
Rev Socionetwork Strat (2016) 10:105-123

An Approach to Security for Unstructured Big Data

Md. Ezazul ISLAM1), Md. Rafiqul ISLAM2) and A B M Shawkat ALI3)

1) Department of Computer Science,

American International University-Bangladesh,

Dhaka, Bangladesh

2) Computer Science and Engineering Discipline, Khulna University,

Khulna, Bangladesh

3) School of Science and Technology, University of Fiji,

Lautoka, Fiji

ezaz.time@gmail.com

dmri1978@gmail.com

ShawkatA@unifiji.ac.fj

Received: 04 January 2016 / Accepted: 15 July 2016

© Springer 2016

Abstract. Security of Big Data is a huge concern. In a broad sense, Big Data

contains two types of data: structured and unstructured. Providing security to

unstructured data is more difficult than providing security to structured data. In

this paper, we have developed an approach to provide adequate security to

unstructured data by considering types of data and their sensitivity levels. We

have reviewed the different analytics methods of Big Data to build nodes of

different types of data. Each type of data has been classified to provide adequate

security and enhance the overhead of the security system. To provide security to

a data node, and a security suite has been designed by incorporating different

security algorithms. Those security algorithms collectively form a security suite

which has been interfaced with the data node. Information on data sensitivity has

been collected through a survey. We have shown through several experiments on

multiple computer systems with varied configurations that data classification

with respect to sensitivity levels enhances the performance of the system. The

experimental results show how and in what amount the designed security suite

reduces overhead and increases security simultaneously.

106 Rev Socionetwork Strat (2016) 10:105-123

Keywords: Big Data, Data security, Data analytics, Unstructured data, Security

suite, Security standard

1 Introduction

The importance of the term Big Data is increasing day by day. However, recent research

on Big Data security is at an initial stage [1]. Researchers and executives of IT-related

organizations and blog writers have suggested different aspects of security by

considering the volume, velocity, and variety of Big Data [2]. However, to our minds,

there is no specific approach or framework to provide security to Big Data. For this

reason we have developed an approach to providing security to Big Data by considering

the different types of data. In the proposed framework the existing standards or

algorithms for different services of security can be integrated to provide security to Big

Data. Our research considers two dimensions of security: volume and variety. Since we

can provide security by considering these two dimensions, velocity is handled by

parallel programming. The volume of Big Data includes different varieties of data such

as structured, semi-structured, and unstructured. In our research, the main goal is to

provide security to unstructured data, which includes text, XML, images, video, and

audio, for example.

The basic motivation of our research is to give an idea of a system that can secure

data with a conventional encryption algorithm that uses minimum overhead. This

research shows that it is better to have a varied group of encryption algorithms

depending on the data types without having to use the strongest encryption. Securing

data with the strongest encryption algorithm uses more overhead than choosing varied

algorithms based on data types.

We have developed an approach to the security of unstructured Big Data by

considering the existing standards or algorithms of security. This approach describes

the analysis of unstructured data using data analytics technologies and by building a

data node of databases, which contains different types of data such as text, XML, e-

mail, images, video, and audio, for example. The authors see this as the next step in

developing a security suite to provide security. The data analytics process can be

conducted using different types of technologies, which will be discussed in Section 3.

After analyzing the different types of data, further analysis classifies the data to get

sensitivity levels according to which security standards or algorithms are selected. The

ratios to classify data according to their sensitivity level are collected from personnel

in various enterprises.

Finally, a scheduling algorithm inside the security suite works as an interface with

the security suite and provides appropriate security to the proper type of data by

Rev Socionetwork Strat (2016) 10:105-123 107

considering the sensitivity level of the data. For multiple system platforms, the

performance of the proposed security suite has been observed and analyzed to decide

how the system interacts with the designed approach. To understand this, numerous

experiments are conducted on several system environments, and the results are

described in the later sections of this research.

 Sections 2 and 3.2 present the literature about Big Data, and include existing

security protocols to provide data security. Section 3 provides in depth knowledge of

our proposed system. Section 3 also describes the sensitivity levels, the security suite,

and the hypothetical model. Section 4 introduces the data sources and how they are

retrieved, an analysis of the result, and a discussion on the analysis with respect to the

hypothesis. Section 5 concludes this paper.

2 Background study

The increased possibility of theft and data damage is a big concern in unstructured data

because of its huge scalability and less overhead. Therefore, encryption algorithms are

necessary although mostly outdated. Until the 1970s, use of cryptography protocols

(algorithms) were controlled and monitored by government bodies [3].

One of the most renowned and strongest block ciphers is DES. DES was developed

in the early 1970s at IBM with a 64-bit key size and 64 bits of each block with another

16 rounds of 48 bit sub-keys for government purposes. 3DES, which applies DES three

times for different keys, is applied in this research because it is more secure than DES

and is still being used without any major flaws [4]. Data integrity refers to ensuring the

accuracy and consistency throughout the life cycle of data [5]. To maintain data

integrity several hash functions are used which ensure one-way conversion of a

message for integrity. For our experiment, Snefu-256 and Tiger hash functions are used

to maintain data integrity. However, almost all hash functions have some collision

problems [6], [7]. In the case of a brute force attack, Snefu-256 can be broken with

288.5 operations [6] and Tiger can be broken by 262 or 244 operations [7]. Therefore,

from this perspective, Snefu-256 is stronger than Tiger. CCM and HMAC-SHA-1 hash

functions are both used to do two things: maintain integrity and provide authentication.

However, CCM takes more time to execute than HMAC-SHA-1 for most of the cases

in the experiment in this paper [8], so we use HMAC-SHA-1 instead of CCM.

To secure and authenticate XML data and content within XML files, XMLEnc

(XML Encryption), XML DSig (XML Signature), SAML (Security Assertion Markup

Language) and XACML (eXtensible Access Control Markup Language) are used.

XML Encryption is used for XML document privacy. For XML Encryption key

exchange, the key is encrypted with an asymmetric encryption algorithm [9]. XML

108 Rev Socionetwork Strat (2016) 10:105-123

DSig has been used by several Web-based technologies in recent times for signing

digital documents [10], and for signing a document when a certificate authority issues

a certificate that is integrated with a key [11]. SAML is an open standard protocol for

exchanging authentication and authorization data among several parties.

3 Framework of the proposed approach

Big Data is a collection of both structured and unstructured data [12]. In an analysis of

Big Data, we can separate structured data using SQL queries and secure such data. Due

to the several types of data in unstructured data, its security is a difficult task. Since

unstructured data contains data types such as text, XML, e-mail, images, and video, for

example, after the analysis of the data, a node of databases is built to store those data

in that node, which holds different types of data. An algorithm interfaces that data node

with a security suite, which contains several security algorithms to provide security to

the data classified according to data type and sensitivity level. In this research, we

studied several approaches to data analytics processes and proposed an approach to

provide security to unstructured data using the designed security suite. The designed

suite has all the essential services to maintain privacy and integrity with authentication

and non-repudiation. Thus, our approach includes two processes: one applies data

analytics and the other builds a security suite to provide security. The data analytics

phase includes data filtering, clustering, and classification, which help to build a data

node for the databases. The basic modules of the proposed design are shown in Figure

1.

Figure 1. Pictorial view of the proposed approach

3.1 Classification according to sensitivity level

After classifying the data according to their types, different types of data are classified

as sensitive, confidential, and public. Sensitive data are those which are protected by

country or privacy regulations and data protected by sensitivity agreements. On the

other hand, alteration or any unwanted destruction of data that can result in a moderate

level of risk, are examples of confidential data. Data are denoted as public data when

Big Data
Data

Classification

Data node of

Databases

Security suite

Rev Socionetwork Strat (2016) 10:105-123 109

unauthorized disclosure, destruction, or alteration results occur with little or no risk to

the environment where the data are accessed and stored. Sensitive data are the most

valuable and require the highest level of security. To ensure security to this class of

data, the strongest security standard/algorithms have to be implemented. Each

confidential class of data has a middle level of sensitivity and requires a security

algorithm with a good processing speed when executed and may be less strong than the

protocol used for sensitive data. Public data will be open for all or they can be accessed

with little authentication using only an ID and password. We classify the data according

to sensitivity levels to provide an adequate level of security and enhance the

performance of the system with respect to processing time. We have designed a code-

based scenario for each class of data according to sensitivity as shown in Table 1. Since

Big Data has a huge volume, providing different types of security services to all classes

of data can degrade the processing performance of the targeted system [13]. However,

if data can be further classified according to sensitivity levels, we can provide proper

security services to each required class of data. The security varies according to

classification based on sensitivity level. The major sources of Big Data are accessed by

all (public class) or registered users only. There are several services for data security

implementation, such as digital signatures or password verification schemes for

authentication, cryptographic schemes for confidentiality or privacy, hash functions to

provide data integrity, schemes with MAC (message authentication code) which

provide user authentication as well as integrity of data, and an access control scheme

for providing security according to the access rights of the users to the data. We put

50% of data in the public class, 30% to 40% data in the confidential class and the rest

of the data in the sensitive class. The performance of the security aware system will be

enhanced proportional to 50% since we do not provide security to 50% of data (See

Table 2) or provide normal security with identification and authentication for registered

users. The undefined data (UD) in Tables 2 and Table 3 are related to the public class

of data. For further information about data classification and performance enhancement,

users should refer to M. R. Islam et al. [13].

Table 1. Classes of sensitivity

Any type of Data
Sensitive Confidential Public

01 02 03

Figure 2 represents all interactions among the modules of the whole system. After

detecting data types and applying the proper sensitivity level according to the type, data

are stored in the Data Node. An Interface Algorithm places requests to the security suite

110 Rev Socionetwork Strat (2016) 10:105-123

to apply the proper security protocol based on the Data Type and Sensitivity Level for

the data available in the Data Node.

3.2 Security suite

Required and adequate security is provided by our security suite which is included in

our newly designed approach. The basic goal of the security suite is to reduce execution

time while providing adequate security to the structured data. The suite has four parts

related to security issues: the first part is for identification and authentication and

includes a digital signature scheme or password verification scheme; the second part is

used for confidentiality, which contains encryption and decryption algorithms; the third

part is for integrity and includes the hash functions, and the fourth and the last part is

for integrity and authentication, which includes MAC schemes and access control

schemes. Each of the sections is further divided into three sections which represent the

three classes of data sensitivity. There is a scheduling algorithm which decides and

activates appropriate security services from the selected section and provides adequate

security according to the sensitivity level and data type. A detailed view of security

suite is shown in Figure 2.

Figure 2. View of data node and security suite

In the design of the security suite, a mask/code is used for each service, such as CS,

HF, and MC for privacy, integrity, and authenticity with integrity, respectively. To

provide security to the data, the system accesses the mask/code and chooses an

algorithm from the security suite based on the mask/code. For example, for the data

with code TXCS01 (see Table 3), the algorithm chooses 3DES to provide cryptographic

service to the data (See Table 3). We consider standards or algorithms of the different

services according to the sensitivity levels of each type of data. For example, to

maintain the privacy of text data in the sensitive class, we use 3DES. Table 2 shows the

Interface

Algorithm

Security

Suite

Data Node

 XML Text E-mail

01

02

03

01

02

03

01

02

03

Rev Socionetwork Strat (2016) 10:105-123 111

standards or algorithms for the main three services: privacy, integrity, and integrity

with authentication. To secure text type data, the Diffie-Hellman key exchange scheme

or digital certificates can be used to solve the key management problem. X.509, a

standard, can be used as a digital certificate, for example.

Table 2. Security services and related algorithms

Service Standard or algorithm for each class of data

 01 02 03

Privacy 3DES DES UD

Integrity Snefru-256 Tiger UD

Authenticity and integrity CCM HMAC-SHA-1 UD

Table 3. Considered algorithms for text data

Type code Service code Sensitivity code Algorithm

TX

CS

01 3DES

02 DES

03 UD

HF

01 Snefru-256

02 Tiger

03 UD

MC

01 CCM

02 HMAC-SHA-1

03 UD

E-mail is one of the most widely used internet services. Pretty Good Privacy (PGP)

is the most commonly used standard for available cryptosystem algorithms. PGP

includes authentication and confidentiality of the message both along with the key

management. S/MIME (Secure/ Multipurpose Internet Mail Extensions) is a standard

for security enhancement to MIME email. Cryptographic algorithms, digital signature

and hash function provide integrity, authentication, and non-repudiation. PGP creates

a random session key and is encrypted using the recipient’s public key. The encrypted

key is added to the encrypted message. In S/MIME Diffie-Hellman, a key agreement

method is used for key exchange. Alternatively, digital certificates are used in both PGP

and S/MIME for key management. However, differences exist in the key management

models used by PGP and S/MIME to establish trust using digital certificates [14]. The

security standards to provide security to e-mail messages are shown in Table 4.

XML Digital Signature (XML DSig) is used to provide integrity of the message,

authentication, and non-repudiation. In our proposed system mask/code is used for

services such as EC, DS, AC, and AP, in which each mask/code respectively refers to

112 Rev Socionetwork Strat (2016) 10:105-123

encryption, a digital signature, authentication, and access control. It may be used to sign

XML resources and library resources such as JPEG files. XML Encryption (XML Enc.)

is used to maintain confidentiality or privacy of the document. XML Enc. allows the

encryption of selected parts of an XML document or the entire document. Both XML

DSig and XML Enc define how to apply well established digital signatures and

encryption algorithms such as DSS and 3DES [15]. SAML (Security Assertion Markup

Language) is used to provide authentication, attributes, and authorization information.

XACML (eXtensible Access Control Markup Language) is used to define access

control polices in XML [16]. XML key management specification (XKMS) is a

protocol proposed as a standard maintained by the W3C. It defines a way to register the

public keys and distribution of keys used by the XML_SIG specification. XMLMS has

two parts: the XML key registration specification (X_KRSS) and the XML key

information service specification (X-KISS). To register public keys, X-KRSS is used

and X-KISS is used to resolve the keys provided in an XML signature [17]. The security

can be given to XML documents using the standards shown in Table 5. In Table 4, the

service code is common and in Table 5, the sensitivity code is common and is shown

as XX.

For multimedia content, a mask/code for the services of encryption and

authentication, respectively, are short coded as EC and AT in the designed security

suite. Vulnerability of copyright multimedia content, however, arises due to copying

and content modification. Therefore, the protection and authentication of its content are

significant [18]. Generally, digital water marking is a widely used technique to solve

copyright protection problems of multimedia content in a network environment [19].

There are many applications available for watermarking. We use VHA (Video Hosting

Authentication) for authentication purposes [20]. H.264 is the most commonly used

video coding method and it has been extended to allow scalable video coding known

as H.264/SVC [18], [21]. Encryption is used to maintain the privacy of the video

content. Naïve encryption is an approach to encrypting the multimedia content. Naïve

denotes AES in a cipher feedback mode [21]. T. Stutz and A Uhl showed that MPV

(Message Privacy for Video) has the highest level of security. The MP-secure

encryption scheme is an AES algorithm in a secure mode [19]. For these reasons, we

have chosen VHA for authentication, Naïve encryption for confidential multimedia

data, and MPV to encrypt sensitive multimedia content. Multimedia Internet Keying

(MIKEY) [22] is designed to solve the key management problem for securing

multimedia data. MIKEY uses a pre-shared key, public key encryption, the Diffie-

Hellman (DH) key exchange, HMAC, authenticated DH, and reversed RSA to set up a

common secret key for all communication scenarios. Detail about this key management

scheme can be found in [18].

When designing the mask/code naming within the security suite, a two-character

code is defined instead of one character for the sake of consistency and for similarity.

Rev Socionetwork Strat (2016) 10:105-123 113

Table 4. Algorithms for text data

Data type
Service

code
Sensitivity code Standards

EM

XX 01 S/MIME

XX 02 OpenPGP

XX 03 UD

Table 5. Algorithms for XML

Data Type Service code Sensitivity code Algorithm

XM

EC XX XML Enc

DS XX XML DSig

AC XX SAML

AP XX XACML

Table 6. Algorithms for multimedia data

Data type Service code Sensitivity code Standards

MD
EC

01 MPV

02 Naïve

AT XX VHA (auth)

3.3 Performance analysis – a hypothesis

Let Pk be the probability of data in kth class where k = 1, 2, 3 (in our consideration).

Therefore, Pk refers to the probability of data with k number of sensitivity levels. Let S

denote the security suite for different types of security services, which include standards

and algorithms related to each class of data. Let O be a function for overhead

(processing time, memory used for the algorithms) of the security. If O (S) =1, the suite

takes the full overhead needed. Let Vk be the value needed for the security of the data

in kth class. V1 =1, for the data in sensitive class because we have to use almost all the

services. V2 = 0.6 to provide security to the data in the confidential class even though

all the services may not be required. For the public data, V3 = 0.1. O(S) is then computed

as follows:

O(S) = V1P1+V2P2+V3P3

 = 1×0.3 + 0.6×0.23 + 0.1×0.47 (1)

 = 0.3 + 0.138 + 0.047

O(S) = 0.485 ≈ 0.5

O(S) = 0.5. Therefore, 0.5 is needed for the overhead of the security suite. Since Big

Data has big volume, this is a huge benefit in term of the performance of the system.

114 Rev Socionetwork Strat (2016) 10:105-123

To study the sensitivity issue, we have sent a survey to several organizations in

Bangladesh and found the following scenario.

Table 7. Data of several organizations

Type of

organization

Sensitive

(%)

Confidential

(%)

Public

(%)
Overhead

Saving

(%)

Educational 20 25 55 0.405 59.5

Health care 65 20 15 0.785 21.5

Research 25 70 5 0.675 32.5

Real Estate 55 25 20 0.72 28

Software

developer
40 45 15 0.685 31.5

Financial/Bank 55 25 20 0.725 27.5

Average 43.34 35 21.66 0.66 44

From Table 7 we can see that the health care organization has the highest percentage

of sensitive data. If we provide security to the health care organization, we can save

21.5% overhead. On the other hand, the educational institution can save 59.5% system

overhead when we provide security according to our security suite. Considering all six

organizations, we can save 44% of system overhead by providing security according to

the proposed security suite.

4 Data source, experimental results, and analysis

This section includes a description of how varied data are retrieved from various

sources with some of the packages of the programming language used to conduct the

data retrieval and storage. The next section contains the detailed results of all of the

experiments and the following section is the analysis of those results.

4.1 Data source and retrieval

Among the various sources of online data, we have chosen Wikipedia data dump and

Google search API for further analysis. They have a huge collection of image and text

data used for non-profit usage. Both the Wikipedia and Google searches have separate

data retrieval APIs that help to communicate with each of the servers’ data service.

Data retrieval from the above mentioned sources has been conducted with the help

of Java programming language. Java supports multiple packages for visiting various

URLs for data, executing third party APIs, parsing HTML, reading images, reading text,

Rev Socionetwork Strat (2016) 10:105-123 115

deciding sensitivity levels and storing data into a MongoDB database. Data is dumped

into a MongoDB database by the Java programming with some metadata that will be

helpful during data type identification.

MongoDB is a NoSQL database management system that facilitates data storage and

retrieval without any SQL query. Another merit of MongoDB is that it has no fixed

table schema, which helps store data that have no fixed structure or schema.

Unstructured data has no fixed schema.

Among numerous data sources, we have chosen Wikipedia and Google search APIs

for experimental use. For example, the below mentioned URL is a Wikipedia API

access function that helps to pass various parameters to the Wikipedia server to

communicate and read desired types of data according to the requirements of the data

requesting client.

For our experiment, we have used Java version j2se 1.7 to access various sources of

data. Using the below mentioned links through the Java library we have downloaded

text and images simultaneously from the Wikipedia server. Java communicates to the

Wikipedia server, reads the response from the server, parses the response in XML

format, and downloads the various types of data from the sources online. When

conducting the experiments, the total size of the entire data is approximately 1024

megabytes.

http://en.wikipedia.org/w/api.php?action=query&list=allimages&aiprop=url&form

at=xml&ailimit=100&aifrom=Bangladesh

http://en.wikipedia.org/w/api.php?action=query&list=text&aiprop=url&format=x

ml&ailimit=100&aifrom=Bangladesh

http://ajax.googleapis.com/ajax/services/search/news?v=1.0&rsz=5&as_sitesearch

=bdnews24.com&q=Bangladesh

http://ajax.googleapis.com/ajax/services/search/news?v=1.0&rsz=5&as_sitesearch

=prothom-alo.com&q=Bangladesh

The above mentioned Google API link is used to access data using the Google Search

API, which requires many parameters to signal the server about its desired data.

For the above links to download data using Java, we need several packages of the

Java library. These packages are described in Figure 3:

116 Rev Socionetwork Strat (2016) 10:105-123

javax.xml for parsing server response in XML format

org.w3c.dom for traversing through XML nodes

java.io for reading/writing text and images separately

java.awt.image For rendering images

Figure 3. Required Java packages and their purpose

To retrieve data from various sources we follow the following steps.

Search data > read data > analyze metadata > decide sensitivity > store into

MongoDB

Through the help of the Java library and the Wikipedia or Google Search API, the

data chunks are read on the Web along with other data (metadata), and then from those

metadata, the data types are decided, such as whether the file is a text or an image, or

XML. After deciding the data types from their extension or meta- tags, a random value

is generated for the sensitivity level of each of the files whether it is a text, image or

XML. Data type does not have to be decided at this point, but it is done by reading the

extension of each of the files when downloading, which is easy. The data sensitivity

level is assigned randomly. These random values are generated with the help of Java

API. The sensitivity level is assigned randomly and is assigned by the user or manually

set. Finally, after the data types and sensitivity levels are assigned in each of the

executions of the Java application, each of the files is stored into a MongoDB data node.

MongoDB can store and manage unstructured data. NoSQL stands for Not Only

SQL, so data can be accessed without even conventional SQL. Unstructured data has

no fixed type of data. The key mechanism behind this is MongoDB's ability to store

data with a key value pair, so that the data do not require any fixed table schema.

MongoDB stores data in a JSON-like format. That format is known as BSON. World-

renowned users of MongoDB are eBay, Foursquare, and The New York Times, for

example. For our experiment, data are read and stored from/into MongoDB using Java

API library classes. To do this, MongoDB provides a driver for MongoDB to Java

connectivity.

4.2 Experimental results and analysis

For experimental use to prove our hypothesis, we have chosen two different systems

with some different configurations. As our security suite is related to reducing overhead,

we have chosen a variety of systems with varied configurations.

For System 1, the configuration is 1.81 with a GHz CPU with 2 GB memory. We

used a Java library-based script that downloads data from the Web and stores them into

Rev Socionetwork Strat (2016) 10:105-123 117

MongoDB. Another Java-based script reads data from MongoDB and applies the

security suite. Then, one-by-one, the rest of the experimental cases are applied as

described in Tables 9, 10, and 11. Three experiments were conducted for a system with

configuration: 1.81; GHz CPU with 2 GB memory. For System 2, the configuration is:

2.66, GHz Dual Core CPU with 2 GB memory. A Java library-based script downloads

data from Web and stores it into MongoDB. Another Java-based script reads the data

from MongoDB and applies the security suite. Then, one-by-one, the rest of the

experimental cases are applied as described in Tables 12, 13, and 14. Three experiments

for a system with configuration: 2.66, GHz Dual Core CPU with 2 GB memory is also

mentioned.

The table below illustrates how the experiments were performed. The experiments

were done to measure the total execution of the security suite with respect to varied

situations (see: security suite performance against column in below table).

Table 8. Test case to give an idea of all the experiments

 Tables Same time Security Suite Against :

System

1

Table 9 Security Suite VS Apply 3DES on all Data Experiment 1

Table 10 Security Suite VS Sensitivity Level 1 on all Data Experiment 2

Table 11 Security Suite VS Sensitivity Level 2 on all Data Experiment 3

System

2

Table 12 Security Suite VS Apply 3DES on all Data Experiment 1

Table 13 Security Suite VS Sensitivity Level 1 on all Data Experiment 2

Table 14 Security Suite VS Sensitivity Level 2 on all Data Experiment 3

118 Rev Socionetwork Strat (2016) 10:105-123

Table 9. Execution time for System 1 applying security suite and only 3DES

System 1 with 1.81 GHz, 2 GB RAM

Applying Security Suite Applying only 3DES

Code Algorithm Time 1a) Time 2a) Mean Code Algorithm Mean

TXCS01 3DES 407 421 414 TXCSXX 3DES 504

TXCS02 DES 46 36 41 TXCSXX 3DES 409

TXCS03 None 0 0 0 TXCSXX 3DES 525

TXHF01 Snefu-256 4093 4207 4150 TXHFXX 3DES 4750

TXHF02 Tiger 3779 4043 3911 TXHFXX 3DES 4401

TXHF03 None 0 0 0 TXHFXX 3DES 4314

TXMC01 CCM 2968 3031 2999.5 TXMCXX 3DES 4184

TXMC02 HMACSha1 221 126 173.5 TXMCXX 3DES 3359

TXMC03 None 0 0 0 TXMCXX 3DES 3078

XMEXXX XML Enc 1297 1421 1359 XMEXXX 3DES 1632

XMDSXX XML Dsig 1205 1235 1220 XMDSXX 3DES 1226

XMACXX SAML 1066 1252 1159 XMACXX 3DES 1402

XMAPXX XACML 922 1141 1031.5 XMAPXX 3DES 1395

Total 16004 16913 16459 Total 31179

a) Execution Time in Milliseconds

Percentage of improvement of security suite against 3DES, S1P1:S1P1 =

(16458.5*100)/31179 = 52.78 % (2)

Table 10. Execution time for System 1 applying security suite and sensitivity level 1

System 1 with 1.81 GHz, 2 GB RAM

Applying Security Suite Sensitivity Level 1

Code Algorithm Time 1a) Time 2a) Mean Code Algorithm Mean

TXCS01 3DES 407 421 414 TXCS01 3DES 402

TXCS02 DES 46 36 41 TXCS01 3DES 392

TXCS03 None 0 0 0 TXCS01 3DES 250

TXHF01 Snefu-256 4093 4207 4150 TXHF01 Snefu-256 5275

TXHF02 Tiger 3779 4043 3911 TXHF01 Snefu-256 4343

TXHF03 None 0 0 0 TXHF01 Snefu-256 3902

TXMC01 CCM 2968 3031 2999.5 TXMC01 CCM 3000

TXMC02 HMACSha1 221 126 173.5 TXMC01 CCM 3813

TXMC03 None 0 0 0 TXMC01 CCM 3297

XMEXXX XML Enc 1297 1421 1359 XMEX01 XML Enc 1822

XMDSXX XML Dsig 1205 1235 1220 XMDS01 XML Enc 1125

XMACXX SAML 1066 1252 1159 XMAC01 XML Enc 1250

XMAPXX XACML 922 1141 1031.5 XMAP01 XML Enc 1395

Total 16004 16913 16458.5 Total 30266

a) Execution Time in Milliseconds

Percentage of improvement of security suite against sensitivity level 1, S1P2:

S1P2 = (16458.5*100)/30266 = 54.37 % (3)

Rev Socionetwork Strat (2016) 10:105-123 119

Table 11. Execution time for System 1 applying security suite and sensitivity level 2

System 1 with 1.81 GHz, 2 GB RAM

Applying Security Suite Sensitivity 2

Code Algorithm
Time

1a)

Time

2a)
Mean Code Algorithm Mean

TXCS01 3DES 407 421 414 TXCS02 DES 47

TXCS02 DES 46 36 41 TXCS02 DES 62

TXCS03 None 0 0 0 TXCS02 DES 50

TXHF01 Snefu-256 4093 4207 4150 TXHF02 Tiger 4184

TXHF02 Tiger 3779 4043 3911 TXHF02 Tiger 4131

TXHF03 None 0 0 0 TXHF02 Tiger 4172

TXMC01 CCM 2968 3031 2999.5 TXMC02 HMAC-Sha1 187

TXMC02 HMACSha1 221 126 173.5 TXMC02 HMAC-Sha2 142

TXMC03 None 0 0 0 TXMC02 HMAC-Sha3 125

XMEXXX XML Enc 1297 1421 1359 XMEX02 XML Dsig 1367

XMDSXX XML Dsig 1205 1235 1220 XMDS02 XML Dsig 1172

XMACXX SAML 1066 1252 1159 XMAC02 XML Dsig 1140

XMAPXX XACML 922 1141 1031.5 XMAP02 XML Dsig 1257

Total 16004 16913 16458.5 Total 18036

a) Execution Time in Milliseconds

Percentage of improvement of security suite against sensitivity level 2, S1P3:

S1P3 = (16458.5*100)/18036 = 91.25 % (4)

Table 12. Execution time for System 2 applying security suite and only 3DES

System with 2.66 GHz Dual Core CPU, 2 GB RAM

Applying Security Suite Applying only 3DES

Code Algorithm Time 1a) Time 2a) Mean Code Algorithm Mean

TXCS01 3DES 242 263 252.5 TXCSXX 3DES 234

TXCS02 DES 34 31 32.5 TXCSXX 3DES 239

TXCS03 None 0 0 0 TXCSXX 3DES 254

TXHF01 Snefu-256 3499 3809 3654 TXHFXX 3DES 3781

TXHF02 Tiger 3057 3027 3042 TXHFXX 3DES 3512

TXHF03 None 0 0 0 TXHFXX 3DES 4230

TXMC01 CCM 3287 3011 3149 TXMCXX 3DES 4289

TXMC02 HMACSha1 89 87 88 TXMCXX 3DES 3566

TXMC03 None 0 0 0 TXMCXX 3DES 3478

XMEXXX XML Enc 1399 1208 1303.5 XMEXXX 3DES 1438

XMDSXX XML Dsig 651 683 667 XMDSXX 3DES 1322

XMACXX SAML 639 639 639 XMACXX 3DES 1305

XMAPXX XACML 618 638 628 XMAPXX 3DES 1293

Total 13515 13396 13455.5 Total 28941

a) Execution Time in Milliseconds

Percentage of improvement of security suite against 3DES, S2P1:

S2P1 = (13455.5*100)/28941 = 46.49 % (5)

120 Rev Socionetwork Strat (2016) 10:105-123

Table 13. Execution time for System 2 applying security suite and sensitivity level 1

System with 2.66 GHz Dual Core CPU, 2 GB RAM

Applying Security Suite Sensitivity Level : 1

Short

Code
Algorithm

Time

1a)

Time

2a)
Mean

Short

Code
Algorithm Mean

TXCS01 3DES 242 263 252.5 TXCS01 3DES 290

TXCS02 DES 34 31 32.5 TXCS01 3DES 255

TXCS03 None 0 0 0 TXCS01 3DES 220

TXHF01 Snefu-256 3499 3809 3654 TXHF01 Snefu-256 3900

TXHF02 Tiger 3057 3027 3042 TXHF01 Snefu-256 3500

TXHF03 None 0 0 0 TXHF01 Snefu-256 3751

TXMC01 CCM 3287 3011 3149 TXMC01 CCM 3000

TXMC02 HMACSha1 89 87 88 TXMC01 CCM 3312

TXMC03 None 0 0 0 TXMC01 CCM 2985

XMEXXX XML Enc 1399 1208 1303.5 XMEX01 XML Enc 1312

XMDSXX XML Dsig 651 683 667 XMDS01 XML Enc 875

XMACXX SAML 639 639 639 XMAC01 XML Enc 1110

XMAPXX XACML 618 638 628 XMAP01 XML Enc 950

Total 13515 13396 13455.5 Total 25460

a) Execution Time in Milliseconds

Percentage of improvement of security suite against sensitivity level 1, S2P2:

S2P2 = (13455.5*100)/25460 = 52.84 % (6)

Table 14. Execution Time for System 2. Applying security suite and sensitivity level 2

System with 2.66 GHz Dual Core CPU, 2 GB RAM

Applying Security Suite Sensitivity Level : 2

Code Algorithm
Time

1a)
Time 2a) Mean Code Algorithm Mean

TXCS01 3DES 242 263 252.5 TXCS02 DES 41

TXCS02 DES 34 31 32.5 TXCS02 DES 36

TXCS03 None 0 0 0 TXCS02 DES 32

TXHF01 Snefu-256 3499 3809 3654 TXHF02 Tiger 4119

TXHF02 Tiger 3057 3027 3042 TXHF02 Tiger 3100

TXHF03 None 0 0 0 TXHF02 Tiger 3075

TXMC01 CCM 3287 3011 3149 TXMC02 HMACSha1 95

TXMC02 HMACSha1 89 87 88 TXMC02 HMACSha1 89

TXMC03 None 0 0 0 TXMC02 HMACSha1 91

XMEXXX XML Enc 1399 1208 1303.5 XMEX02 XML Dsig 900

XMDSXX XML Dsig 651 683 667 XMDS02 XML Dsig 855

XMACX

X SAML 639 639 639 XMAC02 XML Dsig 796

XMAPXX XACML 618 638 628 XMAP02 XML Dsig 812

Total 13515 13396 13455.5 Total 14041

a) Execution Time in Milliseconds

Rev Socionetwork Strat (2016) 10:105-123 121

Percentage of improvement of security suite against sensitivity level 2, S2P3:

S2P3 = (13455.5*100)/14041 = 95.83 % (7)

4.3 Discussion

Table 15. Time needed for security suite [from equation (2) to equation (7)] :

System Vs 3DES Only(%) Vs Sensitivity 1 (%) Vs Sensitivity 2 (%)

1 52.78 54.37 91.25

2 46.49 52.84 95.83

Average 49.635 % 53.605 % 93.54 %

Figure 4. Percentage of improvement of

security suite for System 1, prepared based on
Table 15

Figure 5. Percentage of improvement of

security suite for System 2, prepared based on
Table 15.

The data in Table 15, Figures 4 and Figure 5 show that in all aspects of the experiments

performed, the security suite designed and proposed in our hypothesis proved to be the

least overhead generating mechanism. In all situations and all platforms, application of

our security took less execution time than applying one strong encryption algorithm on

all data without categorizing them according to their sensitivity.

The execution time of a 1.81 GHz, 2 GB is 52.78% seconds when applying our

designed security suite, against 3DES. On the other hand, the execution time of the

same system 1 is 54.37% when applying sensitivity level 1 on the same data. Again,

the execution time of the same system 1 is 91.25% when applying sensitivity level 2 on

the same amount of data. Therefore, the security suite works the fastest because it takes

the least time to execute for this system configuration.

The execution time of a 2.66 GHz, 2 GB is 46.49% seconds when applying our

designed security suite, against 3DES. On the other execution time of the same system,

52.78 54.37

91.25

0

10

20

30

40

50

60

70

80

90

100

3DES
Only(%)

Sensitivity
1 (%)

Sensitivity
2 (%)

46.49
52.84

95.83

0

10

20

30

40

50

60

70

80

90

100

3DES
Only(%)

Sensitivity
1 (%)

Sensitivity
2 (%)

122 Rev Socionetwork Strat (2016) 10:105-123

1 is 52.84% when applying sensitivity level 1 on the same data. Again, the execution

time of the same system 1 is 95.83% when applying sensitivity level 2 on the same

amount of data. Therefore, the security suite works the fastest because it takes the least

time to execute for this system configuration.

In Figures 4 and 5, the time needed for the security suite is compared by applying

3DES, where sensitivity levels 1 and 2 increase for both systems. This indicates that if

we use 3DES for all data to encrypt the system, it takes the maximum number of

services that increase overhead. But instead of applying 3DES on the entire data, if we

apply our security suite, then it only takes 49% of the time to execute. This proves that

our security suite takes less time than applying the strongest encryption algorithm.

5 Conclusions

To provide adequate security to data and to decrease the overall processing overhead,

our security system has been classified with respect to sensitivity levels. We have

analyzed the system by considering the data of several organizations and have shown

that classification according to sensitivity levels decreases the processing overhead of

the system. In our work, we provided security to the unstructured data using existing

security standards and algorithms according to the data types. A security suite has been

built to provide security to the data. In section 3.3, the hypothesis that the security suite

would take 50% of the total overhead means that we could reduce overhead by 50%.

To gain some accuracy and reliability, data about sensitivity ratios were collected

through survey questionnaires. These survey questionnaires were used to collect data

on sensitivity levels in various organizations and a summary of those sensitivity level

ratios are given in Table 7, which shows that the percentage of sensitive data is 43.34%,

confidential data is 35%, and the percentage of the rest of the public data is 21.66%.

After conducting the experiments on two system platforms with varied configurations,

the average overhead of those two systems are calculated and shown in Table 15 which

shows that the security suite requires approximately 57% of the total overhead. This

means that the amount of overhead used by the security suite is not much further from

the assumed hypothesis stated in Equation (1). The security suite saves 43% of

overhead.

In all aspects of the experiment, we have shown that application of our security suite

works faster than not applying the security suite on the data. Therefore, for any type of

data, our security suite can be used to reduce overhead.

Rev Socionetwork Strat (2016) 10:105-123 123

References

1. Wu, Xindong., Zhu, Xingqua., Wu, Gong-Qin., Ding,Wei.: Data mining with big data. IEEE
Transactions on Knowledge and Data Engineering. 26(1), 97-107, 2014

2. Grolinger, Katarina., Higashino, Wilson A., Tiwari, Abhinav., Capretz, Miriam AM.: Data
management in cloud environments: NoSQL and NewSQL data stores. Journal of Cloud
Computing.2 (22), 1-24, 2013

3. Rivest, Ronald Linn.: MIT Computer Science and Artificial Intelligence Laboratory Web
Page, https://people.csail.mit.edu/rivest/pubs/Riv98e.pdf, 5 October 2015

4. Alanazi, Hamda., Zaidan, B.B., Zaidan, A.A., Jalab, Hamid.A., Shabbir, M., Al-Nabhani,
Yahya.: New Comparative Study Between DES, 3DES and AES within Nine Factors. Journal
of Computing. 2(3), 152-157, 2010

5. Wikipedia Homepage, https://en.wikipedia.org/wiki/Data_integrity, 2 October 2015
6. Merkle, Ralph C.: A fast software one-way hash function. Journal of Cryptology. 3(1), 43-

58, 1990
7. Mendel, Floria., Rijmen, Vincent.: Cryptanalysis of the Tiger Hash Function. Advances in

Cryptology - ASIACRYPT 2007. Springer Berlin Heidelberg, 2007
8. Dai, Wei.: Cryptopp.com Homepage, http://www.cryptopp.com/benchmarks.html, 2 October

2015
9. Oracle Homepage,

http://docs.oracle.com/cd/E39820_01/doc.11121/gateway_docs/content/encryption_encrypt
_settings.html, 2 October 2015

10. Wikipedia Homepage, https://en.wikipedia.org/wiki/XML_Signature, 2 October 2015
11. Eastlake, Donald E., Reagle, Joseph M., Solo, David.: World Wide Web Consortium

Homepage, http://www.w3.org/TR/xmldsig-core, 2 October 2015
12. Demchenko, Yuri., Ngo, Canh., Membrey, Peter.: Architecture Framework and Components

for the Big Data Ecosystem. System and Network Engineering, Graduate school of Sciences,
University of Amsterdam, 2013

13. Islam, Md. Rafiqul., Habiba, Mansura.: Data Intensive Dynamic Scheduling Model and
Algorithm for Cloud Computing Security, Journal of Computers. 9(8), 1796-1808, 2014

14. Tracy, Miles., Jansen, Wayne., Bisker, Scott.: Guidelines on Electronic Mail Security. NIST
Special Publication 800-45, 2007

15. Nordbotten, Nils Agne.: XML and Web Services Security Standards. IEEE Communications
Surveys & Tutorials. 11(3), 4-21, 2009

16. Islam, Mohd Rafiqul., Hasan, Mohd Toufiq., Ashaduzzaman, G. M.: An architecture and a
dynamic scheduling algorithm of grid for providing security for real-time data-intensive
applications. International Journal of Network Management. 21(5), 402-413, 2011

17. Doll, Shelley.: ZDNet Homepage, http://www.zdnet.com/article/xml-security-standards, 2
October 2015

18. Asghar, Mamoona Naveed., Ghanbari, Mohammad.: An Efficient Security System for
CABAC Bin-Strings of H264/SVC. IEEE Transactions on Circuits and Systems for Video
Technology. 23 (3), 425-437, 2013

19. Shi, F., Liu, S., Yao, H., Liu, Y., Zhang, S.: Scalable and credible video watermarking
towards scalable video coding. Springer, 2010

20. Bhowmik, Deepayan.: White Horse eTheses Homepage,
http://etheses.whiterose.ac.uk/1526/3/Bhowmik,_Deepayan.pdf, 16 September 2015

21. Stutz, Thomas., Uhl, Andreas.: A Survey of H264 AVC/SVC Encryption. IEEE Transactions
on Circuits and Systems for Video Technology. 22(3), 325-339, 2012

22. Arkko, J., Carrara, E., Lindholm, F., Naslund, M., Norrman, K.: Internet Engineering Task
Force Homepage, https://tools.ietf.org/html/rfc3830, 2 October 2015

	An Approach to Security for Unstructured Big Data
	Abstract.
	Introduction
	Background study
	Framework of the proposed approach
	Classification according to sensitivity level
	Security suite
	Performance analysis – a hypothesis

	Data source, experimental results, and analysis
	Data source and retrieval
	Experimental results and analysis
	Discussion

	Conclusions
	References

