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Abstract: The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the
complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work, a prediction and feedback model of furnace heat
indicators based on the fusion of data-driven and BF ironmaking processes was proposed. The data on raw and fuel materials, process op-
eration, smelting state, and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and
were comprehensively analyzed. A novel method for the delay analysis of furnace heat indicators was established. The extracted delay
variables were found to play an important role in modeling. The method that combined the genetic algorithm and stacking efficiently im-
proved performance compared with the traditional  machine learning algorithm in improving the hit  ratio of  the furnace heat  prediction
model. The hit ratio for predicting the temperature of hot metal in the error range of ±10°C was 92.4%, and that for the chemical heat of
hot metal in the error range of ±0.1wt% was 93.3%. On the basis of the furnace heat prediction model and expert experience, a feedback
model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels. These sugges-
tions were highly accepted by BF operators. Finally, the comprehensive and dynamic model proposed in this work was successfully ap-
plied in a practical BF system. It  improved the BF temperature level remarkably, increasing the furnace temperature stability rate from
54.9% to 84.9%. This improvement achieved considerable economic benefits.
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1. Introduction

Inner  blast  furnaces  (BFs)  cannot  be  directly  monitored.
Instead, their heat levels are represented by the physical heat
(temperature) and chemical heat ([Si]) of hot metal. The tem-
perature and [Si] of hot metal are associated with energy util-
ization  and  are  important  indices  for  judging  the  quality  of
pig iron. Their range and frequency of variation can also re-
flect the stability of the production process [1–2]. Extremely
high or low furnace temperatures will cause not only the un-
qualified quality of hot metal but also fluctuations in furnace
conditions and even abnormal accidents [3–6]. During tradi-
tional BF production, heat levels are estimated by observing
the brightness and shape of hot metal and the appearance of
condensed pig iron. Then, the furnace heat level and condi-
tion  are  judged  by  combining  the  change  in  temperature
measurement  and  personal  experience.  However,  the  mag-
nitude of error from different operators will influence the ad-
justment  strategy.  In  addition,  although  the  laboratory  ana-
lysis of [Si]  is  highly accurate,  its  results  are obtained after
half an hour, which can reduce their reference value for actu-
al BF production and prevent the timely discovery of excess-

ive  [Si]  and  adjustment  of  operating  parameters  to  correct
furnace  heat  levels,  resulting  in  massive  losses.  Accurately
predicting furnace heat levels and adjusting BFs in advance
in  accordance  with  the  feedback  operation  suggestion  in-
ferred  from  forecasted  results  are  of  great  importance  be-
cause they are beneficial to ensure the smooth smelting and
economic benefit of BF ironmaking.

Big data  technology has  become widely applied in  iron-
making  and  steelmaking  with  the  development  of  digital
transformation in the steel industry [7–11]. Furnace heat pre-
diction is becoming an important part of intelligent BF iron-
making  technology,  and  some  data-driven  modeling  meth-
ods focusing on furnace heat indicators have been proposed.
Considering the complexity of BF smelting and the numer-
ous  parameters  that  affect  furnace  heat,  high-dimensional
data are not conducive to the establishment of a heat model;
principal component analysis (PCA) is often used to reduce
the  dimension  of  BF  parameters  [12–14].  However,  PCA
considers only the correlation among input variables but not
those  between  input  and  output  variables.  Given  their  high
efficiency, the Pearson, Spearman, and maximal information
coefficient  (MIC) methods are often used to screen charac- 
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teristics  with  a  strong  correlation  with  furnace  heat  indices
[15–17]. Many scholars have conducted research on furnace
heat  prediction.  Zhou et al. [18]  established  the  prediction
models of the temperature and [Si] of hot metal based on the
recursive subspace identification method. In this method, the
parameters of the prediction model were adaptively updated
by using the latest BF process data to ensure the accurate pre-
diction of furnace heat levels. Li and Yang [19] utilized the
genetic  algorithm  (GA)  framework  and  ironmaking  know-
ledge to construct explainable features and achieved high ac-
curacy in  [Si]  prediction.  Jiang et al. [20]  predicted [Si]  by
using an attention-wise deep transfer network and described
the dynamic relationship between input and output. Such an
approach was conducive to improving the comprehensibility
and transparency of  the  prediction results.  Li et al. [21–23]
studied  a  series  of  multi-input  multioutput  models  for  the
prediction  of  BF  heat  indicators  on  the  basis  of  the
Takagi–Sugeno  fuzzy  model  and  random  vector  functional
link  networks.  The  advantage  of  this  series  of  models  was
that  the correlation between the output indices of hot metal
was  considered,  and  model  accuracy  was  improved  effect-
ively.

Although considerable research has been done on the pre-
diction  of  furnace  temperature  indicators,  some  areas  still
need improvement. For example, the dimension and quantity
of  modeling  data  are  not  considered  comprehensively,  the
time delay analysis and modeling methods are inadequately
combined with the BF process, and real application scenari-
os for verification are lacking. When predicting and optimiz-
ing BF heat levels, the process principle of material and heat
balances should be followed, and the complex random fluc-
tuations in actual smelting conditions and reaction processes
should  be  considered  completely.  A  model  combining  the

process and algorithm must be established, verified, and op-
timized constantly in production practice [24]. In this work, a
model for the prediction and feedback of furnace heat indic-
ators was established on the basis of the fusion of data-driven
and BF processes and successfully applied to an ongoing BF
in China with remarkable benefits.  The rest of this paper is
organized  as  follows:  The  model-building  approach  is  ex-
plained in detail in section 2. The proposed method was val-
idated on a BF dataset, and the results are discussed in sec-
tion 3. The performance of the model in an industrial applica-
tion is shared in section 4. Finally, the conclusion is drawn. 

2. Methodology

The  general  technical  route  of  this  work  is  presented  in
Fig. 1. This work has five parts as follows: big data prepro-
cessing and dimension reduction, time lag analysis,  furnace
heat prediction model, furnace heat feedback model, and on-
line application. 

2.1. BF data preprocessing and dimension reduction
 

2.1.1. BF data collection and preprocessing
The data in this work were derived from the practical pro-

duction data of a domestic BF taken over 1 year. The collec-
ted data were sorted in accordance with the whole BF smelt-
ing process and comprised raw and fuel,  process operation,
smelting condition,  and slag and iron discharge data with a
total  of  171  variables.  The  detailed  data  classification  is
shown  in Table  1.  In  data  preprocessing,  the  deletion  and
filling methods were applied to process missing values. Out-
liers were identified and treated by the box diagram method
combined with BF operating guidelines. All the data of dif-
ferent frequencies were converted into hourly frequencies to
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solve the problem of unbalanced data samples caused by dif-
ferent data acquisition cycles in different processes. The de-
tailed data processing methods are shown in Table 2.  After
data  preprocessing,  9223  sets  of  hourly  frequency  sample
data were obtained. 

2.1.2. Dimension reduction of BF data
BF system data were classified as high-dimensional data.

The collinearity test, the integration of the same type of para-
meters, and correlation analysis were used to reduce the di-
mensions of BF data for the preliminary screening of input
variables.  For  example,  the  parameter  of  high  collinearity
between BF parameters was eliminated, and the mean value,
range, and standard deviation of the temperature of the cool-
er at the same height in the circular direction were calculated
instead of the temperature parameters of the original measur-
ing point. Some variables that were irrelevant or weakly cor-
related  with  furnace  heat  indicators  were  removed  through
the MIC method. As a result, the number of BF parameters
decreased from 171 variables to 77 variables. 

2.2. Time delay analysis of BF data
 

2.2.1. Process modeling
During ironmaking,  a  specific  operational  measure takes

effect after a certain period of time following its implementa-
tion. The lag time of each related variable of the furnace heat
indicator differs. In general, the purpose of the existing time
delay analysis is to determine the specific time delay through
correlation analysis [25–26], which has a certain one-sided-
ness. As a result of different furnace conditions, the lag time
and influence degree of related variables on furnace heat in-
dicators  are  not  fixed  but  instead  change  within  a  certain
range. As shown in Fig. 2, First, the upper and lower limits of
the lag time were determined. Based on the smelting cycle of

the BF studied, 0 and 6 h were used as the upper and lower
limits  of  the  lag  time.  Second,  the  lag  times  of  the  related
variables in different time periods were calculated. By com-
prehensively considering the frequency of the actual material
changes in the blast furnace and the expert recommendations,
it is more appropriate to differentiate the blast furnace condi-
tions  based  on  the  monthly  frequency.  Therefore,  in  this
study, the data were divided into twelve monthly segments;
the time lag was analyzed separately for each month, and the
combined set was used to determine the lag time. Third, the
lag-time  range  for  each  parameter  was  calculated.  The  lag
time of each parameter was counted for all time periods, and
the maximum and minimum lag times were used as the time-
lag ranges for that parameter.  Finally, this method obtained
multiple lag times, which were constructed as new delay-de-
rived features. For example, the lag times for variable x from
June to December were 1, 2, 2, 2, 1, 1, and 2 h respectively.
The final lag times for variable x were then 1 and 2 h. Both x
before 1 h (x−1) and 2 h (x−2) were treated as new features and
employed in the feature selection process  of  the model.  In-
corporating the time-lag information of the variables into the
model can result in a more rational model and better model-
ing results. 

2.2.2. Analysis of results
Considering  that  the  number  of  variables  after  prelimin-

ary filtering was still large, cold air flow was taken as an ex-
ample,  and  the  analysis  results  of  time  delay  are  shown  in
Fig. 3. The change in the effect of the maximum information
coefficient  of  cold  air  flow  rate  on  furnace  heat  indicators
with a lag of 1–6 h was analyzed by taking the value of cold
air  flow  rate  at  the  current  moment  (0  h)  as  the  reference
value. The effect of cold air flow rate on furnace heat indicat-
ors in each period first increased and then decreased, indicat-

 

Table 1.    Collection and classification of BF data

Class Amount Frequency / h Feature names
Sintering data 9 2 Sintering composition, size, quality, and metallurgical properties
Pellet data 9 2 Pellet composition, size, quality, and metallurgical properties
Coke data 10 4 Coke composition, size, quality, and metallurgical properties
Coal data 7 4 Coal composition and calorific value

BF operation data 17 1
Raw fuel ratio and consumption, burden distribution parameters, blast
parameters, coal injection parameters, cooling water parameters, and
speed of material descent

BF status data 108 1
Furnace top pressure, total differential pressure, furnace top temperature,
gas utilization rate, breathability, thermocouple temperature, heat flow
intensity, and water temperature

Iron & slag data 11 Frequency of hot metal Iron batch number, hot metal composition, slag composition, and amount
of iron and slag from different iron notches

 

Table 2.    Preprocessing of BF data

Type Method Description

Missing data processing Delete & fill
Delete: missing data (<5%) or (>30%)
Fill: intermittent short-term loss of data (interpolation) or long-term
loss of data continuity (machine learning)

Outlier data processing Box plot &
operating guidelines Delete or correct or treat as a missing value

Mixed frequency data
processing

All converted into hourly
frequency data

High-frequency data were averaged or summed in accordance with
the period of low-frequency data, and low-frequency data were
mapped to the high-frequency time index
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ing that the effect of cold air flow rate on the furnace heat in-
dex had a lag. The effect of the cold air flow rate on the fur-
nace heat indicator when the lag time was 1 or 2 h was signi-
ficantly higher than that at other times, illustrating that the lag
time of the cold air flow rate ranged from 1 to 2 h. Therefore,
CBF−1 and  CBF−2 were  added  as  the  input  variables  of  the
furnace heat prediction model.  The time delay analysis res-
ults of other relevant variables are presented in Table 3. Only
a  part  of  the  results  was  listed  in Table  3 due  to  the  large
number of variables. After the time delay analysis,  52 vari-
ables  were  extracted  as  the  candidate  variables  for  model
input. 

3. Results and discussion of furnace heat indic-
ator prediction and feedback

The  current  furnace  heat  level  can  be  obtained  by  ob-
serving, testing iron samples or measuring temperature and,
more  importantly,  used  to  predict  the  future  furnace  heat
level. In this work, the average temperature of hot metal and
[Si] in the next 1 h was selected for prediction. 

3.1. Utilization of the furnace heat index model

Numerous  studies  on  furnace  heat  indicators  have  been

conducted [27–29], and the theoretical calculation of furnace
heat  indicators  can be performed by using the heat  balance
and carbon–oxygen balance equations. However, due to the
lack of modification of smelting data, a certain deviation ex-
ists  between  the  theoretical  calculation  results  and  actual
measured values. On the basis of the furnace heat index mod-
el, theoretical calculation variables, such as the slag and iron
heat indices, direct reduction degree, and fuel ratio deviation,
were used as the input variables in the furnace heat indicator
prediction model to exploit the information provided by the
mechanism model to compensate for the shortage of monit-
oring means in actual production. 

3.2. Selection of furnace heat features based on GA
 

3.2.1. Process modeling
The initial input variable set of the model for the predic-

tion of furnace heat indicators comprised the variables of ini-
tial filtration obtained through correlation analysis, the newly

 

Table 3.    Results of the lag time analysis of relevant variables

Related variables Symbol Time lag
Cold blast flow CBF CBF−1, CBF−2

Hot blast temperature HBT HBT−1

Hot blast pressure HBP HBP−1, HBP−2

Pressure difference PD PD−1, PD−2

Gas permeability GP GP−1, GP−2

Top blast temperature TBT TBT−1

Top blast pressure TBP TBP−1

Oxygen enrichment flow OEF OEF−1, OEF−2

Theoretical combustion
temperature TCT TCT−1, TCT−2

Bosh gas volume BGV BGV−1, BGV−2

Pulverized coal injection PCI PCI−1, PCI−2, PCI−3

Coke consumption CC CC−1, CC −2, CC−3

Sinter basicity SB1 SB1−1, SB1−2, SB1−3

… … …
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created variables based on lag time, and the derived variables
based on the slag and iron heat index model. However, not all
variables are required by the model. GA is an effective fea-
ture selection method that can screen out the optimal feature
combination in the case of a large number of features and im-
prove  model  performance  [30–31].  In  this  study,  GA  was
used to further reduce the dimension of the initial input vari-
ables  and  screen  the  optimal  feature  combination  when the
accuracy of the heat index prediction model was the highest.
This process included the six steps shown in Fig. 4. First, the
initial population was generated, and the fitness function was
defined. Subsequently, roulette selection [32], crossover, and
mutation were performed, followed by the combined evalu-
ation  of  new  individuals.  Finally,  the  optimal  feature  com-
bination was selected and returned. 

3.2.2. Model input determination
Correlation, time delay, and slag and iron heat index ana-

lyses provided a large number of input variables for the fur-

nace heat prediction model. In this work, the above method
was adopted to further reduce the dimension of the initial in-
put variables, and the variables in Table 4 were finally identi-
fied as the input. Given that the smelting of BF is continuous
and uninterrupted, the previous heat level has a certain influ-
ence on the next heat level. Therefore, the historical temper-
atures of hot metal and [Si] were added to the model. 

3.3. Furnace heat prediction model based on stacking
 

3.3.1. Process modeling
The choice of predictor is crucial for model performance.

In  this  work,  an  integrated  learning  strategy  based  on  the
stacking framework was used to predict the furnace heat in-
dicators  accurately.  The  technical  route  is  given  in Fig.  5.
Different algorithms were integrated by the stacking frame-
work, and their observations of different data from different
spaces  and  structures  were  efficiently  applied  to  optimize
stacking  results  [33].  Finally,  five  base  learners,  including
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Table 4.    Optimal feature combination for the model

Feature name Symbol Feature name Symbol
Temperature of hot metal HMT, HMT−1 Sinter SiO2 SSi−2

[Si] of hot metal [Si], [Si]−1 Coke FCad CFC1
Hot blast pressure HBP, HBP−1, HBP−2 Coal FCad CFC2
Gas permeability GP Gas utilization rate GUR
Heat load HL Theoretical coke ratio TCR1
Top blast temperature TBT, TBT−1 Theoretical coal ratio TCR2
Oxygen enrichment flow OEF, OEF−1, OEF−2 Burden descent speed BDS
Theoretical combustion temperature TCT−1 Slag iron heat index SIHI−1, SIHI−2

Bosh gas volume BGV−1 Direct reduction degree DRD, DRD−2

Pulverized coal injection PCI, PCI−1, PCI−2 Fuel ratio deviation FRD, FRD−1

Coke consumption CC, CC−1, CC−2 Slag basicity SB2
Cold wind flow CBF−1 Slag amount SA
Sinter basicity SB1−2 Theoretical iron quantity TIQ
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support  vector  machine  (SVM),  extreme  gradient  boosting
(XGB), random forest (RF), gradient boosting decision tree
(GBDT), and deep neural network (DNN), were selected as
the first layer model. A simple linear regression (LR) model
was selected as the second-layer model for modeling and pre-
diction to reduce the overfitting risk. However, directly using
the model obtained by training the training set to predict the
labels  of  the  training  set  carries  a  high  risk  of  overfitting.
Therefore, cross-validation was selected to mitigate the over-
fitting problem in this approach. In this study, we used slid-
ing  time-series  cross-validation  and  not  the  standard  k-fold
cross-validation when dealing with time-series data. First, the
time series was divided into five consecutive and equal num-
bers of data blocks according to the time series, and no ran-
dom splitting was used. These five data blocks were labeled
as  train1 through train5.  Second,  each data  block was  used
for model testing and retraining, whereas data block train1 is
used only for training. For example, we trained the model us-
ing data block train1, used it to predict data block train2, and
subsequently  continued  this  process  by  training  the  model
with each subsequent data block, predicting the next one, and
so forth until data block train5 is predicted. Finally, the pre-
dictions from train2 to train5 were concatenated and used as
the output of the primary learner in the training set. This ap-
proach discards  1/5  of  the  data  but  can mitigate  the  risk  of
overfitting caused by directly using the model trained on the
training set to predict the labels of the same training set. Dur-
ing  the  four-fold  cross-validation,  the  test  dataset  was  pre-
dicted in each iteration. The mean of the results of these four
predictions was used as the output for the primary learner in
the test dataset. After each primary learner was trained, a new
column  of  the  dataset  was  generated,  and  this  new  dataset
was used as a meta-feature. Five primary learners were selec-

ted; therefore, five columns of meta-features were generated
and used as inputs for the second-layer training model. Simil-
arly, five columns of meta-features were generated after the
test set was transformed into stacks as inputs to the second-
layer test model. Finally, a linear regression model was used
to  retrain  these  meta-features,  and  a  model  from  the  meta-
features to the ground -truth was obtained. 

3.3.2. Analysis of prediction results
(1) Splitting of the dataset.
The purpose of this work is to predict the temperature of

hot metal and [Si] in the next 1 h.  In contrast  to regression
analysis  prediction,  time-series  prediction  cannot  be  ran-
domly divided into training and test sets. Therefore, it is usu-
ally  divided  in  accordance  with  the  time  sequence  of  data.
The  accuracy  of  the  prediction  model  will  be  inflated  be-
cause the data distribution of the randomly divided training
and test sets is similar. Therefore, the dataset was divided in-
to two groups, with the first 9055 datasets as the training set
and the last 168 datasets as the test set.  The splitting of the
time-series  dataset  of  furnace  heat  indicators  is  shown  in
Fig. 6. The data to the left of the red line are for training, and
those to the right of the red line are for testing. In considera-
tion of some uncertainty in the algorithm, all of the following
simulations were run 20 times and then averaged.

(2) Prediction results of the furnace heat indicator.
On the basis of the actual production condition of the BF

in this work, the temperature of hot metal was determined to
be  ±10°C,  and  [Si]  was  determined  to  be  ±0.1wt%,  which
was  the  hit  ratio  of  the  furnace  heat  prediction  model.  The
test results of temperature and [Si] are shown in Figs. 7 and 8,
respectively.  The  blue  lines  in Figs.  7(a)  and 8(a)  respect-
ively represent the actual values of the hot metal temperature
and [Si], whereas the red lines represent the predicted values
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by the model established by the algorithm in this work. The
coincidence  between  the  real  and  predicted  values  was
smooth. The dots in Figs. 7(b) and 8(b) respectively repres-
ent the difference between the real and predicted values. The
residual  distribution  range  of  furnace  heat  indicators  was
small and concentrated. The residual temperature of hot met-
al was mainly distributed between −10 and +10°C, and [Si]
was  mostly  distributed  between −0.1wt%  and  +0.1wt%.
These  distributions  can  meet  the  requirement  of  practical
production.

(3)  Comparison  of  the  performances  of  different  al-
gorithms.

The test results of the furnace heat indicators provided by
different  algorithms  were  compared,  as  shown  in Figs.  9
and 10,  to illustrate the hit  ratio of  the method proposed in
this work. Clearly, the method presented in this work had the
best performance. The prediction error curves of the probab-
ility density function (PDF) of temperature and [Si] provided

by  the  other  five  algorithms  are  depicted  in Figs.  9(b)  and
10(b),  respectively,  to facilitate comparison.  The estimation
error of the proposed algorithm was evidently small and con-
centrated. Figs. 9(c) and 10(c) show the hit ratios of the tem-
perature and [Si] of hot metal provided by different methods,
respectively.  The  hit  ratios  of  the  proposed  algorithm were
92.4% and 93.3%, which were obviously better than those of
other algorithms. 

3.4. Feedback model of BF heat operation
 

3.4.1. Process modeling
During ironmaking, the operator must predict the furnace

heat  accurately  through  the  change  in  the  relevant  furnace
condition parameters  and take reasonable adjustment meas-
ures in time. Such an approach is highly beneficial for redu-
cing the fluctuation in furnace conditions and improving the
quality  of  hot  metal.  Although  some  optimization  methods
based on the GA and particle swarm optimization algorithm
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have been proposed [34–35], they have excessively long and
complicated  calculation  processes  that  are  unconducive  to
online applications. Therefore, a feedback model of BF oper-
ation with a quick response was established on the basis of
the above prediction model. The total time of prediction and
feedback was within 5 min, which provided sufficient time to
operate the BF and adjust the abnormal furnace heat. When
the  predicted  furnace  heat  indicator  at  the  next  moment

reached the feedback triggering condition, the feedback mod-
el  was  triggered,  and  the  operation  adjustment  plan  was
pushed  to  the  operator.  This  situation  is  beneficial  for  im-
proving the heat state of the BF and stable production.

The feedback model  of  operation was divided into three
parts, as seen in Fig. 11. In the first part, the feedback trigger
condition was set.  The threshold values of  the furnace heat
indicators were set in accordance with the actual production
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condition. The feedback threshold for hot metal temperature
is below 1470°C, and the feedback threshold for [Si] is be-
low  0.3wt%  or  above  0.6wt%.  The  feedback  process  was
triggered when the predicted result (the next hour) of any fur-
nace  heat  indicator  exceeded  the  threshold.  In  the  second
part,  the  constraint  conditions  of  feedback adjustment  were

set in accordance with practical production. These conditions
included  adjustable  parameters  and  their  adjustment  range
and  step  size.  The  adjustable  parameters  in  this  work  were
pulverized  coal  injection  (PCI),  coke  consumption  (CC),
oxygen  enrichment  flow  (OEF),  and  hot  blast  pressure
(HBP).  The  priority  of  the  adjustment  parameters  followed
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the order of PCI, CC, OEF, and HBP. For example, PCI had
a lower limit, upper limit, and step size of –2500 kg, 2500 kg,
and 500 kg, respectively. In the third part, the final feedback
of parameters was provided to the operator. An initial feed-
back scheme set was established on the basis of adjustment
rules, as seen in Table 5. A total of 21020 types of schemes
were obtained.  Each scheme in the initial  feedback scheme
set was evaluated by using the prediction model of the fur-
nace  heat  indicator.  The  schemes  that  met  the  threshold  of
furnace heat  indicators  were  screened out  and sorted in  ac-
cordance with priority. Finally, the top 10 feedback schemes
meeting the optimization objectives of furnace heat indicat-
ors were selected and pushed to the BF operator. 

3.4.2. Analysis of feedback results
The feedback of furnace heat indicators during the online

operation was taken as an example. The current temperature
and  [Si]  were  1464°C  and  0.26wt%,  respectively,  and  the
predicted  values  at  the  following  time  were  1466°C  and
0.28wt%, respectively. Then, the initial feedback scheme was
searched,  and  the  top  10  operation  suggestions  with  evalu-
ation results that met the requirements of a temperature above

1470°C and [Si] between 0.3wt% and 0.6wt% were selected
and  provided.  The  detailed  feedback  results  are  shown  in
Table  6.  The  temperature  and  [Si]  were  lower  than  the  re-
quired  range  of  furnace  heat  indicators,  indicating  that  the
furnace heat level at this time was lower than normal. There-
fore, heat must be supplemented to increase the furnace heat
level.  The  operation  suggestions  of  screening  were  mainly
about increasing fuel consumption and were consistent with
the purpose of heat supplementation and with the BF smelt-
ing theory. At the same time, the operation suggestions were
quantitatively pushed. The suggestions were highly useful to
the BF operator in restoring furnace heat levels and stabiliz-
ing furnace conditions. 

3.5. Adaptive updates of the model for furnace heat pre-
diction

The BF heat level was obviously affected by the change in
raw  material  and  recent  furnace  conditions.  Given  that  the
model  was  trained  with  historical  data  with  timeliness,  the
model parameters must be updated adaptively in accordance
with the latest process data. Such an approach will enhance

 

Table 5.    Initial feedback scheme set

No. PCI adjustment / kg CC adjustment / kg OEF adjustment / (m3·h−1) HBP adjustment / kPa
1 −500 0 0 0
2 500 0 0 0
3 −1000 0 0 0
4 1000 0 0 0
5 −1500 0 0 0

… … … … …
10001 −1500 600 1000 −15
10002 −1500 600 1000 15
10003 1500 −600 −1000 −15
10004 1500 −600 −1000 15
10005 1500 −600 1000 −15

… … … … …
21016 2500 −1000 1500 30
21017 2500 1000 −1500 −30
21018 2500 1000 −1500 30
21019 2500 1000 1500 −30
21020 2500 1000 1500 30

 

Table 6.    Feedback results of the furnace heat model

No. PCI adjustment /
kg

CC adjustment /
kg

OEF adjustment /
(m3⋅h−1)

HBP adjustment /
kPa

HMT prediction /
°C

[Si] prediction /
wt%

1 1000 300 500 5 1472.40 0.35
2 1000 200 500 5 1478.42 0.38
3 1000 300 500 0 1471.12 0.39
4 500 200 0 5 1476.87 0.41
5 1000 200 500 0 1481.00 0.46
6 500 200 500 0 1478.49 0.47
7 500 200 0 0 1480.87 0.41
8 0 200 0 0 1472.24 0.43
9 1000 100 0 0 1473.62 0.44

10 500 100 0 0 1472.10 0.41

Q. Shi et al., Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators 1237



the production adaptability of the model. An adaptive updat-
ing measure was adopted to ensure stable performance, and
the  superiority  and  practicability  of  the  proposed  method
were verified through an online application. The process of
adaptive  updating  is  depicted  in Fig.  12.  The  first  measure
was to update the training set in real time before each predic-
tion on the basis of the hyperparameters of the training mod-
el. The latest data were applied to train the model. Then, the
online adaptive updating of the model, which had the advant-
age of satisfying the response speed of the online application
and extending the timeliness of the model to a certain extent,
was finally realized. The second measure was periodic adapt-
ive  renewal.  When  the  average  hit  ratio  of  the  model  was
lower  than  85% in  one  week,  the  input  features  and  meta-
parameters of the model were completely updated according
to the latest accumulated historical data to ensure the stable
performance of the model. This process took a long time and
was completed in a new process without affecting the online
running of the model. The furnace heat indicator model was
successfully  self-updated six  times,  as  seen in Fig.  13.  Red

represents the hit ratio of the model before updating (<85%),
and green represents the hit ratio of the model after updating.
Evidently, the hit ratio of the model gradually declined over
time but significantly improved after each self-updating and
can meet production requirements. 

4. Practical application

On the basis of the results of this work, a BF heat predic-
tion and feedback system was developed and successfully ap-
plied online to an ongoing BF in China. This system, which is
illustrated, included two modules: the tracking of input data
and the prediction of heat indicators and feedback of opera-
tion  suggestions.  This  system  ran  stably  and  achieved  re-
markable economic benefits over 1 year of application. The
hit ratio of the dynamic prediction of furnace heat indicators
within 24 h exceeded 95% for a long time, and the feedback
of operation suggestions, which had played an important role
in stabilizing the furnace condition, was highly accepted by
BF operators. The expected target of increasing the furnace
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temperature stability rate from 54.9% to 84.9%, which rep-
resented an increase of 30%, was reached. 

5. Conclusions

(1) The data,  which included data on raw materials,  fuel
and process operation, smelting state, and slag and iron dis-
charge during the whole BF ironmaking process, were ana-
lyzed. It included 171 variables and 9223 sets of data. Data
quality  was  effectively  improved  through  data  governance.
The  time  delay  relationship  between  relevant  variables  and
furnace  heat  indicators  was  fully  considered  and  played  an
important role in establishing the scientific prediction model.

(2) The furnace heat prediction model was established on
the basis of GA and stacking frameworks. This approach was
conducive  to  improving  the  performance  instability  of  a
single  machine  learning  algorithm  on  different  datasets  ef-
fectively. The performance of the proposed method was veri-
fied through comparison with five other machine learning al-
gorithms. The hit ratio of temperature within the error range
of  ±10°C and [Si]  within  the  error  range  of  ±0.1wt% were
92.4% and  93.3%,  respectively.  These  values  can  meet  the
requirements of practical production.

(3)  The  furnace  heat  feedback  model  conforming  to  BF
was  successfully  established.  Operation  suggestions  were
quantitatively pushed and were highly accepted by BF oper-
ators. In addition, the system of furnace heat prediction and
feedback was successfully applied. The furnace temperature
level improved obviously during the application period. The
dynamic  prediction  hit  ratio  of  the  furnace  heat  indicator
within 24 h exceeded 95% for a long time. The expected tar-
get of increasing the furnace temperature stability rate from
54.9% to 84.9%, which represented an increase of 30%, was
reached. 
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