C63mpy][ntf2] [C64mpy][ntf2]

Density Viscosity Electrical Density Viscosity Electrical Density Viscosity Electrical

(g.cm−3) (mpa.s) conductivity (g.cm−3) (mpa.s) conductivity (g.cm−3) (mpa.s) conductivity

(mS.cm−1) (mS.cm−1) (mS.cm−1)

278.15 1.4685a 160.80a 1.524 1.3781a 276.16a 0.495 1.3695a 253.47a 0.592a

283.15 1.4640a 118.12a 1.990 1.3736 199.61a 0.670 1.3653 181.62 0.839

288.15 1.4596 89.08a 2.53 1.3697 147.89a 0.885 1.3608 133.92 1.101

293.15 1.4556 68.73a 3.18 1.3653 112.00a 1.157 1.3563 101.07 1.447

298.15 1.4514 54.12 3.93 1.3615 86.59 1.480 1.3518 77.989 1.852

303.15 1.4380 43.46 4.76 1.3570 67.83 1.869 1.3474 61.301 2.31

308.15 1.4426 35.27 5.71 1.3529 54.23 2.31 1.3429 49.031 2.83

313.15 1.4380 29.18 6.71 1.3487 44.24 2.83 1.3385 39.755 3.46

318.15 1.4332 24.32 7.86 1.3447 36.21 3.42 1.3341 32.729 4.15

323.15 1.4245 20.87 9.04 1.3403 29.97 4.06 1.3296 27.381 4.87

328.15 1.4287 17.94 10.36 1.3360 25.08 4.77 1.3252 23.111 5.71

333.15 1.4245 15.15 11.79 1.3317 21.31 5.53 1.3208 19.709 6.52

338.15 1.4160 13.40 13.29 1.3280 18.28 6.38 1.3165 16.968 7.56

343.15 1.4113a 11.74 14.85 1.3237a 15.88 7.28 1.3121 14.729 8.61

348.15 1.4069a 10.37 16.50 1.3195a 13.71 8.22 1.3078 12.866 9.68

353.15 1.4025a 9.19 18.29 1.3154a 11.99 9.20 1.3034 11.324 10.75
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Fig. 2 Structure of artificial
neural network

R2 = 1 −
(∑n

k=1
[Sk − Tk] /

∑n

k=1
[Sk − Tm]

)
(3)

Ema = 1

n

∑n

k−1
|Sk − Tk| (4)

SDma =
√∑n

k=1(|Sk − Tk| − |Sk − Tk|)
n − 1

(5)

Emr = 1

n

∑n

k=1

∣∣∣∣
Sk − Tk

Tk

∣∣∣∣ (6)

Table 2 Statistical results for
prediction of density by diverse
topologies of artificial neural
network

Neuron Density

Education Test Total

MSE R2 MSE R2 MSE R2

1 0.0109 0.8144 0.0127 0.7165 0.0114 0.7971

2 2.9841*10−4 0.9949 4.8736*10−4 0.9891 3.4565*10−4 0.9938

3 2.7448*10−4 0.9953 3.3077*10−4 0.9926 2.8855*10−4 0.9948

4 3.4551*10−5 0.9994 7.5810*10−5 0.9983 4.4683*10−5 0.9992

5 2.0441*10−5 0.9997 8.2832*10−5 0.9981 3.6039*10−5 0.9994

6 1.5606*10−5 0.9997 2.4708*10−5 0.9994 1.7881*10−5 0.9997

7 1.0381*10−5 0.9998 1.3268*10−4 0.9970 4.0957*10−5 0.9993

8 5.1069*10−7 1.0000 8.3581*10−7 1.0000 5.9197*10−6 1.0000

9 1.1946*10−6 1.0000 3.2968*10−6 0.9999 1.7202*10−6 1.0000

10 3.6487*10−7 1.0000 7.5714*10−7 1.0000 4.6294*10−7 1.0000

11 5.3694*10−7 1.0000 1.4119*10−6 1.0000 7.5748*10−7 1.0000

12 2.3138*10−7 1.0000 1.1453*10−4 0.9974 2.8805*10−5 0.9995

13 2.4441*10−7 1.0000 4.6038*10−6 0.9999 1.3343*10−6 1.0000

14 1.6284*10−7 1.0000 0.0014 0.9687 3.4960*10−4 0.9938

15 2.0278*10−7 1.0000 2.4929*10−4 0.9944 6.2475*10−5 0.9989

20 9.1050*10−8 1.0000 0.0062 0.8603 0.0016 0.9811

25 1.0714*10−7 1.0000 0.0038 0.9141 9.5839*10−4 0.9829

30 1.1615*10−8 1.0000 2.0058*10−4 0.9955 5.0153*10−5 0.9991

35 3.0659*10−12 1.0000 3.2750*10−4 0.9927 8.1875*10−5 0.9985
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Table 3 Statistical results for
prediction of viscosity by
diverse topologies of artificial
neural network

Neuron Viscosity

Education Test Total

MSE R2 MSE R2 MSE R2

1 0.0244 0.0361 0.0703 0.1461 0.0359 0.0212

2 0.0062 0.7569 0.0184 0.7004 0.0092 0.7487

3 5.3802*10−4 0.9787 0.0053 0.9135 0.0017 0.9528

4 2.0126*10−4 0.9920 0.0026 0.9582 7.9234*10−4 0.9784

5 5.6695*10−6 0.9998 3.9307*10−4 0.9936 1.0252*10−4 0.9972

6 7.9203*10−6 0.9997 2.0410*10−5 0.9997 1.1118*10−5 0.9997

7 2.3310*10−6 0.9999 6.9204*10−4 0.9887 1.7431*10−4 0.9952

8 7.2417*10−7 1.0000 1.5820*10−4 0.9974 4.0092*10−5 0.9989

9 9.6851*10−7 1.0000 2.2158*10−5 0.9996 6.2658*10−5 0.9998

10 1.2203*10−7 1.0000 1.1332*10−4 0.9982 2.8420*10−5 0.9992

11 7.4653*10−7 1.0000 2.9658*10−4 0.9952 7.4705*10−5 0.9980

12 1.7274*10−7 1.0000 0.0027 0.9568 6.6315*10−4 0.9819

13 3.3507*10−8 1.0000 2.5893*10−6 1.0000 6.7246*10−7 1.0000

14 3.0658*10−7 1.0000 0.0013 0.9795 3.1532*10*−4 0.9914

15 5.6451*10−8 1.0000 1.6681*10−4 0.9973 4.1745*10−4 0.9989

20 1.3446*10−8 1.0000 0.0030 0.9503 7.6248*10−4 0.9792

25 1.9718*10−8 1.0000 0.0131 0.7864 0.0033 0.9106

30 5.8880*10−10 1.0000 0.0269 0.5623 0.0067 0.8168

35 3.8363*10−12 1.0000 9.5502*10−4 0.9844 2.3875*10−4 0.9935

Table 4 Statistical results for
prediction of electrical
conductivity by diverse
topologies of artificial neural
network

Neuron Electrical conductivity

Education Test Total

MSE R2 MSE R2 MSE R2

1 0.0309 0.2601 0.0250 0.2888 0.0294 0.2303

2 0.0032 0.9228 0.0051 0.7371 0.0037 0.9034

3 0.0011 0.9746 0.0011 0.9456 0.0011 0.9723

4 4.2677*10−5 0.9990 3.9870*10−5 0.9979 4.1975*10−5 0.9989

5 9.5321*10−6 0.9980 7.6040*10−5 0.9961 2.6159*10−5 0.9993

6 5.6413*10−6 0.9999 4.5134*10−5 0.9977 1.5515*10−5 0.9996

7 3.9581*10−6 0.9999 5.2904*10−6 0.9997 4.0957*10−5 0.9999

8 4.9595*10−7 1.0000 2.8902*10−6 0.9999 1.0945*10−6 1.0000

9 7.2414*10−7 1.0000 2.7166*10−6 0.9999 1.2223*10−6 1.0000

10 4.9843*10−7 1.0000 2.2668*10−8 0.9999 9.4053*10−7 1.0000

11 6.3304*10−7 1.0000 2.1833*10−6 0.9999 1.0206*10−6 1.0000

12 1.5332*10−7 1.0000 3.2730*10−6 0.9983 8.2976*10−6 0.9998

13 1.5451*10−7 1.0000 4.4850*10−6 0.9998 1.2371*10−6 1.0000

14 5.7224*10−7 1.0000 1.1423*10−5 0.9994 3.2848*10−6 0.9999

15 1.1190*10−7 1.0000 7.7810*10−4 0.9599 1.9461*10−4 0.9949

20 2.2738*10−8 1.0000 0.0029 0.8511 7.2201*10−4 0.9722

25 2.0521*10−8 1.0000 0.0046 0.7611 0.0012 0.9697

30 1.1667*10−11 1.0000 0.0028 0.8571 6.9254*10−4 0.9819

35 3.8195*10−12 1.0000 4.5292*10−4 0.9766 1.1323*10−4 0.9970
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SDmr =

√√√√
∑n

k=1

(∣∣∣Sk−Tk
Tk

∣∣∣ −
∣∣∣Sk−Tk

Tk

∣∣∣
n − 1

(7)

In these equations, Sk is the predicted value by artificial
neural network for the kth model, Tk is the target value
(trail value) for the kth model, Tm is the mean predicted
values and n is number of training models. In this paper, the
software package MATLAB version 7 was used to create
multilayer feedforward neural network for simulation. This
type of neural network is actually a strong and optimal
model for simulation [18]. In present study, a three-
layer feedforward topology was used with 2 neurons in
input layer, 10 neurons in hidden layer and 3 neurons in
external layer which are shown in Fig. 2. A propagation
algorithm was employed for the training under supervision

of such topologies, a sigmoid transfer function was used
for the hidden layer and a linear transfer function was
hired for the external layer. The weights and biases were
selected randomly at the beginning of training. The inputs
included normalized temperature while density, viscosity
and electrical conductivity were considered as outputs.
Number of neurons in the hidden layer was varied at ranges
of 1–15 (one-by-one) and 15–35 (five-by-five). The training
was assessed to find the best topology with such number of
neurons and the least errors at the hidden layer. In order to
prevent Over Training, the propagation algorithm was used
by two methods: A) early stopping and B) the least number
of neurons at hidden layer [18]. As mentioned above, the
available data is divided into three groups which were used
for network training, network assessment while training and
testing the network, respectively. A number of 1000 cycles
was applied while training and networks testing.

Fig. 3 The predicted values of
normalized versus experimental
data for a density b viscosity
c electrical conductivity and
testing set using the ANN model
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2.3 Selection of Optimal Artificial Neural Network
(ANN) Topology

The comparison of mean squared error (MSE) and linear
regression factor (R2) between experimental and predicted
values by ANN topology and Sum Squared Error (SSE) and
Root Mean Squared Error (RMSE) was used here to predict
performance of ANN topology. The measured errors and
coefficient of determination are respectively calculated by
following equations:

MSE = 1

N

N∑
i=1

(|yi − yid|)2 (8)

RMSE = 1

N

N∑
i=1

(∣∣∣∣
yi − yid

yid

∣∣∣∣
)2

(9)

SSE =
N∑

i=1

(yi − yid)
2 (10)

R2 = 1 −
∑N

i=1(yi − yid)∑N
i=1(yi − ym)

(11)

where yi is the predicted value by ANN topology, yid is the
experimental value, ym is the mean experimental value is N
is the number of data.

3 Results and Discussion

In this paper, a number of 48 derived data for density,
viscosity and electrical conductivity is divided into two
groups: 1. Including 36 data for the network training and,
2. 12 data for testing the neural network and obtaining
final results. Several ANN topologies were assessed to reach
desired model. At every step, Mean Squared Error (MSE)
and coefficient of determination (R2) were calculated,
which are presented in Tables 2, 3 and 4 regarding diverse

Fig. 4 The predicted values of
normalized versus experimental
data for a density b viscosity
c electrical conductivity and
testing set using the ANN model
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Fig. 5 The predicted values of
normalized versus experimental
data for a density b viscosity
c electrical conductivity and
testing set using the ANN model
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topologies for prediction of density, viscosity and electrical
conductivity, respectively, in training test group and total
data, validating the best prediction as the optimal topology.
The RMSE and R2 values for this topology in the test group
were found 7. 5714*10−7, 1.0000, 1.1332*10−4, 0.9982,
2.2668*10−6 and 0.9999 for density, viscosity and elec-
trical conductivity, respectively. The Fig. 3 respectively
show experimental density, viscosity and electrical conduc-
tivity in terms of predicted density, viscosity and electri-
cal conductivity by optimal topology during the training.
These figures show a good agreement between experimental
and predicted values. Number of tests was used to assess
this topology. The Fig. 4 respectively show experimental
density, viscosity and electrical conductivity in terms of pre-
dicted density, viscosity and electrical conductivity by opti-
mal topology during the test. This topology predicts den-
sity, viscosity and electrical conductivity as 1.0000, 0.9994
and 1.0000, respectively. The Fig. 5 respectively show
experimental density, viscosity and electrical conductivity

in terms of predicted density, viscosity and electrical con-
ductivity by optimal topology for entire the data.

4 Conclusion

An artificial neural network was used in present study to
concurrently predict density, viscosity and electrical con-
ductivity of Pyridinium-based hydrophobic ionic liquids.
The optimal topology here includes 10 neurons in the hid-
den layer and is able to concurrently and suitably predict
density, viscosity and electrical conductivity. The artificial
neural network model shows lower errors and higher pre-
cision compared to statistical models while use of ANN is
easier and quicker than statistical methods.

Glossary

k Walden constant
M Molar mass



Silicon (2018) 10:2617–2625 2625

S0 Standard molar entropy
UPOT Lattice energy
ρ Density
ð Electrical conductivity
η Dynamic viscosity
α Thermal expansion coefficients
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