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Abstract

Purpose Although evidence from observational studies in
a variety of clinical settings supports the utility of cerebral
oximetry as a predictor of outcomes, prospective clinical
trials thus far have reported conflicting results. This
systematic review and meta-analysis was designed to
evaluate the influence of management associated with
intraoperative  cerebral oximetry on postoperative
outcomes. The primary outcome was postoperative
cognitive dysfunction (POCD), with secondary outcomes
that included postoperative delirium, length of intensive
care unit (ICU) stay, and hospital length of stay (LOS).
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Source After searching the PubMed, EMBASE, Cochrane
Library, Scopus, and Google Scholar databases, all
randomized controlled trials (RCTs) assessing the impact
of intraoperative cerebral oximetry-guided management on
clinical outcomes following surgery were identified.
Principal findings Fifteen RCTs comprising 2,057
patients (1,018 in the intervention group and 1,039 in
control group) were included. Intraoperative management
guided by the use of cerebral oximetry was associated with
a reduction in the incidence of POCD (risk ratio [RR]
0.54; 95% confidence interval [CI], 0.33 to 0.90; P = 0.02;
PP = 85%) and a significantly shorter length of ICU stay
(standardized mean difference [SMD], —0.21 hr; 95% ClI,
—0.37 to —0.05; P = 0.009; P = 48%). In addition, overall
hospital LOS (SMD, —0.06 days; 95% CI, —0.18 to 0.06; P
= 0.29; P = 0%) and incidence of postoperative delirium
(RR, 0.69; 95% CI, 0.36 to 1.32; P = 0.27; I* = 0%) were
not impacted by the use of intraoperative cerebral
oximetry.

Conclusions Intraoperative cerebral oximetry appears to
be associated with a reduction in POCD, although this
result should be interpreted with caution given the
significant heterogeneity in the studies examined. Further
large (ideally multicentre) RCTs are needed to clarify
whether POCD can be favourably impacted by the use of
cerebral oximetry-guided management.

Résumé
Objectif Alors que les données probantes provenant
d’études observationnelles réalisées dans différents

cadres cliniques témoignent de l'intérét de 1’'oxymétrie
cérébrale comme élément prédictif des résultats, les essais
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cliniques prospectifs ont — jusqu’a ce jour — fourni des
résultats contradictoires. Cette étude et méta-analyse
systématique a été congue pour évaluer 'influence de la
gestion associée a I’oxymétrie cérébrale peropératoire sur
les résultats postopératoires. Le critere d’évaluation
principal était la dysfonction cognitive postopératoire
(POCD) et les criteres d’évaluation secondaires étaient,
notamment, le délirium postopératoire, la durée du séjour
en unité de soins intensifs (USI) et la durée de séjour a
I’hopital (DSH).

Source Aprés une recherche dans les bases de données
PubMed, EMBASE, Cochrane Library, Scopus et Google
Scholar, tous les essais controlés randomisés (ECR)
évaluant I'impact de la gestion peropératoire guidée par

Uoxymétrie  cérébrale sur les résultats cliniques
postopératoires ont été identifiés.
Constatations principales Quinze essais cliniques

randomisés ayant inclus 2 057 patients (1 018 dans le
groupe interventionnel et 1 039 dans le groupe témoin) ont
été inclus. La gestion peropératoire guidée par l’utilisation
de ’oxymétrie cérébrale a été associée a une réduction de
Uincidence du POCD (rapport de risque [RR] 0,54;
intervalle de confiance a 95 % [IC]: 0,33 a 0,90;
P = 0,02; P =85 %) et a une plus breve durée de
séjour en USI (différence moyenne standardisée [SMD] :
—021h; IC a 95 % : —037 a —0,05; P = 0,009;
P =48 %). De plus, la durée de séjour globale &
Uhopital (SMD : —0,06 jour; IC a 95 % : —0,18 a 0,06;
P = 0,29; F=0 %) et [incidence du delirium
postopératoire (RR : 0,69; IC a 95 % : 0,36 a 1,32;
P=027: P=0%) n'ont pas été affectées par
lutilisation de I’oxymétrie cérébrale peropératoire.

Conclusions L’oxymétrie cérébrale peropératoire semble
associée a une réduction du POCD, mais ce résultat doit
étre interprété avec prudence compte tenu de l'importante
hétérogénéité entre les études analysées. D’autres essais
cliniques randomisés avec suffisamment de patients
(idéalement multicentriques) sont nécessaires pour savoir
si le POCD peut étre favorablement influencé par
lutilisation de la gestion cérébrale guidée par oxymétrie.

Cerebral oximetry uses near-infrared spectroscopy (NIRS)
to provide real-time non-invasive interrogation of regional
cerebral oxygen saturation (rSO,) and has become an
increasingly popular intraoperative monitoring technique.’
Measuring rSO; in a representative volume of frontal cortex
brain tissue (and assuming stable metabolic suppression of
the brain under anesthetic conditions), it has been seen as a
surrogate of cerebral blood flow and thus as a useful
technology to detect cerebral hypoperfusion.' It is thought
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to be particularly beneficial in the perioperative setting when
hemodynamic fluctuations often occur that can lead to
postoperative complications such as cognitive impairment or
delirium.”®  Anesthesiologists have utilized cerebral
oximetry monitoring in an attempt to optimize both blood
pressure and oxygen delivery to maintain adequate cerebral
perfusion and decrease the incidence of these neurocognitive
complications.>”

Several observational studies have pointed to the
predictive value of cerebral oxygenation monitoring for
both short- and long-term functional outcomes.”” It has
been suggested that in cardiac surgery patients, in addition
to those following cardiac arrest or with a diagnosis of
sepsis, SO, (< 60%) may be associated with an increased
risk of adverse outcomes.'®'* An additional study in aortic
arch surgery patients concluded that reduced intraoperative
cerebral oxygen saturation was not only associated with
extended hospital stay, but also increased overall hospital
costs.? Furthermore, given an inherent increase in the
physical and financial burden of patient care associated
with cognitive dysfunction following surgery,'* additional
efforts directed towards cerebral monitoring and
postoperative cognitive dysfunction (POCD) prevention
are warranted. Although cerebral oximetry monitoring has
been available as a clinical tool for two decades, little
consensus exists regarding the role of cerebral oximetry-
based management in the perioperative period. Several
prospective trials have attempted to assess the impact of
cerebral oximetry on postoperative cognitive outcomes;
however the results have remained conflicting.

The purpose of this systematic review and meta-analysis
was to determine the overall beneficial effect of cerebral
oximetry on select outcomes after surgery.

Methods

This meta-analysis followed the guidelines outlined by the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses statement.'” It was also registered on the
International Prospective Systematic Reviews Registry
database (PROSPERO 2017: CRD42017057293) on 14
February 2017.

Search strategy

The MEDLINE/PubMed, EMBASE, Cochrane Library,
Scopus, and Google Scholar databases were searched from
inception to 2 December 2017 for randomized-controlled
trials (RCTs) assessing the effects of intraoperative
cerebral oximetry monitoring on postoperative outcomes
following cardiac and non-cardiac surgery. There was no
restriction on language. In addition, article citations were
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reviewed to ensure inclusion of relevant studies not
captured in our initial literature search. The
clinicaltrials.gov registry was also searched to evaluate
for any ongoing RCT where results might be expected to be
published in the near future. Two authors (A.Z.V. and
R.J.H.) reviewed the literature and screened the abstracts
independently. Full-text articles that met the inclusion
criteria were reviewed for detailed comprehension and
further assessment of the quality and risk of bias. All
disagreements between reviewers in the selection and
evaluation processes were resolved by discussion with a
third reviewer (M.C.G.). All demographic data, including
year of publication, sample size, intervention algorithm,
type of surgery, anesthetic management, and specified
outcomes, were abstracted in a predefined manner.

Eligibility criteria

We limited our meta-analysis to RCTs of adult patients (age
> 18 yr) who underwent either cardiac or non-cardiac
surgery. The intervention group was monitored with NIRS
(interventions specified below) while the control group was
not.

Interventions considered

Management guided by the use of intraoperative cerebral
oximetry was considered the primary intervention and was
triggered by evidence of cerebral oxygen desaturation.
Specific interventions included the use of fluids and/or
vasopressors for hypotension, an increase in pump flow to
maintain the cardiac index above 2 L-m_z-min_l, changes
in ventilatory parameters (i.e., optimizing the partial
pressure arterial oxygen and carbon dioxide), and blood
transfusion if anemic. Thresholds for intervention were
generally an rSO, < 55-60% or rSO, < 75% of baseline.
Prior experimental work has suggested that critical
neurologic deficits are more likely to occur with more
than a 30% reduction in rSOz,16 and to establish a rational
approach, our search also involved the selection of studies
wherein a more conservative intervention threshold was
utilized."”

Outcomes

The primary outcome in this meta-analysis was the
incidence of POCD as defined by the individual studies.
Most articles used a combination of standardized
assessments of cognitive functions such as the Mini-
Mental Status Examination (MMSE), grooved pegboard,
anti-saccadic eye movement, color trail, and Montreal
Cognitive Assessment. Secondary outcomes included
intensive care unit (ICU) length of stay (LOS), overall

hospital LOS, as well as the incidence of total transfusion,
delirium, surgical site infection, cardiac complications, and
mortality. Individual study definitions were also used for
secondary outcomes. The time interval to evaluate delirium
and POCD outcomes was within one week after surgery.

Assessment of methodologic quality and quality of
evidence

Methodologic quality assessment was performed using the
Cochrane risk of bias tool for randomized studies.'® Each
study was assessed based upon seven domains of potential
bias (random sequence generation, allocation concealment,
blinding of intervention, blinding of outcome assessment,
incomplete outcome data, selective reporting, and other
bias). The overall risk of bias of individual studies was
classified as high if at least one domain was determined at
high risk or if there were more than two domains of unclear
risk, moderate if at least two domains were determined at
unclear risk, and low if all the domains were determined at
low risk. The quality of the evidence provided in this meta-
analysis was also assessed using five levels of evidence,
ranging from level I to III with three subcategories in level
II, as previously reported.'”

Statistical analysis

Initially, an exploratory qualitative analysis was conducted
to describe the characteristics of the studies included in this
meta-analysis. The incidence of POCD was extracted as a
dichotomous variable (present or absent) and compared
using risk ratios (RR) with their respective 95% confidence
intervals (CI). We used forest plots to illustrate the
estimations and overall effect sizes with pooled RR
represented as a solid diamond at the bottom of the forest
plot. Outcomes presented as continuous variables were
compared using the standardized mean difference (SMD).
In cases of publication of median values with their ranges,
we converted these measures into mean and standard
deviations (SD) using the method of Wan et al.®® In cases
where 95% CI of mean values was included, the SD was
calculated using a standard formula. Predetermined
subgroup analyses were performed based upon type of
surgery (cardiac versus non-cardiac surgery) and type of
cerebral oximetry-based intervention. Sensitivity analysis
was performed based upon overall study quality (high or
moderate versus low) as determined by quality of evidence
assessment.

Heterogeneity (I?) was assessed using the correspondent
Chi-squared test (I < 50% and F* > 50% were considered
insignificant and significant heterogeneity, respectively).
Publication bias was calculated using the Begg’s and
Egger’s tests”' with funnel plots constructed to represent
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any tendency for publishing in favour of positive effects.
Significant publication bias was considered when there was
asymmetry in the funnel plot and a statistically significant
bias coefficient was noted on the Beggs’s test.”! P < 0.05
was considered statistically significant for all the statistical
tests. All analyses were performed using a random-effect
model (DerSimonian and Laird method).>> All statistics
were performed using Review Manager 5.3 (Cochrane
Collaboration, Oxford, UK) or Stata version 13.0 (Stata,
College Station, TX, USA).

Results
Literature search and selection
Our initial search yielded 3,177 records. After excluding

duplicate studies, we screened a total of 1,454 titles and
abstracts. Of these, 26 full-text articles met the full

inclusion criteria. Two RCTs were excluded because of a
lack of demographic and/or outcomes data.*?* An
additional nine RCTs were excluded as they did not
involve the target intervention comparison.”>>* Two
additional RCTs were excluded because they were
published as an abstract’>® and one RCT was excluded
because although it correlated anesthetic depth with
cerebral oximetry, it did not detail the associated
intervention.”” Finally, three additional trials were
identified from reference lists of the articles
included.””®* Figure 1 outlines the full results of article
selection. In total, 15 RCTs were included in this meta-
analysis.”"'73%-0

Study characteristics
The Table summarizes the characteristics of the included

studies. Ten RCTs included patients undergoing cardiac
surgery (coronary artery bypass, valve replacement or

'
3177 records identified through
c database searching.
o PubMed (n = 1124)
‘g’ EMBASE (n = 927)
= Cochrane library (n = 5)
k= Scopus (n = 265)
§ Google scholar (n = 1121)
Records after duplicates removed
(n=1454)
2 Records excluded after
c > screening of title and
] abstract (n = 1132)
5 A4
(7]
Records screened
_ (n=322)
» Records excluded because
. not randomization (n = 296)
>
= Full-text articles assessed for
2 eligibility
i.I_EJ, (n = 26) Full-text articles excluded:
Lack of enough information
n=2)
— Comparison of anesthetic
management (n = 9)
»  Comparison of anesthetic
O depth and cerebral
oximetry (n =1)
Study published as an
- abstract (n = 2)
3 Y
3
(%) . . .
£ Studies included in quantitative Af(: g:qt;otr[lael ;?t(i:c?lredssirl'ndc(legctilggd
and qualitative synthesis (N = 15) [« (n=3)

Fig. 1 PRISMA flow chart of the selection of studies
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(A) Experimental Control Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl Year M-H, Random, 95% CI
Casati et al 2005 20 56 30 66 16.4% 0.79[0.51, 1.22] 2005 =T
Slater et al 2009 73 125 70 115 19.3% 0.96 [0.78, 1.18] 2009 -+
Zogogiannis et al 2011 10 83 11 86 11.2% 0.94[0.42, 2.10] 2011 —
Ballard et al 2012 19 34 28 38 17.6% 0.76 [0.53, 1.08] 2012 —
Mohandas et al 2013 2 50 34 50 6.0% 0.06 [0.01, 0.23] 2013 —————
Kara et al 2015 7 43 19 36 11.9% 0.31[0.15, 0.65] 2015 —_—
Colak et al 2015 28 94 52 96 17.5% 0.55[0.38, 0.79] 2015 -
Total (95% CI) 485 487 100.0% 0.60 [0.40, 0.89] <@
Total events 159 244
Heterogeneity: Tau? = 0.20; Chi? = 32.16, df = 6 (P < 0.0001); I = 81% I t t {
Test fo? overZII effect: Z = 2.54 (P = 0.01) ( ) 0.01 0.1 ; 10 100

Favours Intervention Favours Control
(B)
Intervention Control Std. Mean Difference Std. Mean Difference

Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl Year 1V, Random, 95% CI
Casati et al 2005 27 1.74 56 27 1.7 66  26.4% 0.00 [-0.36, 0.36] 2005 —
Slater et al 2009 28.29 1.3 125 28.17 1.5 115 29.1% 0.09 [-0.17, 0.34] 2009 -
Ballard et al 2012 28.84 1.6 22 25.04 4.09 29  19.4% 1.15[0.55, 1.75] 2012 —_—
Mohandas et al 2013 28.58 2.29 50 25.42 7.54 50 25.1% 0.56 [0.16, 0.96] 2013 —_—
Total (95% Cl) 253 260 100.0% 0.39 [-0.03, 0.80] i
Heterogeneity: Tau? = 0.14; Chi? = 14.41, df = 3 (P = 0.002); I° = 79% :—2 —:l S i 2’

Test for overall effect: Z = 1.83 (P = 0.07)

Fig. 2 Forest plots illustrating A) the incidence of postoperative cognitive dysfunction

intervention and control groups

and B) Mini-Mental State Examination score between

Favours Control Favours Intervention

Intervention Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl Year 1V, Random, 95% CI
Murkin et al 2007 30 20.16 100 44.88 64.08 100 13.8% -0.31[-0.59,-0.03] 2007 e
Mohandas et al 2013 35.88 9.27 50 40.81 11.81 50 9.5% -0.46 [-0.86, -0.06] 2013 I ——
Deschamps et al 2013 71.9 54.4 23 79.4 493 25 5.8% -0.14 [-0.71, 0.42] 2013 —
Vretzakis et al 2013 64.8 91.2 75 64.8 86.4 75 12.1% 0.00 [-0.32, 0.32] 2013 I e
Colak et al 2015 64.8 148.8 94 456 21.6 96 13.5% 0.18 [-0.10, 0.47] 2015 T
Kara et al 2015 41.76 19.44 43 50.88 25.2 36 8.2% -0.41[-0.85, 0.04] 2015 I —
Deschamps et al 2016 63 58.3 34 80.5 86.8 46 8.2% -0.23 [-0.67, 0.22] 2016 —
Rogers et al 2017 80.8 50.48 98 87.7 49.5 106 13.9% -0.14 [-0.41, 0.14] 2017 I
Lei et al 2017 146.6 108 123 206.2 154 126 15.0% -0.45[-0.70,-0.19] 2017 e
Total (95% CI) 640 660 100.0% -0.21[-0.37,-0.05] <o
Heterogeneity: Tau? = 0.03; Chi? = 15.36, df = 8 (P = 0.05); I> = 48% I _’1 1

-2

0

1

Test for overall effect: Z = 2.60 (P = 0.009)

Favours Intervention Favours Control

Fig. 3 Pooled effect of cerebral oximetry-guided management on the length of stay in the intensive care

. 38.3 - . .
repair),' 383941469 one RCT  was in  carotid

endarterectomy surgery,” two RCTs included only major
abdominal surgery,”™*’ and two RCTs included both
arthroplasty and abdominal surgeries.”*® A total of 2,057
patients (1,018 in the intervention group and 1,039 in
control group) were included in the overall analysis. The
intervention in 13 RCTs was the correction of cerebral
oxygen desaturation (i.e., via modifying mechanical
ventilation or administering vasopressors), of which
seven RCTs followed an algorithm as outlined by
Denault er al.'’?%4*4*4931 while the remainder applied
other individualized algorithms. The intervention in two
RCTs was a combination of fluid administration and/or
transfusion if rSO, decreased by more than 20-25% below
baseline.*’ The Table also shows the definitions of cerebral
desaturation of each study.

@ Springer

Primary outcome

Among the seven trials examining the primary outcome,
management associated with the use of intraoperative
cerebral oximetry was associated with a significant
reduction in POCD at one week (Fig. 2A; RR, 0.60; 95%
CI, 0.40 to 0.89; P < 0.001, = 81%) compared with
patients who did not receive therapy guided by cerebral
oximetry. Subgroup analysis that included only trials
involving cardiac surgery resulted in a similar association
(RR, 0.55; 95% CI, 0.36 to 0.86; P = 0.009; I* = 85%), but
we found no significant association in non-cardiac surgery
(RR, 0.79; 95% CI, 0.61 to 1.02; P = 0.07; I* = 0%).
Among the studies that did not follow the Denault et al.
algorithm, the results again show a significant association
between the use of cerebral oximetry to guide intervention
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Intervention Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight 1V, Random, 95% Cl Year IV, Random, 95% CI
Murkin et al 2007 6.1 4.4 100 6.9 5.5 100 18.7% -0.16 [-0.44, 0.12] 2007 I
Cohn et al 2010 23.7 3.5 18 23.1 4.9 9 2.2% 0.15 [-0.66, 0.95] 2010
Vretzakis et al 2013 10.9 3.6 75 10.2 10.7 75 14.0% 0.09 [-0.23, 0.41] 2013 I
Deschamps et al 2013 76 5.4 23 7.9 3.2 25 4.5% -0.07 [-0.63, 0.50] 2013 I E—
Cowie et al 2014 7.9 6.96 20 10.6 11.75 20 3.7% -0.27 [-0.90, 0.35] 2014 _—
Kara et al 2015 7.15 1.39 43 7.67 1.14 36 7.2% -0.40 [-0.85, 0.05] 2015 e —
Deschamps et al 2016 11 7.2 34 9.9 5.8 46 7.3% 0.17 [-0.27, 0.61] 2016 I e —
Lei et al 2017 15.2 79 123 15.2 8.68 126 23.3% 0.00 [-0.25, 0.25] 2017 —
Rogers et al 2017 7.67 3 98 8 3 106 19.0% -0.11[-0.38,0.17] 2017 =T
Total (95% ClI) 534 543 100.0% -0.06 [-0.18, 0.06] q
Heterogeneity: Tau? = 0.00; Chi? = 5.62, df = 8 (P = 0.69); I> = 0% 5_2 _51 5 i 25
Test for overall effect: Z = 1.06 (P = 0.29) Favours Intervention Favours control
Fig. 4 Pooled effect of cerebral oximetry-guided management on length of hospital stay
Experimental Control Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl Year M-H, Random, 95% CI
Murkin et al 2007 8 100 10 100 3.1% 0.80 [0.33, 1.94] 2007
Vretzakis et al 2013 47 75 57 75 53.1% 0.82 [0.66, 1.02] 2013 —H
Colak et al 2015 18 94 24 96 8.5% 0.77 [0.45, 1.32] 2015 L
Deschamps et al 2016 25 34 34 46  35.3% 0.99 [0.76, 1.30] 2016 —
Total (95% CI) 303 317 100.0% 0.87 [0.75, 1.02] <&
Total events 98 125
ity 2 _ . i2 = = = 12 = t t t t t d
?eterfogeneltyl.lTe;? = 2201 gr;. P—_l(.)517(,)df =3(P=0.67);1°=0% 1 o2 G 5 t 0
est for overall effect: Z = 1.67 (P = 0.10) Favours Intervention Favours Control
Fig. 5 Pooled effect of cerebral oximetry-guided management on incidence of total red blood cell transfusion
Experimental Control Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl Year M-H, Random, 95% CI
Murkin et al 2007 8 100 10 100 2.1% 0.80 [0.33, 1.94] 2007
Vretzakis et al 2013 47 75 57 75 35.8% 0.82 [0.66, 1.02] 2013 i
Colak et al 2015 18 94 24 96 5.7% 0.77 [0.45, 1.32] 2015 .
Deschamps et al 2016 25 34 34 46 23.9% 0.99[0.76, 1.30] 2016 —
Rogers et al 2017 37 98 44 106 14.5% 0.91 [0.65, 1.28] 2017 ——
Lei et al 2017 46 123 54 126 18.0% 0.87 [0.64, 1.18] 2017 —
Total (95% Cl) 524 549 100.0% 0.88 [0.77, 1.00] <&
Total events 181 223
I 2 _ . 2 _ - - 12 = 0% ; t t t t J
Heterogeneity: Tau? = 0.00; Chi* = 1.54, df = 5 (P = 0.91); I* = 0% 1 o2 o5 5 H 0

Test for overall effect: Z = 1.95 (P = 0.05)

Favours Intervention Favours Control

Fig. 6 Pooled effect of cerebral-oximetry guided management on incidence of postoperative delirium

and reduction in POCD (five RCTs; RR 0.6; 95% CI, 0.50
to 0.94; P =0.02; I’= 72%). The use of cerebral oximetry-
driven interventions was not associated with a statistically
higher MMSE at one week (Fig. 2B; SMD, 0.39; 95% CI,
—0.03 to 0.80; P =0.07; ’= 79%) compared with controls.
There was no evidence of publication bias in our analyses
(Egger’s test bias = —0.05; P = 0.96). Sensitivity analysis
revealed no significant differences in the overall analysis
for either endpoint.

Secondary outcomes

The ICU LOS was examined in eight trials, all of which
were conducted in cardiac surgery. Our results suggest that
patients in the intervention group have significantly shorter
lengths of ICU stay compared with the control group

(Fig. 3; SMD, —0.21 hr; 95% CI, —0.37 to —0.05; P =
0.009; I = 48%). In subgroup analysis, we found that
among the studies that followed the Denault er al
algorithm, there was a significant association with a
reduction in ICU stay (five RCTs; RR, —0.31 hr; 95%
CI, —0.46 to —0.16; P < 0.001; I?= 0%). In contrast, there
was no significant association among the studies that did
not follow the Denault e al. algorithm (four RCTs; RR,
—0.11 hr; 95% CI, —0.38 to 0.15; P = 0.40; I* = 63%).
Among the eight trials that reported on hospital LOS,
pooled analysis found no significant difference between the
groups (Fig. 4; SMD, —0.06 days; 95% CI, —0.18 to 0.06;
P =0.29; > = 0%).

Transfusion was examined in six trials, all of which
were conducted in cardiac surgery. Patients monitored with
intraoperative cerebral oximetry tended to have fewer

@ Springer
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Experimental Control

Risk Ratio

Risk Ratio

Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl Year M-H, Random, 95% CI
Casati et al 2005 1 56 1 66 5.5% 1.18[0.08, 18.41] 2005
Murkin et al 2007 1 100 3 100 8.2% 0.33 [0.04, 3.15] 2007
Zogogiannis et al 2011 1 83 4 86 8.8% 0.26 [0.03, 2.27] 2011
Cowie et al 2014 0 20 1 20 4.2% 0.33[0.01, 7.72] 2014
Colak et al 2015 8 94 7 96 43.7% 1.17 [0.44, 3.09] 2015 —
Deschamps et al 2016 0 34 0 46 Not estimable 2016
Rogers et al 2017 1 89 2 89 7.3% 0.50 [0.05, 5.42] 2017
Lei et al 2017 4 123 4 126 22.3% 1.02 [0.26, 4.01] 2017 e E—
Total (95% Cl) 599 629 100.0% 0.80 [0.42, 1.52]
Total events 16 22
FP 2 _ . 2 _ _ 12 _ No, I ' } |
Heterogeneity: Tau? = 0.00; Chi* = 2.88, df = 6 (P = 0.82); I = 0% o1 o1 1 ) 100

Test for overall effect: Z = 0.68 (P = 0.50)

Favours Intervention Favours Control

Fig. 7 Pooled effect of cerebral oximetry-guided management on incidence of postoperative myocardial infarction

Experimental Control

Risk Ratio

Risk Ratio

Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl Year M-H, Random, 95% CI
Murkin et al 2007 7 100 8 100 11.5% 0.88 [0.33, 2.32] 2007 I —

Cohn et al 2010 3 18 1 9 2.4% 1.50[0.18, 12.46] 2010

Cowie et al 2014 1 20 0 20 1.1% 3.00[0.13, 69.52] 2014

Colak et al 2015 18 94 19 96 32.7% 0.97 [0.54, 1.73] 2015

Deschamps et al 2016 2 34 3 46 3.6% 0.90[0.16, 5.11] 2016

Rogers et al 2017 22 86 28 92 48.6% 0.84 [0.52, 1.35] 2017

Total (95% Cl) 352 363 100.0% 0.91 [0.65, 1.27]

Total events 53 59

Heterogeneity: Tau? = 0.00; Chi? = 0.93, df = 5 (P = 0.97); I> = 0%
Test for overall effect: Z = 0.55 (P = 0.58)

0.01 0.1 1 10 100
Favours Intervention Favours Control

Fig. 8 Pooled effect of cerebral oximetry-guided management on incidence of postoperative surgical site infection

blood transfusions but this did not reach significance
compared with the control group (Fig. 4; RR, 0.88; 95%
CI, 0.77 to 1.10; P = 0.05; I> = 0%) (Fig. 5).

Four RCTs specifically assessed for postoperative
delirium. There was no significant difference between
groups in the incidence of postoperative delirium (Fig. 6;
RR, 0.90; 95 % CI, 0.63 to 1.29; P = 0.57; I = 0%).

The results of pooled analysis in the eight trials that
reported on myocardial infarction suggested no significant
difference between groups (Fig. 7; RR, 0.80; 95% CI, 0.42
to 1.52; P = 0.50; I? = 0%). Subgroup analysis specific to
cardiac (RR, 0.98; 95% CI, 0.46-2.06; P = 0.95; I* = 0%)
and non-cardiac (RR, 0.68; 95% CI, 0.09 to 5.40; P = 0.72;
I’ = 0%) surgery yielded similar results.

Six RCTs compared the surgical site infection rates
between the groups. We found no difference in the rate of
infection (Fig. 8; RR, 0.91; 95% CI, 0.65 to 1.27; P = 0.58;
I = 0%) between groups. Mortality within 30 days of
surgery was comparable between the intervention and
control group (RR, 0.73; 95% CI, 0.34 to 1.58; P = 0.42; I’
= 0%) (Fig. 9).

Methodologic quality assessment

The electronic supplemental material (ESM) shows the
assessment of study quality (ESM Table) and the funnel

@ Springer

plots are shown in the ESM figures. We found no evidence
of significant asymmetry or publication bias based upon
Begg’s test (for POCD, P = 0.36; for delirium, P = 0.99; for
mortality, P = 0.29; for surgical site infection, P = 0.99).
Overall, 12 studies were classified at moderate risk and two
at high risk of bias.'””° Given these results, further
sensitivity analysis was not performed based upon risk of
bias assessment.

Discussion

This meta-analysis assessed the effects of intraoperative
cerebral oximetry-guided ~management on select
postoperative outcomes. The results of this study suggest
that interventions associated with intraoperative cerebral
oximetry monitoring reduce the incidence of POCD
resulting in higher MMSE scores at one week compared
with a control population. Similarly we found a significant
association with shorter ICU LOS in the oximetry-guided
intervention group. Nevertheless, the results of our pooled
analysis do not suggest a significant difference in hospital
LOS or in the incidence of postoperative delirium,
transfusion, surgical site infection, or myocardial
infarction.
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Ballard et al 2012

Casati et al 2005

Cohn et al 2010

Colak et al 2015

Cowie et al 2014

~ @ @D @ @ |@ |Alocation concealment (selection bias)
D D O O ®| @ slinding of outcome assessment (detection bias)

O 00O 0O OO0 0O 0O O O 0 O ®| 0O -sindingofparticipants and personnel (performance bias)

Deschamps et al 2013

Deschamps et al 2016

-~

Kara et al 2015

ol JL

Lei et al 2017

Mohandas et al 2013

-~
-~

DD DO DO D D ®|® | ncomplete outcome data (attrition bias)

. . . . . . . . . . . . . . . Selective reporting (reporting bias)
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Murkin et al 2007

Rogers et al 2017

Slater et al 2009

~

Vretzakis et al 2013

DD DD ODODODODODOD OO O O ®|® | randomsequence generation (selection bias)

Zogogiannis et al 2011

Fig. 9 Summary of the risk of bias assessment of each study

Others have performed meta-analyses to assess the effect
of cerebral oximetry monitoring on outcomes after cardiac
arrest as well as in extremely low birth weight infants.”*>*
Cournoyer et al.”* included 20 non-randomized studies in a
meta-analysis assessing the effects of cerebral oximetry after
cardiac arrest and concluded that higher regional cerebral
saturation is associated with improved resuscitation
outcomes, especially the return to spontaneous
circulation.* Sorensen et al. concluded that cerebral
oximetry monitoring seems important for predicting
neurologic  complications  associated  with  liver
transplantion.”® Although these prior efforts may provide
insight into the potential interventions that might stem from
the use of cerebral oximetry, it is worth noting that these

populations provided only limited information regarding the
surrogacy of cerebral oximetry in an operative cohort.”~°

Though not meta-analyses, prior studies designed to
illustrate the impact of cerebral oximetry-guided
management  have  qualitatively  evaluated  the
methodology in several populations. At least four
systematic reviews have alluded to the potential benefit
of cerebral oximetry monitoring in the cardiac surgery
population.”>*>78 These reviews concluded that despite a
limited amount of high-level clinical evidence, the majority
of the literature supports the link of cerebral oximetry
monitoring to the prevention of POCD. Indeed, Taillefer
et al. published a systematic review regarding the use of
cerebral oximetry in cardiac surgery, though the authors
included only a single RCT,*® and rightfully concluded that
this topic had not yet been sufficiently investigated with the
rigour necessary to make a more definitive statement
regarding the role of cerebral oximetry in adult cardiac
surgery.”” It is worth mentioning that the review article of
Taillefer et al. was conducted before the publication of the
first RCT in cerebral oximetry.”” Our analysis was
designed to address this limitation through the inclusion
of only RCTs that incorporated interventions guided by the
use of cerebral oximetry. Furthermore, we primarily
investigated the cognitive impact of these interventions.

There are several possible explanations for the
association between cerebral oximetry monitoring during
surgery and reduction in POCD. Certainly, it is logical to
conclude that the reduction in the incidence of low
intraoperative cerebral saturation levels (i.e., indicative of
potential cerebral hypoxia) might lead to a subsequent
reduction in POCD. This is further supported to be a simple
mechanism for benefit by other observational studies. A
more nuanced interpretation is that POCD is likely
secondary to a relative decrease in effective cerebral
perfusion. This may be the downstream result of
inadequate arterial blood pressure, cerebral autoregulation
impairment, or other unidentified hemodynamic indices.’
While our analysis is unable to specifically evaluate each of
these players, cerebral oximetry may represent a useful
final common pathway for interpretation of a low perfusion
state. Therefore, interventions designed to address one (or
all) of these potential variables may provide benefit in
reducing the incidence of POCD.

Although our analysis supports the benefit of cerebral
oximetry-guided management on the incidence of POCD
and a shorter length of ICU stay, it does not show similar
impact among a number of other secondary clinical
outcomes. Observational studies have previously shown
an association between low cerebral oxygen saturation and
postoperative delirium.>®® Others have shown that the
severity or duration of postoperative delirium may
ultimately be related to subsequent POCD.®" While our

@ Springer
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analysis did not confirm these results, it is quite possible
our pooled analysis included too few patients to adequately
assess for postoperative delirium. Furthermore, it is equally
plausible that patients may develop POCD without
showing signs of early postoperative delirium.

There are several potential implications of these study
results. First, they suggest that intraoperative management
guided by cerebral oximetry may have applications in the
postoperative period. Interventions designed to maintain
baseline cerebral perfusion and/or oxygen saturation may
prevent POCD and even reduce the length of ICU stay.
Second, the interventions described among the included
studies are relatively simple and largely include
modifications to ventilation strategies, supplementation of
additional oxygen, or application of vasopressor support.
These do not represent particularly invasive strategies, and
therefore it would not be difficult or particularly
controversial to begin to develop goal-directed cerebral
perfusion protocols based upon the interventions associated
with these included trials.

Several important limitations are associated with our
meta-analysis. First, the results of our primary analysis
were associated with a significant degree of heterogeneity
probably due to the different types of cerebral oximetry-
based interventions as well as variations in the definition of
cerebral oxygen desaturation, the different combinations of
cognitive tests that were used to define POCD among the
studies, varying surgical case mixes, and other potential
differences in individual study-specific patient populations.
A number of strategies were utilized to attempt to
determine the cause of this level of heterogeneity,
including the use of a random effects model, assessment
for publication bias, employment of subgroup analysis, and
risk of bias assessment. Second, the relatively short time
frame that POCD was assessed (i.e., one week
postoperatively) could limit the clinical significance of
our findings; however it is important to note that only two
trials assessed this outcome at three months and both
showed significant reduction of POCD in the intervention
group.**** Another limitation of this meta-analysis is the
small sample size of the included RCTs. This highlights the
need for further large randomized trials designed to
investigate similar intervention strategies surrounding the
use of intraoperative cerebral oximetry. Although our
analysis failed to show a significant association between
the use of cerebral oximetry and other secondary outcomes,
this may in part be a function of either a low overall
incidence of complications or a lack of adequate patient
numbers to detect meaningful differences. After searching
the databases and international registries of RCTs, we
found two completed but not published RCTs
(NCTO02155868, ISRCTN23557269) and an ongoing RCT
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(NCTO01707446). Similar future initiatives are likely to add
substantial clarity to a rapidly evolving field.

In conclusion, intraoperative cerebral oximetry-guided
management is associated with significant reduction in the
incidence of POCD. Providers may consider the
application of cerebral oximetry to inform specific
interventions geared towards minimizing cerebral
desaturation and hypoperfusion. Although further large
high-quality trials are necessary to elucidate which
interventions are most effective and how they directly
impact cognitive dysfunction, our findings suggest that
simple intraoperative maneuvers based upon cerebral
oximetry may provide clear benefit.
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