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Abstract: The machine learning models of multiple linear regression (MLR), support vector regression (SVR), and extreme learning ma-
chine (ELM) and the proposed ELM models of online sequential ELM (OS-ELM) and OS-ELM with forgetting mechanism (FOS-ELM)
are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process. The ELM
model exhibites the best performance compared with the models of MLR and SVR. OS-ELM and FOS-ELM are applied for sequential
learning and model updating. The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500, with the
smallest population mean absolute relative error (MARE) value of 0.058226 for the population. The variable importance analysis reveals
lime weight, initial P content, and hot metal weight as the most important variables for the lime utilization ratio. The lime utilization ratio
increases with the decrease in lime weight and the increases in the initial P content and hot metal weight. A prediction system based on
FOS-ELM is applied in actual industrial production for one month. The hit ratios of the predicted lime utilization ratio in the error ranges
of ±1%, ±3%, and ±5% are 61.16%, 90.63%, and 94.11%, respectively. The coefficient of determination, MARE, and root mean square
error are 0.8670, 0.06823, and 1.4265, respectively. The system exhibits desirable performance for applications in actual industrial pro-
duction.

Keywords: basic  oxygen  furnace  steelmaking; machine  learning; lime  utilization  ratio; dephosphorization; online  sequential  extreme
learning machine; forgetting mechanism

 

 1. Introduction

Basic oxygen furnace (BOF) steelmaking is an important
process  in  integrated  steel  companies.  BOF  steelmaking
mainly functions to control  carbon content  and temperature
and eliminate impurities [1]. As a harmful element for most
steel grades, phosphorus results in the cold brittleness and de-
creased strength of steel products. To reduce the negative in-
fluence  of  phosphorus,  the  phosphorus  contents  must  to  be
reduced to low values as much as possible.

Lime with calcium oxide (CaO) as the main component is
usually  used  as  the  dephosphorization  flux.  The  dicalcium
silicate  (2CaO·SiO2)  in  the  slag  phase  can  easily  combine
with the oxidation product of phosphorus (P2O5) to form the
stable solid solution of  2CaO·SiO2–3CaO·P2O5 [2].  From a
thermodynamic  perspective,  the  dephosphorization  reaction
benefits  from the  low temperature  in  the  early  stage  of  the
BOF steelmaking process  [3–4].  However,  a  low temperat-
ure retards the melting rate of lime particles. Moreover, a lay-
er of 2CaO·SiO2 with a high melting point is generated on the
surface of lime particles, which inhibits the inner part of lime
particles from melting further [5]. As a consequence, a part of

the lime is excluded in the dephosphorization reaction during
the BOF process, which results in a low lime utilization ratio.

The precise prediction of the lime utilization ratio is help-
ful  to  deepen  the  understanding  of  the  melting  behavior  of
lime particles in BOFs, which benefits process optimization.
However, due to the high temperature and complex physico-
chemical behavior, the models based on metallurgical mech-
anisms generally give low prediction accuracies [6–7]. In re-
cent years, the technology of machine learning shows its out-
standing capability in establishing relationships between in-
puts  and  outputs.  The  popularization  of  computers  and  in-
formatization leads to the generation of large amounts of data
daily  in  steelmaking  plants.  Therefore,  data-driven  models
have been established based on machine learning algorithms
for endpoint predictions in hot metal pretreatment [8], BOF
steelmaking  [9–11],  electric-arc  furnace  steelmaking
[12–14],  secondary  refining  [15–17],  continuous  casting
[18–19], and so on. As a part of machine learning, artificial
neural network (ANN) is the core of current hotspots in the
field of artificial intelligence. Among various types of ANNs,
the backpropagation neural network (BPNN), extreme learn-
ing machine (ELM), convolutional neural network, and deep 
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neural  network  (also  called  deep  learning)  are  commonly
used  in  handling  prediction  tasks  in  steelmaking  processes.
The  advantage  of  ELM  lies  in  its  extremely  fast  training
speed. Chen et al. [20] applied ELM to predict the endpoint
temperature  of  vacuum  degassing  refining  and  showed  a
lower  prediction  error  than  the  BPNN  model.  The  ELM
model has an extremely short training time of 0.029 s, and the
model BPNN requires 4.018 s to train.

Most  investigations  on  dephosphorization  behavior  pre-
diction in the BOF steelmaking process focus on the predic-
tion of the endpoint phosphorus content [6,21–24]. Liu et al.
[25]  proposed  a  prediction  model  for  BOF  endpoint  phos-
phorus  and  oxygen  contents  that  combines  principal  com-
ponent  analysis,  genetic  algorithm,  and  BPNN.  Zhou et  al.
[26]  established  a  monotone-constrained  BPNN  model  for
endpoint  phosphorus  content  prediction.  Acosta et  al. [27]
applied  relevance  vector  regression  and  support  vector  re-
gression  (SVR)  optimized  by  a  self-adaptive  differential
evolution algorithm for regression to model the phosphorus
endpoint  content  in  the  BOF steelmaking process  based on
industrial data. All the above models present high prediction
accuracies and low errors, which indicates that the machine
learning  models  can  predict  well  the  endpoint  phosphorus
content  in  BOFs.  However,  the  lime utilization ratio  of  de-
phosphorization  in  BOFs  lacks  research  attention.  In  addi-
tion, most investigations that use machine learning methods
in steelmaking processes focus on the prediction accuracy but
barely give attention on the variable importance [28].

The present article aims to establish a prediction model of
the lime utilization ratio of  dephosphorization in BOFs.  In-
dustrial production data from a steelmaking plant are collec-
ted. Data preprocessing methods, such as variable selection,
abnormal  data  elimination,  and data  normalization,  are  em-
ployed.  Three  basic  machine  learning  models,  including
those of multiple linear regression (MLR), SVR, and the ori-
ginal ELM, are compared. Based on the original ELM model,
the  modified  ELM  models,  that  is,  online  sequential  ELM
(OS-ELM) and the OS-ELM model with forgetting mechan-
ism (FOS-ELM), are proposed to learn from the samples suc-
cessively and incrementally. The optimal number of samples
in  the  validity  term of  the  FOS-ELM model  is  determined,
and the variable importance of the proposed FOS-ELM mod-
el  is  quantized based on the mean impact  value (MIV).  Fi-
nally, the system for the prediction of lime utilization ratio is
developed based on FOS-ELM, and a notably good perform-
ance is achieved.

This paper proposes three innovation points:  (1) Innova-
tion in the research subject. The prediction of lime utilization
ratio during dephosphorization in the BOF process using ma-
chine  learning  models  has  not  been  conducted.  (2)  Innova-
tion  in  research  methodology.  Most  previous  investigations
train  and  test  the  machine  learning  models  using  randomly
divided data.  In  the  present  paper,  the  proposed FOS-ELM
can  deal  with  time  sequential  data,  which  show  a  pattern
close to data generation in steelmaking plants. Furthermore,
outdated samples can be removed in the FOS-ELM model,
which cannot be achieved by other machine learning models.

(3) Innovation in research results. The variable importance is
quantified using the MIV to evaluate the importance of pro-
cess parameters in the lime utilization ratio.

 2. Data preprocessing

Experimental data are collected from Hebei Iron and Steel
Group Co., Ltd. in China for 10 months. The original data-
base  contains  the  BOF  steelmaking  production  data  with
more than 13000 heats. In the database, the steel grades in-
clude  the  Q345  structural  steel,  SWRCH35K  cold  heading
steel, HRB400EC rebar, and so on. As the original data can-
not  be  directly  trained  using  the  machine  learning  models,
data preprocessing is conducted.

MCaO MP

Wm Wlime

The lime utilization ratio of dephosphorization (η, %) in-
dicates the proportion of CaO amount used for dephosphor-
ization to  the  total  CaO amount  in  the  charged lime.  Phos-
phorus  combines  with  CaO to  form 3CaO·P2O5 in  the  slag
phase. As a result, 2 mol P consumes 3 mol CaO. Based on
the mass balance, the lime utilization ratio is calculated using
Eq.  (1),  where  and  refer  to  the  molar  masses  of
CaO and phosphorus  (g⋅mol−1),  respectively;  and 
denote  the  weights  of  hot  metal  and  lime  (t),  respectively;
[%P]i and [%P]end indicate the initial P content of the hot met-
al  and  endpoint  P  contents  of  molten  steel  (wt%),  respect-
ively. The value of 0.88 in Eq. (1) means that the CaO con-
tent of the lime is 88wt%. η is the target output variable of
prediction models and labeled y.

η =
3×MCaOWm ([%P]i− [%P]end)

2×0.88×MPWlime
(1)

Variable  selection  is  conducted  to  remove  unnecessary
variables from the dataset. Among the original 28 variables,
17 key variables are selected manually as input variables, as
listed in Table 1. The 17 variables are labeled x1–x17.

Given  the  harsh  environment  of  steelmaking  plants,  ab-
normal  data  are  inevitably  generated  because  of  sampling
failure, data loss during data transformation and storage, and
so on. In order to eliminate the adverse impact of abnormal
data  on  the  models,  data  cleaning  is  conducted.  Through
manual elimination of abnormal samples, 9575 samples are
retained in this  study.  In addition,  the Pauta criterion is  ap-
plied for further data cleaning [29].

A total  of  5526 samples are retained after  data cleaning.
Compared  with  the  original  dataset,  less  than  half  of  the
samples  can be used for  machine learning model  establish-
ment in this study. Table 1 lists the statistical  results of the
variables, including the output variable of the lime utilization
ratio and 17 input variables. Fig. 1 illustrates the Pearson cor-
relation coefficients  of  the variables,  which display a linear
relationship between them. The red and blue circles indicate
positive and negative correlations, respectively. The sizes of
the  circles  are  related  to  the  absolute  values  of  correlation
coefficients. Among the 17 input variables, scrap weight, ini-
tial P content, and lime and limestone weights have signific-
ant linear relationships with the lime utilization ratio, with the
Pearson correlation coefficient values of −0.56, 0.59, −0.86,
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and 0.54, respectively.
Table 1 reveals that the variables differ in scale and mag-

nitude.  Variables  with  large  magnitudes  are  assigned  high
weights  and  become  important  in  model  training.  Mean-
while,  differences  in  the  magnitude  of  variables  hinder  the
convergence  rate  of  iterative  algorithms  and  increase  the
training time. Data normalization is applied to normalize the
variable values to the range of [0, 1] [28].

 3. Description of the proposed models
 3.1. ELM

The ELM is a single hidden layer feedforward network es-
tablished by Huang et al. in 2004; it randomly selects input
weights and hidden layer biases [30–31]. For a dataset with N
samples,  the  mathematical  model  of  ELM  is  displayed  in
Eq. (2).

y j =
∑Ñ

i=1
βig

(
ωT

i x j+bi

)
, j = 1,2, . . . ,N (2)

x j =
[
x j1, x j2, . . . , x jn

]T
y j =

[
y j1,y j2, . . . ,y jm

]T

Ñ

g
(
ωT

i x j+bi

)
where  and , and
n and m indicate the dimensions of input and output data, re-
spectively;  refers to the number of hidden nodes; β corres-
ponds to the weight connecting the hidden node to the output
node;  denotes  the  output  of  the  hidden  node.
Eq. (2) can be converted into the form of matrix, as shown in
Eq. (3).
Hβ = Y (3)

where

H =


g
(
ωT

1 x1+b1

)
· · · g

(
ωT

Ñ
x1+bÑ

)
...

. . .
...

g
(
ωT

1 xN +b1

)
. . . g

(
ωT

Ñ
xN +bN

)


N×Ñ

(4)

β =


βT

1
...

βT
Ñ


Ñ×m

(5)

Y =


yT

1
...

yT
N


N×m

(6)

H  is called the hidden layer output matrix. Fig. 2 shows
the schematic of the ELM.

Hβ = Y
β̂

Among all the least-squares solutions of , a unique
solution  of  with  the  smallest  norm  is  obtained,  as  dis-
played in Eq. (7).

β̂ =
(
HTH

)−1
HTY (7)

ELM  exhibits  an  extremely  higher  learning  speed  com-
pared with other algorithms, such as BPNN. This property is
attributed  to  the  following  reasons.  First,  the  input  weights
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Fig. 1.    Pearson correlation coefficients of the variables.

 

Table 1.    Statistical results on the variables after data cleaning

Variable Label Minimum Maximum Mean Standard deviation
η / % y 3.82 23.41 11.84 3.88
Scrap weight / t x1 12.0 50.0 27.8 7.6
Hot metal weight / t x2 108.0 140.0 124.0 5.4
[%Si]i / wt% x3 0.1175 0.5750 0.3401 0.0785
[%S]i / wt% x4 0.0008 0.0607 0.0282 0.0109
[%P]i / wt% x5 0.0802 0.1506 0.1148 0.0120
[%Mn]i / wt% x6 0.0876 0.2845 0.1856 0.0331
Initial temperature / °C x7 1227.0 1449.0 1339.8 37.8
Lime weight / t x8 1.415 6.095 3.469 0.879
Dolomite weight / t x9 0 3.920 1.642 0.762
Limestone weight / t x10 0 3.410 0.770 0.887
Sintered ore weight / t x11 0 4.035 0.801 1.086
Coke weight / t x12 0 1.295 0.239 0.353
Main blowing time / s x13 701.0 977.0 838.7 46.2
Second blowing time / s x14 0 200.0 95.0 35.2
Oxygen consumption amount / m3 x15 4939.0 7073.0 5976.5 365.6
Argon consumption amount / m3 x16 0 194.0 36.5 53.2
Nitrogen consumption amount / m3 x17 0 665.0 192.1 157.8
Note: [%Si]i, [%S]i, and [%Mn]i are the initial Si, S, and Mn content of the hot metal, respectively.
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and  hidden  layer  biases  in  ELM  are  randomly  assigned,
which diminishes  the  time needed for  the  iterative  learning
process.  Second,  ELM  can  process  data  in  batches.  Thus,
parallel  and  matrix  calculations  can  efficiently  hasten  the
training process.

 3.2. OS-ELM

β(0) β(1)

In steelmaking plants,  new data are constantly generated
via uninterrupted industrial production. The model needs to
be retrained using past and new data, which consumes a con-
siderable  amount  of  time,  especially  when  the  dataset  in-
creasingly becomes larger. In 2006, Liang et al. [32] estab-
lished  the  OS-ELM.  The  online  sequential  learning  al-
gorithm allows  the  model  to  learn  new data  one  by  one  or
chunk  by  chunk  without  retraining  the  whole  dataset.  Ac-
cording to Eqs. (3) and (7), the new ELM model can be ex-
pressed as Eqs. (8)–(11).  and  indicate the weights of
trained and new models, respectively.[ H0

H1

]
β =

[ Y0

Y1

]
(8)

β(1) =

([ H0

H1

]T [ H0

H1

])−1[ H0

H1

]T [ Y0

Y1

]
=

β(0)+ P1HT
1

(
Y1−H1β

(0)
)

(9)

where

P1 =
(
HT

0 H0+HT
1 H1

)−1
(10)

β(0) =
(
HT

0 H0

)−1
HT

0 Y0 (11)

β(k+1)
Based  on  Eqs.  (9)–(11),  the  recursive  formula  for  (k +

1)th,  can be obtained as displayed in Eq. (12).

β(k+1) = β(k)+ Pk+1HT
k+1

(
Yk+1−Hk+1β

(k)
)

(12)

where

Pk+1 = Pk − Pk HT
k+1

(
I+Hk+1 Pk HT

k+1

)−1
Hk+1 Pk (13)

β(k) Pk

Hk+1 Yk+1

where I is the identity matrix. As the initial ELM model has
been  trained  with  the  past  dataset,  and  are  known
parameters. Only Eqs. (12) and (13) are needed to calculate

 and  from the new dataset.

 3.3. FOS-ELM

In the steelmaking process, the production conditions may
change because of process optimizations, replacement of raw

material suppliers, or other reasons. Thus, the older the data,
the  less  relevant  they  are  to  the  current  production  status.
Outdated data  should  be  removed in  subsequent  model  up-
dates. The OS-ELM can deal with newly added data but can-
not delete the original ones. Zhao et al. [33] proposed a mod-
ified ELM model, named FOS-ELM, that can gradually ex-
pel outdated data. For data with a validity term, the term can
have values of several days, weeks, or months. The s indic-
ates the number of samples within the validity term. Accord-
ing  to  Eqs.  (3)  and  (7),  the  new  ELM  model  can  be  ex-
pressed as Eqs. (14) and (15).

Hk−s+1
...

Hk

β =


Yk−s+1
...

Yk

 (14)

β(k) =




Hk−s+1
...

Hk


T 

Hk−s+1
...

Hk



−1

Hk−s+1
...

Hk


T 

Yk−s+1
...

Yk

 =
Pk


Hk−s+1
...

Hk


T 

Yk−s+1
...

Yk

 (15)

Keep the total number of samples in the training data un-
changed, add a new sample, and delete one original sample
simultaneously. Then, the smallest norm solution can be ex-
pressed as Eq. (16).

β(k+1) = Pk+1


Hk−s+2
...

Hk+1


T 

Yk−s+2
...

Yk+1

 (16)

Pk+1 β(k+1)
Through  matrix  calculations,  the  recursive  formulas  for

 and  can be written as Eqs. (17) and (18), respect-
ively.

Pk+1 = Pk − Pk

[ −Hk−s+1

Hk+1

]T(
I+[ Hk−s+1

Hk+1

]
Pk

[ −Hk−s+1

Hk+1

]T
)−1 [ Hk−s+1

Hk+1

]
Pk (17)

β(k+1) =β(k)+Pk+1

[ −Hk−s+1

Hk+1

]T ([ Yk−s+1

Yk+1

]
−

[ Hk−s+1

Hk+1

]
β(k)

)
(18)

When  the  sample  number k is  smaller  than s − 1,  no
sample is deleted. In this case, FOS-ELM and OS-ELM yield
the same results because all data are valid.

 3.4. Modeling method

Through data preprocessing, 5526 samples are retained for
model training and testing. Fig. 3 shows the division method
of  the  training  and  testing  sets,  which  are  indicated  by  the
green and red grids, respectively. For the comparison of the
three  basic  machine  learning  algorithms,  namely,  MLR,
SVR, and ELM, the prepared dataset is randomly divided in-
to two parts, with 80% of the samples used as the training set
and the remaining 20% as the testing set to verify the predic-
tion accuracy of the model. The same random seed is applied
to  ensure  the  application  of  the  same  division  methods  in

 

…

…

N nodes

input layer

N nodes

hidden layer

1 node

output layer

g(ωiTxj + bi)

~

x1 β1

β2

βN

Y

~

x2

x3

xN

Fig. 2.    Schematic of the extreme learning machine.
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these three models.
In OS-ELM model training, the samples are arranged in a

time sequential order; that is, data are generated one by one
with  time  in  the  steelmaking  plant.  The  first  step  involves
training  the  initial  OS-ELM  model  using  the  first  500
samples. The initial model is used to predict the lime utiliza-
tion ratio of the next heat, and the prediction accuracy can be
obtained. Then, the 501st sample is added to the training set
as new data. The OS-ELM model is retrained based on Eq.
(12).  Afterward,  the  retrained  model  is  used  to  predict  the
result  for  the  502nd  sample.  The  training  process  is  per-
formed repeatedly until the last sample becomes a part of the
testing data.

In the FOS-ELM model, the samples are also arranged in a
time sequential order. The initial FOS-ELM model is estab-
lished  using  a  training  set  containing  500  samples  and  re-
trained when new samples are input. Given the validity term
for the data, when the sample number in the trained model is
larger than the value of s, outdated data are removed to retain
the total number of samples in the training data. In the present
work,  the s is  set  at  a  fixed  value.  During  production,  out-
dated data are deleted from the training set, and new ones are
added to  establish  a  continuously  updated  model.  It  can  be
seen that the operation modes of OS-ELM and FOS-ELM are
appropriate for steelmaking production.

All the models in this study are developed using the Py-
thon programming language. The Scikit-learn [34] package is
used to establish the MLR and SVR models. ELM and OS-
ELM  are  implemented  using  a  Python  package  named  py-
oselm developed by Ferrado [35]. Given the lack of a ready-
made FOS-ELM algorithm for Python, we develop the FOS-
ELM model ourselves based on pyoselm. Modeling is con-
ducted  on  a  Windows  personal  computer  with  Intel(R)
Core(TM)  i5-8400  CPU@2.80  GHz,  NVIDIA(R)  GeForce

GTX(TM) 1050Ti GPU, and 16 GB RAM. Grid searching is
performed to obtain the optimal hyperparameters of the mod-
els [36].

 4. Results and discussion
 4.1. Performance of the different models

To  quantify  the  performance  of  the  three  basic  machine
learning models of MLR, SVR, and ELM in predicting the
lime utilization  ratio,  three  criterions  are  implemented.  The
three  criterions  of  coefficient  of  determination R-squared
(R2),  mean  absolute  relative  error  (MARE),  and  root  mean
square error (RMSE) can be calculated using Eqs. (19)–(21),
respectively.

R2 = 1−
∑N

i=1(Mi−Pi)2∑N
i=1

(
Mi− M̄

)2 (19)

MARE =
1
N

∑N

i=1

∣∣∣∣∣Pi−Mi

Mi

∣∣∣∣∣ (20)

RMSE =

√∑N
i=1(Pi−Mi)2

N
(21)

Mi Pi

M̄
where  and  are the measured and predicted values, re-
spectively.  denotes the mean value of the measured val-
ues. R2 indicates the proportion of variation in the dependent
variable  that  is  predictable  from  the  independent  variable
(range: 0–1). When the value of R2 is close to 1, the model
can explain the variability  of  data  well.  MARE and RMSE
reflect the prediction errors from the point of view of relative
and absolute errors, respectively. A model with good predic-
tion  accuracy  has  small  values  of  MARE  and  RMSE.  The
prediction performances of MLR, SVR, and ELM models are
compared, as shown in Table 2. Among the three models, the
ELM model exhibits the best performance, with the largest R2

value of 0.9486 and the smallest MARE and RMSE values of
0.06221  and  0.8759,  respectively.  Regarding  the  training
time, MLR has the fastest training time of 0.003 s because of
its simple calculation method. The training time of the SVR
model  (0.235 s)  is  about  nine  times  longer  than  that  of  the
ELM model (0.026 s).

Fig. 4 presents the comparisons between the measured and
predicted lime utilization ratios obtained using the three ba-
sic models. Fig. 4(a) shows the arc-shaped distribution of the
predicted η, indicating that the MLR has a low prediction ac-
curacy when the measured value of η deviates from the aver-
age value. It can be seen that the measured and predicted lime
utilization ratios of the ELM model have the best fitting de-
gree, with the R2 of 0.9486.

Fig. 5 illustrates the box plots of the predicted errors for
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Fig. 3.    Division method of training and testing sets.

 

Table  2.     Comparison  of  prediction  performances  of  MLR,
SVR, and ELM models

Model R2 MARE RMSE Training time / s
MLR 0.9028 0.09958 1.2045 0.003
SVR 0.9387 0.07212 0.9567 0.235
ELM 0.9486 0.06221 0.8759 0.026
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the three models. The fluctuation range obtained for the ELM
model is narrower than those of the MLR and SVR models,
indicating  that  the  ELM  model  achieves  the  smallest  pre-
dicted error.
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Fig.  5.     Box  plots  of  the  predicted  errors  of  the  MLR,  SVR,
and ELM models.
 

Fig. 6 displays the distributions of the predicted errors of
the three models. The step size of the predicted error is set to
0.5, and the samples in each numerical range are counted. It
can be seen that  all  the  predicted error  distributions  obey a
Gaussian  distribution.  Among  the  three  models,  the  SVR
model shows a biased error; that is, the predicted error inter-
val with the largest proportion is outside the range of [−0.25,
0.25), and the MLR and ELM models obtain unbiased estim-
ations.

Compared with MLR and SVR models, it is obvious that
ELM  exhibits  the  best  fitting  degree  of  measured  and  pre-
dicted values, the narrowest fluctuation range in predicted er-
rors, and no biased error.

The  ELM  model  with  89  hidden  nodes  and  the  active
function of  sigmoid attains  the  best  prediction performance
through  hyperparameter  optimization  of  grid  search.  These
hyperparameters  are  also  used  for  the  OS-ELM  and  FOS-
ELM  models.  In  the  OS-ELM  model,  the  samples  are  ar-
ranged in a time sequential order. The first 500 samples are
used  for  the  initial  model  training,  and  the  remaining  5026
samples are utilized for sequential learning and model updat-
ing.  The modeling method of  OS-ELM can refer  to Fig.  3.
Every time the OS-ELM model makes a prediction, the pre-
dicted values obtained previously are collected for the calcu-
lation of MARE. Fig. 7 shows the changes in the MARE with
the  number  of  updates.  An unstable  zone is  obtained when
the number of updates is less than 1500. MARE easily fluc-
tuates  when  the  sample  number  is  small.  As  a  data-driven
model, the OS-ELM model needs large amounts of data for
model  training  to  achieve  a  high  prediction  accuracy.  With
the  increase  in  the  sample  number  in  the  training  set,  the
MARE value decreases and tends to be stable. The final cal-
culated MARE, namely population MARE, of the OS-ELM
model is 0.059424.

The FOS-ELM model has a validity term for data. In this
work, s samples  are  assumed to  be  included in  the  validity
term. The s is set to a fixed value. When a new sample is ad-
ded to the training set, one outdated sample will be removed
from the training set to retain the size of the training set. The
range value of s is set to 500 to 5500, with a step size of 500,
to detect its effect on the population MARE. The result is dis-
played  in Table  3.  With  the  increase  in s,  the  population
MARE value decreases first and then increases. The smallest
population MARE value of 0.058226 is obtained when s is
1500,  indicating  that  the  validity  term  containing  1500
samples is optimum for the present dataset to predict the lime
utilization ratio in the BOF steelmaking process. When s is
500 or 1000, the training set is considerably small for an ad-
equate fitting of the FOS-ELM model. When s is equal to or
larger than 2000, the data with poor validity can still be used
for model training, but it will result in a low prediction accur-
acy. When s is larger than 5526, all the samples are valid, and
no data are removed from the training set. At this point, the
population MARE value of the FOS-ELM model is the same
as that of the OS-ELM model, both of which are 0.059424.
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Fig. 4.    Comparisons of the measured and predicted lime utilization ratios obtained using the (a) MLR, (b) SVR, and (c) ELM models..
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Table  3.     Population  MARE values  of  the  FOS-ELM model
with various values of s

Value of s Population MARE
500 0.061728
1000 0.058680
1500 0.058226
2000 0.058237
2500 0.058522
3000 0.058705
3500 0.058955
4000 0.059157
4500 0.059256
5000 0.059363
5500 0.059423
≥5526 0.059424

 

Based  on  the  established  FOS-ELM model,  the  variable
importance is calculated to determine the process parameter
with  the  greatest  effect  on  lime  utilization  ratio  prediction.
The method of MIV is employed [6]. When the value of MIV
is larger than 0, the variable has a positive impact on the lime
utilization ratio. On the contrary, the variable with the value
of MIV smaller than 0 has a negative impact. Fig. 8 shows
the variable importance analysis results for various variables.
The absolute values of MIV, which are sorted by the degree
of importance, are obtained for comparison. The red and blue
bars represent the values of MIV larger and smaller than 0,
respectively. The three most important variables are the lime
weight,  initial  P  content,  and  hot  metal  weight.  The  lime
weight shows a negative impact, which means that the lime
utilization  ratio  increases  with  the  decrease  in  the  lime
weight. The lime utilization ratio increases when the initial P
content and hot metal weight are increased. This result dove-
tails well with the lime utilization ratio calculation formula of
Eq. (1).

The variable importance analysis reveals that the most ef-
fective operation to increase the lime utilization ratio is redu-
cing the amount of  lime added per ton of  hot  metal,  which
means decreasing the lime weight and increasing the hot met-
al weight. When excess lime is charged into the converter, a
portion of it is excluded from the dephosphorization reaction,
resulting in wastage. As shown in Fig. 8, oxygen consump-
tion ranks fifth in terms of the MIV. The increase in oxygen
consumption  enhances  the  stirring  of  the  furnace  bath.  The

kinetic conditions can be improved to promote mass transfer
between the hot metal and slag, which benefits the lime util-
ization efficiency. In recent years, the double slag converter
steelmaking process (DSP) has been increasingly adopted by
steelmaking plants [37]. In DSP, the decarburization slag is
left  in  the  converter  and reused in  the next  heat;  thus,  lime
consumption can be greatly reduced, and the lime utilization
ratio can be enhanced [38].

 4.2. Development  of  a  prediction  system  based  on  the
FOS-ELM model

The good performance of the FOS-ELM model in predict-
ing the lime utilization ratio indicates its viability for imple-
mentation in actual industrial production. In this work, a lime
utilization ratio prediction system for BOFs based on FOS-
ELM is developed. Fig. 9 illustrates the flow chart of the pre-
diction system. The current heat data of BOFs are read using
a programmable logic controller and stored in the database as
a  new  sample.  Then,  whether  all  variables  in  the  current
sample fall  within the setting range is evaluated. The range
here refers to the range between the minimum and maximum
values  in Table  1.  If  one  or  more  variables  are  outside  the
bounds of the setting ranges, the current sample is used just
for  lime  utilization  prediction  after  data  normalization.  On
the other hand, when all variables in the current sample fall
within the setting ranges, the sample is stored as a valid heat,
and an outdated sample is removed from the valid dataset to
retain the original quantity. After data normalization, the val-
id sample is used not only to predict the lime utilization ratio
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but also to update the FOS-ELM model. Finally, calculations
of  error  of  the  current  and  1500  valid  heats  are  conducted.
With the progress of  BOF production,  the above process is
repeated when a new sample is generated.

A desktop application used in Windows operating system
is  developed  by  Microsoft  Visual  Studio.  The  desktop  ap-
plication provides a graphical user interface (GUI) as shown
in Fig. 10, that allows operators to easily access real-time and
historical data of a steelmaking plant. Once a new sample is
obtained, the data are automatically collected and shown on
the GUI. Clicking the “Prediction” button can be used to ob-
tain the predicted lime utilization ratio, errors of the current
heat, and the latest 1500 valid heats. The application also al-
lows operators to optimize steelmaking operations before or
during  the  processes  to  enhance  the  lime  utilization  ratios
based on prediction results.

The lime utilization ratio  prediction system is  applied in
actual industrial production for one month. All the 986 heats
obtained in this month are used to verify the performance of
the  present  system,  as  shown  in Fig.  11.  The  hit  ratios  of
61.16%, 90.63%, and 94.11% of the predicted lime utiliza-
tion  ratio  are  acquired  by the  system in  the  error  ranges  of

±1%, ±3%, and ±5%, respectively. The values of R2, MARE,
and  RMSE  are  0.8670,  0.06823,  and  1.4265,  respectively.
The system exhibits desirable performance for applications in
actual industrial production.

 5. Conclusions

In the present work, the prediction of the lime utilization
ratio of dephosphorization in the BOF steelmaking process is
conducted using machine learning models,  including MLR,
SVR, and ELM models and the proposed OS-ELM and FOS-
ELM models. The conclusions are obtained as follows.

(1) Among the three basic machine learning models, ELM
performs the best with the largest R2 value of 0.9486 and the
smallest  MARE and RMSE values  of  0.06221 and 0.8759,
respectively. The ELM model also attains the best fitting de-
gree  of  the  measured  and  predicted  values,  the  narrowest
fluctuation range in predicted errors, and no biased error.

(2)  For  the  FOS-ELM  model,  with  the  increase  in  the
number  of  samples  in  the  validity  term,  the  population
MARE decreases first and then increases. The validity term
containing 1500 samples is the optimum for the present data-
set, with the smallest population MARE value of 0.058226.

(3) According to the variable importance evaluated using

 

Fig. 10.    Graphical user interface of the real-time prediction system developed based on FOS-ELM.
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the MIV method, the three most important variables for the
lime  utilization  ratio  are  the  lime  weight,  initial  P  content,
and  hot  metal  weight.  The  lime  utilization  ratio  increases
with the decrease in lime weight, and the lime utilization ra-
tio increases when the initial P content and hot metal weight
are increased.

(4) A prediction system for the BOF steelmaking process
based  on  FOS-ELM is  developed  and  applied  in  actual  in-
dustrial production for one month. The hit ratios of the pre-
dicted lime utilization ratio in the error ranges of ±1%, ±3%,
and ±5% are 61.16%, 90.63%, and 94.11%, respectively. The
values  of R2,  MARE,  and  RMSE are  0.8670,  0.06823,  and
1.4265, respectively. The system exhibits desirable perform-
ance for applications in actual industrial production.
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