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Abstract

Purpose During cancer surgery, prostaglandin-mediated

inflammation may promote and activate micrometastatic

disease with a consequent increase in long-term cancer

recurrence. Cyclooxygenase-2 inhibitors, known to have

anti-proliferative properties, may offset such perioperative

perturbation. We investigated the effectiveness of these

agents to minimize inflammatory changes during cancer

surgery.

Methods Following ethics approval, 32 patients who were

to undergo major intracavity cancer surgery were enrolled

in this prospective, randomized, clinical trial. The

treatment group received 400 mg celecoxib

preoperatively followed by five 200 mg 12-hourly doses.

The control group received no anti-inflammatory agents.

Inflammatory and immunomodulatory end points were

measured serially. The primary end points were the

measured plasma and urinary prostaglandin E metabolite

(PGEM) levels 48 hours following surgery. Secondary

endpoints included interleukin levels, leucocyte profile,

and clinical end points.

Results No differences in the 48-hr plasma or urinary

PGEM levels were observed between the celecoxib and

control groups. Linear mixed modeling, used to

accommodate differences in baseline PGEM levels, showed

that celecoxib (cf. control) administration lowered plasma

PGEM over the entire 48-hr period following surgery

(b-coefficient = -0.38 pg.ml-1; 95% confidence interval:

-0.69 to -0.06; P = 0.021). Celecoxib administration also

lowered postoperative pain scores.

Discussion Standard dosing of the cyclooxygenase-2

inhibitor celecoxib slightly reduced perioperative

cyclooxygenase activity during cancer surgery. Given

cyclooxygenase’s role in cancer pathways, we

recommend dose-finding studies be undertaken before

prospective clinical trials are conducted testing the

currently unsubstantiated hypothesis that perioperative

anti-inflammatory administration improves long-term

cancer outcomes. This trial was registered at: Australian

New Zealand Clinical Trial Registry:

ACTRN12615000041550; www.anzctr.org.au
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Résumé

Objectif Pendant les chirurgies du cancer, l’inflammation

médiée par les prostaglandines pourrait favoriser et activer

une maladie micrométastatique avec une augmentation

conséquente de la récurrence du cancer à long terme. Les

inhibiteurs de la cyclo-oxygénase-2, dont on connaı̂t les

propriétés antiprolifératives, pourraient compenser une

telle perturbation périopératoire. Nous avons étudié

l’efficacité de ces agents pour minimiser les changements

inflammatoires pendant les chirurgies du cancer.

Méthode Après avoir obtenu le consentement du Comité

d’éthique, 32 patients devant subir une chirurgie ouverte

majeure pour un cancer ont été enrôlés dans cette étude

clinique prospective et randomisée. Le groupe traitement a

reçu 400 mg de célécoxib avant l’opération, puis cinq

doses de 200 mg aux 12 heures. Le groupe témoin n’a reçu

aucun agent anti-inflammatoire. Les critères d’évaluation

d’inflammation et d’immunomodulation ont été mesurés en

série. Les critères d’évaluation principaux étaient les taux

de métabolites des prostaglandines E (PGEM) mesurés

dans le plasma et dans l’urine 48 h après la chirurgie. Les

critères d’évaluation secondaires comprenaient les taux

d’interleukine, le profil leucocytaire ainsi que des critères

d’évaluation cliniques.

Résultats Aucune différence n’a été observée dans les

taux de PGEM dans le plasma ou l’urine à 48 h entre le

groupe célécoxib et le groupe témoin. Un modèle linéaire

mixte, utilisé pour tenir compte des différences dans les

taux de base de PGEM, a démontré que l’administration de

célécoxib réduisait les PGEM dans le plasma tout au long

de la période de 48 h suivant la chirurgie (coefficient b =

-0,38; intervalle de confiance 95 % : -0,69 à -0,06; P =

0,021). L’administration de célécoxib a également réduit

les scores de douleur postopératoires.

Discussion Une posologie standard de l’inhibiteur de

cyclo-oxygénase 2 qu’est le célécoxib a légèrement réduit

l’activité périopératoire de la cyclo-oxygénase pendant une

chirurgie du cancer. Étant donné le rôle de la

cyclo-oxygénase dans les voies de développement du

cancer, nous recommandons de tester l’hypothèse,

actuellement non vérifiée, selon laquelle l’administration

périopératoire d’anti-inflammatoires améliorerait les

pronostics oncologiques à long terme, avant de réaliser

des études cliniques prospectives. Cette étude est enregistrée

au : Registre australien et néozélandais des études

cliniques : ACTRN12615000041550; www.anzctr.org.au

Perioperative surgical stress up-regulates patients’

adrenergic-inflammatory pathways. These changes are

linked with cancer progression and are potentially

mediated by increasing the susceptibility for activation or

initiation of micrometastatic disease.1–4 This hypothesis is

supported by animal studies5 and retrospective clinical

studies that associated interventions that reduced the

perioperative stress response with improved cancer

outcomes, including spinal anesthesia,6 epidural

analgesia,7 non-steroidal anti-inflammatory drugs

(NSAIDs),8 and beta-blockade.9

Perioperative inflammation increases cyclooxygenase

(COX) activity, thereby elevating prostaglandin (PG) and

cytokine levels.10,11 Prostaglandins promote cancer

processes12 by facilitating tumour growth,13 tumour

invasion,14 and lymphatic-mediated metastasis.15 High

COX-2 expression in lung,16 breast,17 colon,18 and

cervical14 tumours is associated with poor survival. As a

correlation exists between surgical-site and systemic

prostaglandin E (PGE) levels,19 elevated plasma PGE

may be a useful biomarker throughout the perioperative

period of cancer surgery as an indicator of adequate

blockade of inflammatory processes. Prostaglandin E

metabolite (PGEM) - a promising cancer biomarker of

treatment response and recurrence risk20 - is more easily

analyzed than the rapidly metabolized plasma PGE2, but is

untested as a marker of perioperative inflammatory

response in the cancer surgery setting.20,21

Observational studies have reported that perioperatively

administered NSAIDs are associated with improved

disease-free survival.8,22 Potential mechanisms include

prevention of micrometastatic disease activation via

reduced inflammation.2

In animals, COX-2 inhibitors (in contrast to non-

selective COX inhibitors) prevent cancer progression.5,23

Cyclooxygenase-2 inhibitors’ capacity to mitigate surgery-

induced inflammation and specific cancer markers of

immunosuppression requires further study. The present

trial undertook serial measurement of inflammatory

markers (plasma PGEM [pPGEM] and urinary PGEM

[uPGEM]) during the perioperative period of cancer

surgery. Our primary hypothesis was that the selective

COX-2 inhibitor celecoxib would suppress an anticipated

perioperative increase in these inflammatory markers. The

primary endpoints were pPGEM and uPGEM levels 48 hours

following surgery commencement, capturing the period of

peak perioperative inflammatory response.11 Secondary end

points included plasma cytokine concentrations, leucocyte

profile changes, and clinical end points.

Methods

This institutionally approved (13/06, Peter MacCallum

Cancer Centre Human Research Ethics Committee, St.

Andrews Place, Melbourne, Australia, January 2015),

prospectively registered, proof-of-concept mechanistic
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study was conducted with data collection during January to

August 2015 at the Peter MacCallum Cancer Centre,

Melbourne, Australia. Following attainment of written

informed consent, patients were randomized (1:1) to

celecoxib or control (no NSAID) groups on the day of

surgery using the closed double envelope technique

(prepared independently and administered by the

institution’s Biostatistics and Clinical Trials Centre), and

were unblinded throughout the study.

Study criteria and recruitment

Patients more than 18 years of age with a cancer diagnosis

undergoing (non-laparoscopic) intra-abdominal or intra-

thoracic surgery were eligible for this study. Exclusion criteria

included contraindications to celecoxib, acute inflammatory

condition (sepsis, infection), pregnancy or lactation, concurrent

use of oral corticosteroid treatment or NSAID/acetylsalicylic

acid (within a week prior to study entry), presence of a

neuroendocrine tumour, hepatic impairment (aspartate

transaminase[240 l�L-1, alanine transaminase[110 l�L-1),

and/or renal impairment (creatinine[150 lmol�L-1).

Group allocation, dosing, and anesthetic management

A study investigator obtained informed consent and

performed patient registration, group allocation

(randomization), and the collection of baseline

demographic data including exposure to neoadjuvant

(preoperative) chemotherapy (12 weeks prior to surgery).

Patients underwent routine clinical evaluation including a

detailed medical history, clinical examination, standard

preoperative blood testing, and electrocardiography.

Patients randomized to celecoxib received a 400 mg oral

loading dose one hour prior to surgery and subsequently 200

mg (oral) every 12 hours for five doses postoperatively (a total

of six dosing events). The control group received no NSAID

throughout the perioperative period. General anesthesia

was induced with propofol 1.5-2 mg�kg-1 and rocuronium

0.5-0.75 mg�kg-1. The patients were ventilated with

sevoflurane (1.5%-2.2% sevoflurane in a mixture with air/

oxygen: 60/40). Opioid administration (fentanyl or morphine)

was left to the discretion of the treating anesthesiologist (a

non-investigator). Intraoperative steroid medications were

avoided. Local anesthesia infiltration was permitted.

Immune mediators measured and laboratory analyses

Venous blood samples were obtained at baseline

(preoperative) and six-, 24-, and 48-hr following the

commencement of surgery. Samples were analyzed for

markers of inflammation: PGEM, cytokine concentrations

(interleukin [IL]-6, IL-10), and the IL-6/IL-10 ratio.24

Immunosuppression was analyzed by evaluating the

platelet/lymphocyte ratio25 because of its predictive role

in cancer-related mortality. Urinary PGEM was analyzed

from urine samples obtained at baseline and 48-hr

following surgery. All samples were immediately taken

to a dedicated on-site laboratory, centrifuged, and the

plasma frozen (-80�C) until analyzed.

Fig. 1 Study profile
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All laboratory testing was performed on de-identified

samples to ensure blinding of scientists to group allocation.

The pPGEM and uPGEM were measured using a PGEM

enzyme immunoassay kit according to the manufacturer’s

instructions (Cayman Chemical, MI, USA). Cytokine

analysis was performed using the BD Cytometric

Multiplexed Bead-Based Immunoassay (BD Biosciences,

San Jose, CA, USA) in accordance with the manufacturer’s

instructions. Leucocytes were counted using Cell-Dyn

Sapphire (Abbott, IL, USA).

Clinical monitoring and data collection

Clinical review and assessment of patients’ visual analogue

scores (VAS) regarding the perception of static and

dynamic pain were assessed twice daily prior to each

dosing event. Data were compiled pertaining to the

Clavien-Dindo severity grading system of postoperative

complications and the postoperative morbidity survey

(POMS) on postoperative days 5 and 30.26 Data were

analyzed at the study’s conclusion.

Statistical analysis

A pre-trial power calculation was based on a previous

study of anti-inflammatory use in a non-cancer surgical

population that found preoperative celecoxib halved PGE

production.19 Using a two-sided significance level of 5%, it

was calculated that 30 patients would provide 85% power

to detect a 10 pg�mL-1 reduction in pPGEM (from 50

pg�mL-1) at 48 hr after surgery (assuming a standard

deviation of 9 pg�mL-1). Hence, we recruited 32 patients.

All data were tested for normality using the

Kolmogorov-Smirnov test. Normally distributed data are

presented as the mean (SD) and non-normally distributed

data as the median (interquartile range). Where the

Table 1 Baseline patient and surgical characteristics

Control (14) Celecoxib (15)

Comorbidities

Age (yr) 62 (54-72) 60 (52-71)

Gender (Male) 7 12

ASA II/III 9/5 10/5

Smoking (previous 12 weeks) 1 1

Neoadjuvant chemotherapy 6 6

Past History:

- Coronary artery disease 0 0

- Cardiac failure 0 0

- Asthma 1 3

- Diabetes 1 1

Medication:

- ACEI/Angiotensin II

receptor antagonist

6 6

- Diuretic 1 0

- Beta blocker 3 3

Surgery

Surgery, Thoracic/

Laparotomy

6 (3 partial lobectomy, 3 lobectomy),

8 (5 segmental hepatectomy, 2 hemi-hepatectomy, 1

abdominal wall repair)

7 (4 partial lobectomy, 2 lobectomy, 1 pleurodesis),

7 (4 segmental hepatectomy, 2 hemi-hepatectomy, 1

abdominal wall repair)

Duration of surgery (minutes) 145 (112-175) 148 (125-190)

Compliance with treatment

allocation

100% 100%

Postoperative complications

POMS-5 6 4

POMS-30 0 0

Clavien-Dindo I 2 3

Clavien-Dindo II 5 4

Clavien-Dindo III/IV 1 0

Values are expressed as median (IQR) or as numbers for categorical variables. ACEI = angiotensin-converting enzyme inhibitor; ASA =

American Society of Anesthesiologists; POMS = postoperative morbidity survey
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assumption of normal distribution was confirmed, an

independent two-sample t-test was used. Otherwise a

Mann-Whitney U test was performed. Categorical data

were analyzed using the two-tailed Fisher’s exact test.

Safety end points and complications (RIFLE-classified

kidney injury) are reported as frequency. As this study has

a proof-of-concept design, analysis was planned per

protocol if patients were compliant with at least five of

the six dosing events to which they were randomized.

In addition to the planned analysis of the primary

endpoint using a univariate analysis, post hoc linear mixed

models using unstructured covariance for repeated measures

and random effects were used to assess the effect of

celecoxib on PGEM (plasma and urinary concentrations,

primary end points), cytokine concentrations, and leucocyte

profiles (secondary endpoints) over the entire 48-hr

perioperative period after adjusting for the fixed effect of

biologically plausible confounding. Predictors that were

entered into the fixed effects portion of the model included

age, sex, duration of operation, site of operation (abdominal

vs thoracic), use of neoadjuvant chemotherapy, beta-

blockers, and an interaction term between celecoxib and

the use of neoadjuvant chemotherapy. Predictors were then

removed in a stepwise fashion starting with the predictors

that had the largest P value to obtain a parsimonious model.

Covariates were no longer removed if the reduced model was

associated with a larger Schwarz’s Bayesian Criterion (BIC).

All statistical analyses were conducted using SPSS for

Windows (version 23, IBM, Armonk, NY, USA), and P\
0.05 was considered to indicate statistical significance.

Results

The study was stopped following the recruitment and

follow-up (30 days following surgery) of the planned 32

patients. A per-protocol analysis was conducted following

exclusion of three patients (Fig. 1). One patient in the

control group suffered a pain crisis and was assessed by the

treating team as requiring NSAID treatment; one patient’s

(celecoxib group) surgical procedure was abandoned after

induction of general anesthesia due to disease progression;

and one patient’s (celecoxib group) tumour was found to be

neuroendocrine in origin after initiation of surgery. The

two study groups were similar in baseline characteristics

and perioperative parameters (Table 1).

Cyclooxygenase activity and PGEM production

By the 48-hr time point, there were no significant

differences between the celecoxib and control groups

regarding the unadjusted mean pPGEM concentration

(21.5 vs 22.6 pg�mL-1; P = 0.65, Fig. 2) or the uPGEM

concentration (8.4 vs 9.9 pg�mL-1; P = 0.66) (Table 2).

The six-hour mean pPGEM concentration, however, was

lower in the celecoxib group (22.7 vs 28.8 pg�mL-1; P =

0.02).

A linear mixed model was utilized to account for

baseline differences in the PGEM concentrations for the

observations at each time point and to examine the effect of

celecoxib on pPGEM over the entire 48-hr perioperative

period. It demonstrated that celecoxib lowered the pPGEM

concentrations over the 48-hr perioperative period

compared with that of the control group (b-coefficient =

-0.38 pg�mL-1; 95% confidence interval [CI]: -0.69 to

-0.06 pg�mL-1; P = 0.02, Table 3).

Factors including age, sex, surgical site, and duration of

the operation were not significantly associated with changes

in pPGEM concentrations and so were removed during

the modeling process. Further removal of neoadjuvant

chemotherapy (P = 0.62) from the final linear mixed model

resulted in an inferior model according to the information

criterion (BIC = 320), but use of celecoxib remained

significantly associated with reduced pPGEM concentration

compared with that of the control group. In a separate model,

no covariates (including celecoxib) were associated with

changes in uPGEM concentration.

Cytokines and immune cell profile

Markers of an inflammatory response to surgery

(thrombocytosis, lymphopenia, elevated IL-6/IL-10 ratio)

were elevated in the control group (cf. celecoxib) at

specific time points (Table 2). During linear mixed

model testing, however, celecoxib prevented only the

thrombocytosis that was observed in the control group

(b-coefficient = 35.4 9 109�L-1; 95% CI: -70 to -0.3 9

109�L-1; P = 0.049), after adjusting for use of neoadjuvant

chemotherapy (P = 0.11). The use of celecoxib was not

significantly associated with changes in IL-6 (P = 0.669),

Fig. 2 Perioperative plasma prostaglandin E metabolite (pPGEM)

concentrations in patients receiving celecoxib compared with control.

Data are presented as the mean with 95% confidence interval
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Table 2 Prostaglandin and interleukin concentrations, leucocyte numbers, immune cell ratios

Control group

(n = 14)

Celecoxib group

(n = 15)

Difference

(95% CI)

P-

Value

pPGEM (pg�mL-1)

- Baseline 26.0 (8.1) 21.3 (5.7) 4.7 (-0.8 to 10.1) 0.09

- 6 hr 28.8 (4.1) 22.7 (8.3) 6.1 (0.9 to 11.2) 0.02

- 24 hr 21.4 (8.6) 20.5 (6.6) 0.9 (-5.0 to 6.8) 0.75

- 48 hr 22.6 (5.8) 21.5 (7.1) 0.1 (-3.8 to 6.0) 0.65

uPGEM (pg�mL-1)

- Baseline 12.4 (11.9) 12.3 (9.9) 0.1 (-8.3 to 8.5) 0.98

- 48 hr 9.9 (8.2) 8.4 (9.9) 1.5 (-5.4 to 8.4) 0.66

Interleukin-6 (pg�mL-1)

- Baseline 89 [1-480] 86 [1-1156] 3 (-508 to 202) 0.62

- 6 hr 31943 [17295-82779] 49611 [15031-71639] -17668 (-37819 to 27548) 0.72

- 24 hr 56292 [2394-206206] 39927 [24854-79994] 16365 (-30746 to 119322) 0.97

- 48 hr 19193 [6328-88941] 16122 [7019-53256] 3071 (-13260 to 36018) 0.71

Interleukin-10 (pg�mL-1)

- Baseline 5 [1-91] 66 [20-122] -61 (0 to 70) 0.06

- 6 hr 696 [170-881] 401 [170-6095] 295 (-4944 to 473) 0.83

- 24 hr 133 [77-667] 733 ([233-1822] -600 (-937 to 26) 0.06

- 48 hr 109 [8-285] 148 [62-576] -53 (-349 to 65) 0.27

Interleukin-6:10

- Baseline 4 [1-72] 1 [0-29] 3 (-16 to 23) 0.35

- 6 hr 69 [57-160] 56 [17-136] 13 (-42 to 67) 0.25

- 24 hr 204 [113-851] 76 [34-340] 128 (6 to 508) 0.04

- 48 hr 363 [56-1966] 113 [45-1067] 250 (-69 to 581) 0.25

White Cell Count (x109�L-1)

- Baseline 5.8 [4.6-7.8] 6.9 [5.1-7.4] -1.1 (-1.7 to 1.1) 0.80

- 6 hr 11.1 [8.4-11.8] 10.6 [8.9-11.7] 0.5 (-2.0 to 2.1) 0.78

- 24 hr 11.0 [7.2-12.9] 8.5 [7.3-11.2] 2.5 (-1.0 to 4.1) 0.41

- 48 hr 8.1 [6.6-11.4] 7.8 [5.5-9.4] 0.3 (-1.2 to 3.1) 0.44

Lymphocytes (x109�L-1)

- Baseline 1.4 [0.9-2.0] 1.5 [1.1-2.3] -0.2 (-0.8 to 0.4) 0.46

- 6 hr 0.8 [0.7-1.3] 1.6 [1.1-2.3] -0.8 (-1.2 to -0.1) 0.04

- 24 hr 1.2 [0.9-1.7] 1.2 [0.8-1.5] 0.1 (-0.3 to 0.4) 0.83

- 48 hr 1.5 [0.8-1.9] 1.2 [0.8-1.8] 0.3 (-0.5 to 0.6) 0.92

Platelets (x109�L-1)

- Baseline 224 [195-238] 209 [189-256] 15 (-47 to 33) 0.99

- 6 hr 296 [198-314] 210 [172-267] 86 (-20 to 119) 0.12

- 24 hr 274 [186-296] 186 [140-209] 88 (28 to 122) 0.01

- 48 hr 225 [175-273] 165 [123-207] 60 (-1 to 84) 0.05

PLR

- Baseline 177 [104-248] 135 [83-235] 42 (-48 to 98) 0.50

- 6 hr 249 [222-446] 123 [81-222] 126 (61 to 256) 0.01

- 24 hr 221 [158-329] 155 [122-177] 66 (-4 to 154) 0.06

- 48 hr 186 [135-235] 131 [81-207] 55 (-33 to 98) 0.18

pPGEM and uPGEM are expressed as mean (standard deviation), all other data are presented as median [interquartile range]. CI = confidence

interval; PLR = platelet/lymphocyte ratio; pPGEM = plasma prostaglandin-E metabolite; uPGEM = urinary prostaglandin-E metabolite
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IL-10 (P = 0.42), white blood cell count (P = 0.62),

lymphocyte count (P = 0.94), or the platelet/lymphocyte

ratio (P = 0.07).

Twelve patients (six controls, six with celecoxib

treatment) were given neoadjuvant chemotherapy, which

was associated with a lower lymphocyte count (b-

coefficient = -0.53 9 109�L-1; 95% CI: -0.92 to -0.15

9 109�L-1; P = 0.01) and a higher platelet/lymphocyte

ratio (b-coefficient = 126; 95% CI: 83 to 169; P = 0.001).

Pain and clinical outcomes

Celecoxib resulted in significantly lower static (rest) and

dynamic (movement) VAS pain scores at 48 hr following

surgery (Fig. 3). The POMS at postoperative days 5 and 30

(POMS-5 and POMS-30, respectively) did not differ

between the two groups (Table 1). One control patient

developed sepsis necessitating inotropic supportive care

following surgery. No postoperative mortality occurred.

Discussion

When compared with no NSAID administration,

perioperative dosing of the selective COX-2 inhibitor

celecoxib resulted in a slight reduction (pPGEM) in COX

activity throughout the first 48 hr of the perioperative

period following cancer surgery, although there was no

difference between the two groups regarding the uPGEM

concentration. Most of the difference in pPGEM between

the groups was seen during the early perioperative phase.

The clinical significance of such a small difference in a

surrogate marker of inflammation is currently unknown.

The importance of prostaglandins in cancer

pathophysiology13,15 and progression14,16 has led to the

use of PGEM as a cancer biomarker.27,28 As unregulated

COX activity during cancer surgery has been hypothesized

to affect patients’ long-term cancer outcomes,8 our study

has shown that pPGEM can be measured and is slightly

inhibited by celecoxib perioperatively.

The role of celecoxib as an adjunctive aid to

chemotherapy has been demonstrated in non-surgical

settings29 and was found to be most efficacious for

obtaining complete PGEM suppression at high (800-1600

mg daily)30,31 dosage.32 In the present study, we observed

only modest suppression of COX activity by celecoxib.

This may have been due to neoadjuvant chemotherapy’s

dysregulation of the post-transcriptional modification

of COX-2 messenger RNA,33 limiting celecoxib’s

effectiveness.20 Alternatively, celecoxib either does not

achieve profound PGEM suppression perioperatively or can

do so only at a higher dosage.

Fig. 3 Perioperative visual

analogue scores. Celecoxib

improved patients’ twice-daily

report of static (3a) and dynamic

(3b) pain scores. Data are

presented as the mean with 95%

confidence interval. VAS =

visual analogue score; *P\
0.05, #P\ 0.01

Table 3 Linear mixed model showing the predictors of pPGEM

concentrations during the entire 48-hr perioperative period

Variable b-coefficient (95% CI) P-value

Time (reference to baseline)

- 6 hr 0.21 (-0.80 to 0.49) 0.15

- 24 hr -0.27 (-0.55 to 0.03) 0.07

- 48 hr -0.16 (-0.35 to 0.14) 0.31

Celecoxib treatment

- No Reference group

- Yes -0.38 (-0.70 to -0.06) 0.02

Neoadjuvant chemotherapy exposure

- No Reference group

- Yes -0.08 (-0.40 to 0.24) 0.62

CI = confidence interval; pPGEM = plasma prostaglandin-E

metabolite. Sex, age, surgical site, duration of operation, use of

beta-blockers were removed during the modeling process without

increasing the Schwarz’s Bayesian Criterion (BIC). The BIC of the

final model was 298. A positive b-coefficient indicates a positive

association between each predictor and an elevated pPGEM; celecoxib

treatment was associated with a lower pPGEM over the entire 48-hr

perioperative period
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To characterize celecoxib’s effectiveness as a

perioperative anti-inflammatory agent more broadly,

inflammatory (IL-6) and ‘anti-inflammatory’ (IL-10)

cytokine concentrations were measured as secondary end

points.34 These cytokines are relevant to cancer processes

through their regulation of T-helper cell differentiation and

natural killer cell activity.2 An elevated IL-6/IL-10 ratio is

associated with excessive inflammatory response24 and

cancer progression.35 Although celecoxib prevented an

elevated IL-6/IL-10 ratio at 24 hr, it did not correlate with

changes in the clinical end points (although our study was

underpowered to assess such an association).

Several studies have reported that altered perioperative

immune function (lymphopenia, elevated platelet/lymphocyte

ratio) is associated with poor cancer survival.25,36 Our study

found that celecoxib prevented thrombocytosis (an acute-

phase response), lymphopenia, and hence an elevation of the

platelet/lymphocyte ratio during theearly perioperative period.

Of interest for future study is whether celecoxib preserves

lymphocyte subpopulations (e.g. natural killer cells), which are

vital anti-cancer effector cells.

As our study’s primary end points were biochemical

surrogates, a considered decision was made not to employ a

placebo-based control. However, the lack of patient

blinding confounds the interpretation of celecoxib’s

improvement in the VAS scores – a secondary endpoint.

In this small proof-of-concept study, the risk of a type I

statistical error remains high, and one should be cautioned

not to over-interpret the study’s findings. Importantly,

although celecoxib slightly reduced a COX biomarker

(pPGEM) and was associated with improved VAS scores,

the study was not powered to detect any improvements in

clinical end points, particularly in reference to cancer

outcomes.

In summary, this study found that standard dosing of the

selective COX-2 anti-inflammatory drug celecoxib

produced slight perioperative inhibition of COX as

assessed by pPGEM levels. Thus, pPGEM may become a

useful biomarker for determining effective COX blockade,

particularly during the perioperative period following

cancer surgery where anti-inflammatory techniques

are postulated to improve patients’ cancer outcomes.

Currently, there is no strong evidence that an anti-

inflammatory perioperative regimen could have an impact

on long-term cancer outcomes. We suggest, then, that

before large-scale trials investigating a potential benefit of

perioperative NSAIDs on improved long-term cancer

outcomes are contemplated, future studies first need to

consider the optimal perioperative dosing strategy for

NSAIDs.
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