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Abstract
The modification of silica-coated CoFe2O4 magnetic nanoparticles (CoFe2O4@SiO2) with chlorosulfonic acid, which can be
utilized as an organic-inorganic hybrid heterogeneous catalyst, introduces an astonishing and efficient system for the synthesis
and simplicity of the recovery of the catalyst. The applied CoFe2O4 magnetic nanoparticles are 22.98–45.30 nm measured that
can be utilized as a catalyst for the preparation of 2-amino-4,6-diarylnicotinonitrile under microwave irradiation in solvent-free
conditions by four component reaction of aromatic acetophenone, aldehydes analogues, malononitrile and ammonium acetate.
The so synthesized magnetic nanocatalyst was characterized by X-ray powder diffraction, SEM, TGA and FT-IR techniques.
This simple protocol suggests advantages such as shorter reaction times, high yield, catalyst recovery, achieving the high purity of
products by simple recrystallization and facile work-up. Other noticeable characteristics contain the catalyst can be recovered at
least five times without any clear decrease in its catalytic activity.
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1 Introduction

Recently, magnetic nanocatalysts have attracted considerable
attention in organic synthesis because of their high specific
surface area, biocompatibility, reusability, economic and envi-
ronmental benefits. Because magnetic nanoparticles are
tending to aggregation and preventing air oxidation, the mod-
ification of iron oxide nanoparticles is essential [1–7].

The most significant goal of green chemistry is the removal
of volatile organic solvents in organic synthesis. Solvent-free
organic reactions also make methods easier, save energy and
impede solvent wastes, hazards, and toxicity. So, microwave-
assisted solvent-free reactions are clean and efficient [8].

Multi-component reactions have earned great consider-
ation from organic and medicinal chemists because these pro-
cedures do not need the isolation and purification of interme-
diates so decrease the cost, time and more importantly waste
production [5, 9, 10].

Pyridine and its analogues are significant scaffolds found
in numerous pharmaceutical active compounds of varied
origin, from natural products to synthetic sources. They
have a significant and unique position in medicinal chemis-
try [11–15]. Among them, 2-amino-3-cyanopyridines char-
acterized by their highly important biological properties
such as anti-tumor activity, cardiotonic, anti-inflammatory,
anti-parkinsonism properties, IKK-b inhibiting, A2A aden-
osine receptor antagonizing and power inhibitor of HIV-
1integrase [16–18]. In addition to, these analogues are sig-
nificant and benefit intermediates in the synthesis of the
diversity of heterocyclic compounds. To date, several effec-
tive methods have been presented for the preparation of
pyridine derivatives, including multi-component reactions
(MCRs). In spite of the existence of wide literature for the
synthesis of 2-amino-3-cyanopyridines, some of the ap-
proaches require long times, toxic benzene as the solvent,
harsh reaction conditions, tedious work-up and low yields.
Therefore, efficient and novel one-pot catalytic procedures
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for the preparation of 2-amino-3-cyanopyridines under mild
conditions are still strongly demanded [19–21].

As part of our efforts towards the development of synthetic
methodologies, herein, SO3H-functionalized silica-coated
magnetite nanoparticles with a core–shell structure,
CoFe2O4@Silica sulfuric acid, were successfully prepared as
a reusable and highly efficient acid magnetic nanocatalyst by a
simple method without need to N2 atmosphere for the synthe-
sis of 2-amino-3-cyanopyridines analogues under eco-friendly
conditions, as shown in Scheme 1.

2 Experimental

2.1 Materials and methods

All chemical materials were utilized without further puri-
fication and purchased from Merck, Fluka, and Aldrich
and. Melting points were measured on an Electrothermal
9100 apparatus (LABEQUIP LTD., Markham, Ontario,
Canada) and are uncorrected. 1H NMR and 13C NMR
were recorded in CDCl3 and DMSO-d6 solvents on a
Bruker DRX-250 Avance spectrometer at 250.13 and
62.90 MHz, respectively. FT-IR spectra were obtained
on a Jasco 6300 FTIR spectrometer. Nanostructures were
analyzed by X-ray powder diffraction (XRPD) with a
X’Pert-PRO advanced diffractometer using Cu (Ka) radi-
ation (wavelength: 1.5406 Å), operated at 40 kV and
40 mA at room temperature in the range of 2θ from 20°
to 80°. The particle morphology of nanocatalyst was de-
termined by FE-SEM (TE-SCAN, Brno Czech Republic).
To measure the amount of coating, thermo gravimetric
analyses were performed (TGA Q500) up to 800 °C in
air at a ramp rate of 10 °C/min.

2.2 Preparation of catalyst (CoFe2O4@SiO2-SO3H)

This catalyst was obtained in three steps according to the
presented procedure in our previous work including first
step synthesis of CoFe2O4 MNPs; second step coating of
SiO2 on the CoFe2O4 MNPs and third step synthesis of
SO3H functionalized silica-coated magnetite nanoparticles
[22].

2.3 General experimental approach
for the preparation
of 2-amino-4,6-diarylnicotinonitrile derivatives

In a 5 ml microwave reaction vessel, a mixture of aro-
matic aldehyde 1a-m (1 mmol), acetophenone 2
(1 mmol), malononitrile 3 (1 mmol) and ammonium
acetate 4 (1.5 mmol) and CoFe2O4@Silica sulfuric acid
(0.012 g) were placed. Then, the mixture was heated in
a microwave oven in 600 W of power for 2 min. The
progress of the reaction was elucidated by TLC (n-
Hexane: EtOAc, 10:6). The catalyst was separated from
the mixture by an external magnet and washed several
times with ethanol for use again. Ultimately, the pure
product was obtained by recrystallization from hot eth-
anol. The structures of the products 5a-m were deter-
mined by FTIR, 1H-NMR and 13C-NMR spectroscopic
data. The structure of the product 5c was also verified
by the single-crystal X-ray analysis.

2.4 Spectral data of selected products

2.4.1 2-amino-4,6-diphenylnicotinonitrile (5a)

Mp 187–189 °C (Reported: 186–187 °C [23]). FTIR (KBr,
cm−1): 3463, 3303, 2205, 1637, 1585, 1549, 1495, 1451,
1369, 1075, 849, 775, 698; 1H NMR (250.13 MHz, CDCl3):
δH 5.38 (s, 2H, NH2), 7.20 (s, 1H, pyridine H-5), 7.25–7.99
(m, 10H, ArH).13C NMR (62.90 MHz, CDCl3): δC 111.12,
117.12, 127.32, 128.16, 128.80, 128.93, 130.19, 136.92,
137.93, 155.12, 159.82, 160.23.

2.4.2 2-amino-4-(4-chlorophenyl)-6-phenylnicotinonitrile
(5b)

Mp 221–224 °C (Reported: 223–225 °C [23]). FTIR (KBr,
cm−1): 3484, 3362, 2215, 1631, 1574, 1546, 1493, 1450,
1362, 1259, 1091, 1013, 842, 778, 687; 1H NMR
(250.13 MHz, CDCl3): δH 5.38 (s, 2H, NH2), 7.21–8.00 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 110.98,
127.31, 128.83, 129.23, 129.51, 130.33, 160.21.
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2.4.3 2-amino-4-(3-chlorophenyl)-6-phenylnicotinonitrile
(5c)

Mp 168–170 °C. FTIR (KBr, cm−1): 3469, 3305, 2205, 1635,
1578, 1547, 1479, 1369, 1258, 1159, 844, 793, 696; 1H NMR
(250.13 MHz, CDCl3): δH 5.44 (s, 2H, NH2), 7.16–8.00 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 110.99,
116.68, 126.38, 127.32, 128.22, 128.81, 129.84, 130.20,
130.35, 134.90, 137.66, 138.61, 153.51, 160.17.

2.4.4 2-amino-4-(2-chlorophenyl)-6-phenylnicotinonitrile
(5d)

Mp 199–201 °C. FTIR (KBr, cm−1): 3489, 3341, 2228, 1623,
1571, 1553, 1477, 1361, 1253, 1160, 844, 763, 687; 1H NMR
(250.13 MHz, CDCl3): δH 5.36 (s, 2H, NH2), 7.15–7.98 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 112.20,
127.08, 127.36, 128.79, 130.27, 130.64, 152.97, 159.62.

2.4.5 2-amino-4-(4-fluorophenyl)-6-phenylnicotinonitrile
(5e)

Mp 164–166 °C. FTIR (KBr, cm−1): 3474, 3393, 2206, 1644,
1574, 1553, 1452, 1368, 1233, 1158, 830, 767, 697; 1H NMR
(250.13 MHz, CDCl3): δH 5.40 (s, 2H, NH2), 7.16–8.00 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 111.09,
115.90 (d, 2JCF = 22.01 Hz), 117.01, 127.32, 128.81, 130.08,
130.22 (d, 3JCF = 08.80 Hz), 137.82, 154.01, 159.96, 160.25,
165.67 (d, 1JCF = 250.34 Hz).

2.4.6 2-amino-4-(3-fluoroophenyl)-6-phenylnicotinonitrile
(5f)

Mp 162–165 °C. FTIR (KBr, cm−1): 3473, 3311, 2206, 1645,
1575, 1511, 1453, 1369, 1234, 1159, 830, 767, 697; 1H NMR
(250.13 MHz, CDCl3): δH 5.40 (s, 2H, NH2), 7.16–7.99 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 111.08,
115.89 (d, 2JCF = 22.01 Hz), 116.24, 116.99, 127.32, 128.80,
130.08 (d, 3JCF = 08.80 Hz), 133.00, 137.82, 154.00, 159.96,
160.25, 161.69 (d, 1JCF = 250.97 Hz).

2.4.7 2-amino-4-(2-fluorophenyl)-6-phenylnicotinonitrile
(5 g)

Mp 178–180 °C. FTIR (KBr, cm−1): 3465, 3305, 2206, 1637,
1587, 1550, 1450, 1369, 1256, 1103, 860, 759, 706; 1H NMR
(250.13 MHz, CDCl3): δH 5.39 (s, 2H, NH2), 7.20–7.93 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 112.22,
116.26 (d, 2JCF = 21.38 Hz), 116.47, 124.59, 127.36, 128.79,
130.25, 130.55, 131.54 (d, 3JCF = 08.17 Hz), 137.79, 149.59,
159.86, 161.22.

2.4.8 2-amino-4-(4-nitrophenyl)-6-phenylnicotinonitrile
(5 h)

Mp 216–218 °C. FTIR (KBr, cm−1): 3489, 3375, 2210, 1636,
1571, 1518, 1495, 1348, 1261, 1106, 847, 753, 694; 1H NMR
(250.13 MHz, DMSO): δH 6.92–8.33 (m, 12 H, ArH); 13C
NMR (62.90 MHz, DMSO): δC 109.59, 118.90, 124.16,
127.37, 129.12, 130.01, 130.43, 130.64, 137.65, 154.47,
161.19.

2.4.9 2-amino-4-(3-nitrophenyl) -6-phenylnicotinonitrile (5i)

Mp 208–210 °C. FTIR (KBr, cm−1): 3478, 3362, 2218, 1622,
1577, 1528, 1444, 1343, 1259, 1083, 769, 741, 691; 1H NMR
(250.13 MHz, CDCl3): δH 5.44 (s, 2H, NH2), 7.21–8.46 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 110.88,
123.28, 124.46, 127.37, 128.88, 130.09, 130.59, 134.11,
138.50, 160.20.

2.4.10 2-amino-4-(4-bromophenyl)-6-phenylnicotinonitrile
(5j)

Mp 186–188 °C. FTIR (KBr, cm−1): 3472, 3305, 2206, 1642,
1574, 1545, 1491, 1366, 1258, 1072, 833, 767, 699; 1H NMR
(250.13 MHz, CDCl3): δH 5.38 (s, 2H, NH2), 7.16–7.99 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 110.90,
116.88, 124.40, 127.32, 128.83, 129.74, 130.34, 132.20,
135.77, 137.73, 153.84, 160.07, 160.22.

2.4.11 2-amino-4-(4-cyanophenyl)-6-phenylnicotinonitrile
(5 k)

Mp 185–187 °C. FTIR (KBr, cm−1): 3475, 3363, 2204, 1618,
1574, 1545, 1449, 1360, 1261, 1159, 826, 767, 688; 1H NMR
(250.13 MHz, CDCl3): δH 5.47 (s, 2H, NH2), 7.15–7.99 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 110.77,
113.63, 115.37, 116.45, 118.12, 119.67, 127.34, 128.33,
128.87, 128.99, 129.21, 129.99, 130.55, 132.69, 137.45,
141.29, 152.92, 160.23, 160.41.

2.4.12 2-amino-4-(2,6-dichlorophenyl)
-6-phenylnicotinonitrile (5 l)

Mp 174–176 °C. FTIR (KBr, cm−1): 3489, 3373, 2214, 1666,
1577, 1560, 1436, 1355, 1215, 1151, 843, 779, 693; 1H NMR
(250.13 MHz, CDCl3): δH 5.34 (s, 2H, NH2), 7.08–8.01 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 111.80,
115.56, 127.39, 128.39, 128.79, 130.35, 130.84, 134.05,
137.63, 150.77, 159.61, 160.22.
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2.4.13 2-amino-4-(2,4-dichlorophenyl)
-6-phenylnicotinonitrile (5 m)

Mp 179–181 °C. FTIR (KBr, cm−1): 3480, 3377, 2212, 1682,
1615, 1589, 1474, 1359, 1266, 1104, 868, 760, 691; 1H NMR
(250.13 MHz, CDCl3): δH 5.46 (s, 2H, NH2), 7.11–7.99 (m,
10 H, ArH); 13C NMR (62.90 MHz, CDCl3): δC 111.98,
116.05, 127.38, 127.55, 128.84, 130.16, 131.14, 133.23,
134.36, 136.11, 137.59, 151.87, 159.87.

2.5 Single crystal X-ray crystallography

Crystal of 5c was obtained by dissolution of 5c in hot ethanol
and then slow evaporation of its solvent at room temperature.

The crystallographic measurement of 5cwas carried out on
a Kuma KM4-CCD κ-geometry automated four-circle

diffractometer equipped with a CCD camera Sapphire2 and
graphite-monochromatizedMoKα radiation (λ = 0.71073 Å).
The data were collected at 102(2) K by using the Oxford-
Cryosystems cooler. Data were corrected for the Lorentz and
polarization effects. Data collection, cell refinement, data re-
duction and analysis were carried out with KM4-CCD soft-
ware, CrysAlisPro [24]. Analytical absorption correction was
applied. The structure was solved with direct methods using
SHELXT-2014 [25] and refined by a full-matrix least squares
technique with the anisotropic thermal parameters for non-H
atoms with the use of SHELXL-2014 [25]. H atoms were
found in difference Fourier maps and were refined
isotropically. In the final refinement cycles, C-bound H atoms
were repositioned in their calculated positions and refined
using a riding model, with C–H = 0.95 Å, and with
U i so(H) = 1.2Ueq(C). Amine H atoms were refined
isotropically with Uiso(H) = 1.2Ueq(N). Figures were made
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using the DIAMOND program [26]. The crystallographic in-
formation file (CIF) was deposited with The Cambridge
Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/;
deposition number CCDC 1587653 and provided as ESI.

Crystal data for 5c. C18H12ClN3, Mr = 305.76, colorless
block, crystal size 0.55 × 0.40 × 0.23 mm, triclinic, space
group P�1, a = 9.213(3), b = 9.445(3), c = 9.661(4) Å, α =
73.52(3)°, β = 61.69(4)°, γ = 85.13(3)°, V = 708.5(5) Å3, T =
102(2) K, Z = 2, μ = 0.27 mm−1 (for Mo Kα, λ = 0.71073 Å),
analytical absorption correction, Tmin = 0.883, Tmax = 0.945,
9961 reflections measured, 5131 unique (Rint = 0.036), 4595
observed (I > 2σ(I)), (sin θ/λ)max = 0.844 Å−1, 205 parame-
ters, 0 restraints, R = 0.052, wR = 0.150 (observed refl.),
GOOF = S = 1.03, (Δρmax) = 0.56 and (Δρmin) = −0.48 e Å−3.

3 Results and discussion

3.1 Catalyst characterization

The details of the functionalized catalyst preparation approach
are represented in scheme 2. First, the CoFe2O4 MNPs have

been synthesized. Then, after coating of the CoFe2O4 MNPs
with silica layers (using TEOS), the modification of facial
hydroxyl groups with chlorosulfonic acid cause to
CoFe2O4@Silica sulfuric acid [22]. The structure of catalyst
was studied by FT-IR, TGA, XRD, and SEM.

Figure 1 indicates the FT-IR spectra of CoFe2O4@Silica
sulfuric acid. The band in the region of 591 cm−1 is attributed
to the stretching vibration of the (M-O) band and the bands at
about 1061 cm−1 and, 1073 cm−1 belong to (Si–O–Si)
stretching vibrations. The presence of sulfuric acid is verified
by peaks at about 3300 cm−1 (O–H stretching) and 1042 cm−1

and 1134 cm−1 (S–O) [27].
A thermogravimetric analysis (TGA) was also utilized to

determine the percent of functional groups that are coated on
to the surface of magnetic nanoparticles (Fig. 2). The TGA
curve was separated into three areas according to three mass
loss ranges. The first area, which occurred below 150 °C,
showed a mass loss that was attributed to the loss of physically
adsorbed solvent and surface hydroxyl groups (11.65%). The
second region (150–600 °C) shows that the silica-coated
MNPs are thermally stable. Finally, the third area that oc-
curred between 600 and 800 °C belongs to the mass loss of
SO3H groups (32.81%) [28, 29].

Figure 3 displays the XRPD of CoFe2O4@SiO2-SO3HMNPs
that matched well with standard XRD pattern of CoFe2O4 (card
no. 00–001-1121). The diameter of the CoFe2O4@Silica sulfuric
acid MNPs was determined by Debye-Scherrer equation with
XRD data (D= 0.94 λ/B Cos θ) 33 nm [28, 30].

The size of the nanocatalyst was measured using scanning
electron microscopy (SEM) (Fig. 4) that the CoFe2O4@Silica
sulfuric acid MNPs are ranging from 22.98–45.30 nm and
their shape is spherical.
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Fig. 4 SEM image of CoFe2O4@SiO2-SO3H MNPs

Table 1 The synthesis of 2-amino-4,6-diarylnicotinonitrile derivatives
under a different amount of catalyst

Entry Catalyst (g) Time (min) Yield b (%)

1 None 20 36

2 0.004 4 68

3 0.008 3 79

4 0.012 1.5 90

5 0.016 3 81

Table 2 The synthesis of 2-amino-4,6-diarylnicotinonitrile derivatives
under various microwave power

Entry Catalyst (g) Microwave power (W) Time (min) Yield a (%)

1 0.012 500 1.5 64

2 0.012 550 1.5 82

3 0.012 600 1.5 90

4 0.012 650 1.5 76

Silicon (2019) 11: – 121 269 76 2173
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3.2 Evaluation of the catalytic activity
of CoFe2O4@Silica sulfuric acid in the preparation
of 2-amino-4,6-diarylnicotinonitrile derivatives

In this research, green energy, eco-friendly and facile procedure
for the preparation of 2-amino-4,6-diarylnicotinonitrile

derivatives using CoFe2O4@Silica sulfuric acid are explained.
First, to optimize the reaction conditions the efficiency and
amount of theCoFe2O4@Silica sulfuric acidMNPs catalyst were
investigated in a model reaction of 4-chlorobenzaldehyde 1b
(1 mmol), acetophenone 2 (1 mmol), malononitrile 3 (1.5 mmol)
and ammonium acetate 4 (1 mmol) for the synthesis of com-
pound 5b under solvent-free conditions in the absence and pres-
ence of CoFe2O4@Silica sulfuric acid (Table 3, entry 2). It was
proved that in the absence of a nanomagnetic solid acid catalyst,
the only trace of the desired product was obtained. When the
reaction was carried out in the presence of CoFe2O4@Silica
sulfuric acid, it proceeded rapidly to give the desired product.
The obtained results from the reaction to determine the optimum
amount of catalyst represented in Table 1. As can be seen from
this table, the best results were obtained using 0.012 g of catalyst.
Ultimately, the effect of microwave power inputs from 500 to
650 W was evaluated (Table 2).

After optimization of the reaction conditions, the reaction
of acetophenone, malononitrile and ammonium acetate with
diverse aldehydes was performed in according to the general
experimental method (Scheme 1). In all the cases, the

Table 3 Three-component
condensation of aldehydes,
acetophenone, malononitrile, and
ammonium acetate for the
synthesis of 2-amino-4,6-
diarylnicotinonitrile

Entry R Product Time (min) Yield (%) a M.P (° C) References

1 H 5a 2 89 187–189 186–87 [23]

2 4-Cl 5b 1.5 90 180–182 221–24 [23]

3 3-Cl 5c 2 87 168–170 –

4 2-Cl 5d 2 90 199–201 –

5 4-F 5e 1.5 92 164–166 –

6 3-F 5f 2 88 162–165 –

7 2-F 5 g 2 85 178–180 –

8 4-NO2 5 h 2 87 216–218 –

9 3-NO2 5i 2 88 208–210 –

10 4-Br 5j 1.5 92 186–188 –

11 4-CN 5 k 1.5 92 185–187 –

12 2,6-(Cl)2 5 l 2 86 174–176 –

13 2,4-(Cl)2 5 m 1.5 89 179–181 –

(a)

(b)

Fig. 5 X-ray crystal structure of 5c: molecule (a) and packing diagram
(b). Displacement ellipsoids in (a) are drawn at the 50% probability level.
Black dashed lines represent N–H⋅⋅⋅N hydrogen bonds [N–H, H⋅⋅⋅N,
N⋅⋅⋅N distances = 0.84(2), 2.18(2), 3.017(2) Å, N–H⋅⋅⋅N angle =
169(2)°]. Yellow dotted line – π⋅⋅⋅π stacking [centroid⋅⋅⋅centroid
distance = 3.494(2) Å]
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corresponding 2-amino-4,6-diarylnicotinonitrile analogues
were synthesized in high yields and short reactions times.
The results of the transformation of differently substituted aryl
aldehydes to 2-amino-4,6-diarylnicotinonitrile derivatives 5a-
m are summarized in Table 3.

Reaction conditions: 4-chlorobenzaldehyde 1 (1 mmol),
acetophenone2 (1 mmol) malononitrile3 (1 mmol), ammoni-
um acetate4 (1 mmol) under microwave irradiation at 600 W
in solvent-free conditions. a Isolated yield.

Reaction conditions: 4-chlorobenzaldehyde 1 (1 mmol),
acetophenone2 (1 mmol) malononitrile3 (1 mmol), ammonium.

acetate4 (1 mmol) with 0.012 g CoFe2O4@SiO2-SO3H in
solvent-free conditions. a Isolated yield.

Reaction conditions: benzaldehyde 1a-m (1 mmol),
acetophenone2 (1 mmol) malononitrile3 (1 mmol), ammoni-
um acetate4 (1 mmol) with 0.012 g CoFe2O4@SiO2-SO3H
under microwave irradiation at 600 W in solvent-free
conditions.a Isolated yield.

The structure of compound 5c was verified by single-
crystal X-ray analysis. As shown in Fig. 5a, the phenyl ring
is almost coplanar with the pyridyl ring (interplanar angle
amounts to 11°), while the chlorophenyl ring is twisted rela-
tive to the central ring at about 56°. In the crystal lattice, the
molecules of 5c interact with each other via N–H⋅⋅⋅N hydro-
gen bonds giving rise to centrosymmetric dimers, which are
further linked by π⋅⋅⋅π stacking interactions between the pyr-
idyl rings (Fig. 5b).

Ultimately, the recyclability and reusability of the reaction
catalyst were evaluated. After the removal of catalyst from the
reaction mixture, the catalyst was washed with ethanol and dried
to eliminate any remaining ethanol and reutilized in the further.
As shown in Fig. 6, CoFe2O4@Silica sulfuric acid MNPs could
be reutilized at least five times with little loss of activity.

4 Conclusion

In this research, we were represented using CoFe2O4@Silica
sulfuric acid as a reusable, efficient and inexpensive catalyst for
the one-pot preparation of 2-amino-4,6-diarylnicotinonitrile.
Short reaction time, utilize of recyclable catalyst, simple, high
yields, and inexpensive are significant features of this method.
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