
Invited Review
Key issues and progress of industrial big data-based intelligent blast furnace
ironmaking technology

Quan Shi1,2,3), Jue Tang1,2,3),  ✉, and Mansheng Chu1,2,3),  ✉

1) School of Metallurgy, Northeastern University, Shenyang 110819, China
2) Institute for Frontier Technologies of Low-carbon Steelmaking, Northeastern University, Shenyang 110819, China
3) Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education), Shenyang 110819, China
(Received: 15 November 2022; revised: 6 February 2023; accepted: 29 March 2023)

Abstract: Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great chal-
lenges for furnace condition judgment and BF operation. Rich data resources for BF ironmaking are available, and the rapid development of
data science and intelligent technology will provide an effective means to solve the uncertainty problem in the BF ironmaking process. This
work focused on the application of artificial intelligence technology in BF ironmaking. The current intelligent BF ironmaking technology was
summarized and analyzed from five aspects. These aspects include BF data management, the analyses of time delay and correlation, the predic-
tion of BF key variables, the evaluation of BF status, and the multi-objective intelligent optimization of BF operations. Solutions and sugges-
tions were offered for the problems in the current progress, and some outlooks for future prospects and technological breakthroughs were ad-
ded. To effectively improve the BF data quality, we comprehensively considered the data problems and the characteristics of algorithms and
selected the data processing method scientifically. For analyzing important BF characteristics, the effect of the delay was eliminated to ensure
an accurate logical relationship between the BF parameters and economic indicators. As for BF parameter prediction and BF status evaluation,
a BF intelligence model that integrates data information and process mechanism was built to effectively achieve the accurate prediction of BF
key indexes and the scientific evaluation of BF status. During the optimization of BF parameters, low risk, low cost, and high return were used
as the optimization criteria, and while pursuing the optimization effect, the feasibility and site operation cost were considered comprehensively.
This work will help increase the process operator’s overall awareness and understanding of intelligent BF technology. Additionally, combining
big data technology with the process will improve the practicality of data models in actual production and promote the application of intelligent
technology in BF ironmaking.
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 1. Introduction

Blast  furnace  (BF)  ironmaking  accounts  for  more  than
70% of the cost and energy consumption of the whole steel
process [1]. Complex physical and chemical phenomena oc-
cur simultaneously in the BF ironmaking system. Gases, li-
quids, and solids exhibit multi-phase and multi-substance co-
existence. Meanwhile, as all the phases change continuously,
a number of random external interference factors come into
play. The variables involved in the BF process, such as raw
fuel,  operation,  furnace  status,  and  product,  are  of  mixed
type, have high dimensions, and are large-scale. BF variables
are  characterized  by  strong  coupling,  nonlinear  and  large
hysteresis. Therefore, BF is considered one of the most com-
plex metallurgical reactors.  The BF is a typical “black box”
that cannot be observed directly. Internal parameters cannot
be  measured in  real  time;  hence,  real-time and accurate  in-
formation is relatively lacking. Most of the current mathem-
atical models of BF ironmaking are mechanism based. Given

the fluctuation in environment, operation, and BF status, the
mechanism model shows poor applicability to this complex
dynamic process. The prediction accuracy of these models is
low,  and  accurate  acquisition  of  the  complex  relationship
between key parameters,  such as operation parameters,  fur-
nace status, and quality of hot metal, is difficult. Meanwhile,
the traditional expert system mostly relies on experience and
knowledge. Due to the great difference in the level of BF op-
erators, the manual judgment is unstable, and determining the
BF status accurately and dynamically presents difficulty.

Big  data  technology  has  been  successfully  applied  in
many areas of the steel industry [2–8]. BF ironmaking is the
core process  of  iron and steel  production.  The potential  for
energy  saving  and  emission  reduction  by  relying  on  tradi-
tional and conventional technologies is close to the physical
limit.  Only  by  obtaining  innovative  technological  break-
throughs can the low carbonization of BF ironmaking be fur-
ther realized. BF is a huge treasure house that collects the his-
tory,  experience,  and  rules  of  the  ironmaking  system,  but 
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considerable production data and experience knowledge have
not been fully explored and scientifically expressed. With the
vigorous development of data science and information tech-
nology,  intelligent  technologies,  such  as  machine  learning
and deep learning, have been adopted to integrate data with
mechanics. The “fidelity” relationship among raw fuel, pro-
cess operation, BF running state, and quality of molten iron
was  explored  quickly,  and  an  advanced  model  of  BF  iron-
making with high efficiency, low cost, and high fidelity was
established. A good interaction among the intelligent evalu-

ation,  prediction  of  furnace  status,  and the  independent  op-
timization decision of operation was achieved. This good in-
teraction  is  expected  to  solve  the  traditional  difficulties  of
characterization  of  BF  data,  description  of  BF  status,  and
control of BF operation.

Thus, aiming to apply big data technology in BF ironmak-
ing, the digital and intelligent transformation of steel produc-
tion, the progress of intelligent BF technology, and research
on  intelligent  BF  technology  at  Northeastern  University
(NEU) were investigated and discussed in this work (Fig. 1).
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Fig. 1.    General flow of articles.
 
 2. Digital  and  intelligent  transformation  of
steel production

With  the  rapid  development  of  next-generation  artificial
intelligence  (AI),  big  data,  and  cloud  computing  technolo-
gies, intelligent manufacturing has become the commanding
height  of  strategic  competition  among  major  countries  [9].
Given  the  high  technical  complexity  and  good  information
foundation, the digital and intelligent transformation of steel
production  has  attracted  considerable  attention,  whether  it
was the internal demand of the field or external guidance of
the policy.

The steel  industry has an urgent  need for  digital  techno-
logy. The iron and steel industry is a large and complex pro-
cess industry, with black boxes within each process. The ex-
tremely complex steel production process is characterized by
multiple  variables,  strong coupling,  non-linearity,  and  large
lags. Additionally, the steel production units are controlled in
silos,  and  the  interface  between  the  units  is  not  seamless.
These serious uncertainties are major challenges for the steel
production process. Despite the “black box” and other uncer-
tainty issues, the digital and intelligent transformation of the
steel industry is imperative.

Digital and intelligent technologies have great potential in
the steel  industry.  The steel  industry is  a digital  technology

application scenario with rich resources. The processes of BF
smelting, converter smelting, electric furnace smelting, con-
tinuous  casting,  and  rolling  are  all “black  box” processes,
which are the best scenarios for the application of digital and
intelligent technologies. With the help of big data technology,
the “black  box” problem prevailing  in  the  process  industry
can be quickly solved, and the effect of amplification, multi-
plication,  and  superposition  can  be  achieved.  The  steel  in-
dustry also has a wealth of data resources. The steel industry’s
data-aware  and  automated  control  systems  have  resulted  in
the  accumulation  of  a  wealth  of  data.  This  vast  amount  of
data contains important rules for the production process and
is the most valuable resource. Additionally, the steel industry
has the advantage of direct feedback to empower materials. If
laws  within  the  iron,  steel,  billet,  and  rolled  parts  are  ex-
plained  clearly  through  real-time  big  data  analysis,  and  if
feedback  control  is  carried  out  to  form a  closed-loop  feed-
back empowerment system, the problems caused by various
disturbances can be rectified in a timely manner.

The European Union released a steel technology platform
plan called European Steel Technology Platform, which gave
priority to the development of big data, intelligent modeling,
multi-process  integration,  self-organizing  production,  and
other  technical  fields;  it  takes  each  process  as  information
physical  system to  further  improve  the  steel  production  in-
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dexes  [10].  Pohang  Iron  and  Steel  Company  (POSCO)
[11–13] developed the “POSFrame” intelligent factory plat-
form,  effectively  connecting  the  accumulated  steel
manufacturing  technologies  with  big  data  and  AI,  and  de-
veloped an  intelligent  steel  system.  Since  2017,  AI  techno-
logy  has  been  used  to  predict  the  furnace  status  from  five
variables,  namely,  permeability,  attachments on the furnace
wall, combustion of pulverized coal, temperature of hot met-
al, and output, and gradually realized the intelligence of BF.
JFE  Steel  Corporation  (JFE)  [14]  established  the  data  sci-
ence project department in 2017 and the information physics
system  research  and  development  department  in  2019.  By
March 2020,  JFE had completed the intelligent  transforma-
tion of eight BFs.

Based  on  the  current  situation  of  the  Chinese  steel  in-
dustry,  compared with developed countries,  a  huge gap ex-
ists  in  the  application  of  AI  in  the  industrial  field.  Particu-
larly,  the  basic  automation  of  the  ironmaking  process  is
weak, data collection and management are difficult, and the
smelting  process  is  a  typical  black  box  problem.  A  large
space is available for improving the deep application of digit-
al twinning and information physical systems of ironmaking
systems.  Intelligence  is  an  important  strategic  direction  for
developing the steel industry in China. The state has issued a
number of decisions and deployments to guide the accelera-
tion  of  the  development  and  technology  research  of  intelli-
gent manufacturing industries related to the whole steel pro-
cess  to  promote  the  high  quality  intelligent  transformation
and upgrading of the steel industry in the new era and enable
green manufacturing. By combining the process knowledge,
mechanism  model,  and  AI,  companies  have  made  break-
throughs in key technologies, such as big data platform con-
struction, intelligent equipment diagnosis,  automatic quality
analysis,  and  advanced  production  line  scheduling  in  some
processes. Steel enterprises, such as Baosteel and Shougang,
have developed intelligent manufacturing plans and built in-
dustrial data centers and intelligent technology research and
development platforms [15]. The realization of digitalization
through big data intelligence is an important guarantee for the
steel  industry to  improve energy efficiency and reduce car-
bon  emissions.  The  development  of  a  digital  economy is  a
major demand for the realization of the dual carbon goal of
ironmaking.  It  is  expected  to  reduce  CO2 emission  by
6%–10%.

 3. Key issues of intelligent BF technology
 3.1. Management of BF data

 3.1.1. Characteristics of the BF data
BF data mainly include “BF body data” and “BF auxiliary

system  data.” BF  body  data  refers  to  the  operational  data,
such as the top temperature, static pressure and, permeability
collected by various sensors.  Auxiliary data mainly refer to
the data of raw fuel, coal injection, etc. Nearly 2000 paramet-
ers need to be considered by BF operators in daily operation.

In  the  BF  database,  approximately  18  million  hourly  fre-
quency  and  daily  frequency  data  are  generated  each  year
[16]. The sequenced data collected by sensors comprise the
characteristics  of  some  equipment,  such  as  the  numerous
measuring points, high frequency, and high throughput. Giv-
en that the ironmaking process is composed of different sys-
tems, the data sources are spread, and the data acquisition fre-
quencies of different systems differ [17]. For a wide range of
resources and different data sources, BF data are usually in-
dependent  of  each  other,  and “data  islands” are  formed  to
isolate data. Meanwhile, the BF has a complex data structure.
Besides  the  sequenced  data,  such  as  temperature,  pressure,
and  flow  rate  collected  during  production,  it  provides  in-
frared thermal imaging video data,  such as flame temperat-
ure; thus, the data are also multi-mode [18]. Given the com-
plex  gas,  solid,  and  liquid  reactions  in  BF,  changes  in  one
parameter  will  lead  to  the  linkage  change  in  one  or  more
parameters,  and  the  information  contained  among  paramet-
ers will overlap. Thus, information redundancy exists among
the BF parameters. The interior of the BF is a high-temperat-
ure and high-pressure environment and here, the working en-
vironment of the electronic sensor is poor, and frequent dam-
age will lead to noise, abnormal, and missing data [19–20].
Additionally, as the full automation of BF data is not yet real-
ized,  some  data  still  need  to  be  manually  filled  in  and  up-
loaded to the database. Therefore, the data are non-standard
and incorrect.
 3.1.2. Governance of the BF data

The completion of complex data cleaning and integration
of BF and improvement in the quality of BF data are the basis
for realizing intelligent BF ironmaking. Missing data, abnor-
mal data, and inconsistent data frequency are the most com-
mon and important problems in BF data (Table 1).

(1) The data loss of BF is mainly caused by sensor failure,
operator error, and database storage failure. Two methods are
used to deal with missing data: direct deletion of missing data
and filling in missing data. When a small or a large amount of
BF  data  are  missing,  deletion  is  a  direct  and  efficient  pro-
cessing method. For example, when the missing percentage
of BF data is less than 5%, deleting the missing data will not
affect the validity [19]. When the missing data rate exceeds
60%, the research value of the data is lost. When BF data are
intermittently  missing for  a  short  time,  interpolation can be
used to supplement the missing data [21]. This can be done
for data that are stable, regular, and predictable and show no
abnormal fluctuations under normal furnace conditions, like
pressure, temperature and other high frequency data, and fur-
nace status in a short time. However, when BF data are miss-
ing for a long period, the occurrence of abnormal fluctuation
cannot be estimated due to the long period of data missing.
At this point, the correlation between the missing data vari-
ables and other complete variables can be analyzed (for ex-
ample,  a  significant  correlation exists  between permeability
and total  pressure  difference),  and  the  relationship  between
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them  can  be  established  by  machine  learning  to  fill  in  the
missing data.

(2) Abnormal BF data are mainly divided into data anom-
alies caused by manual input errors, sensor equipment dam-
age, and some indicators exceeding the upper and lower lim-
its.  The identification methods of abnormal BF data can be
divided into statistical [22–23] (such as three-sigma method
and  box  diagram  method)  and  machine  learning  methods
[24–25] (such as clustering method and isolated forest meth-
od). The three-sigma and box diagram show high efficiency
in eliminating outliers, but the three-sigma criterion requires
the  approximate  distribution  of  data,  and  the  coefficient  of
the difference between the upper and lower quartiles of the
box diagram needs to be artificially set.  Using the machine
learning to recognize outliers has a high recognition rate but
consumes  more  time.  However,  the  effective  combination
with the BF production process is ignored by most research-
ers.  For  instance,  the reasonable range of  parameters  in the
BF  operating  policy  is  based  on  the  specific  summary  and
calculation. BF operating policies not only quickly screen the
original data but also verify abnormal data identification res-
ults. In addition, after identifying the outliers it is necessary to
observe whether the data of other parameters at the same mo-
ment  are  also  abnormal,  in  order  to  determine  whether  the
cause of the abnormal data is the abnormal furnace condition
or other reasons. Strictly speaking, the outlier data caused by
abnormal  BF  status  do  not  really  have  an  abnormal  value.
Thus, abnormal data detection should be differentiated based
on whether the furnace status is abnormal or not.

(3) The frequency of BF data is  inconsistent  and mainly
restricted by data acquisition cost. The inspection frequency
of raw fuel, slag, and iron is generally at the hour or day level,
and the collection frequency of monitoring data, such as tem-
perature, pressure, and flow rate, is at the minute or second
level. Different data thicknesses are not conducive to the es-
tablishment  of  correlation  analysis  and  prediction  model.
Usually,  frequencies  are  made constant  before  analysis  and
modeling are carried out. High frequency data are averaged
or summed, and the latest value of high frequency data is se-

lected, which causes the loss of BF information and cannot
truly and completely reflect the change in BF status. To max-
imize the  information in  different  frequency data,  research-
ers  put  forward  the  mixed-frequency  data  model  [26–27].
The  model  is  useful  in  avoiding  data  information  increase
and loss during artificial data processing and improving the
accuracy of correlation analysis and prediction model.

 3.2. Time-delay  analysis  and  correlation  analysis  of  the
BF data

 3.2.1. Time-delay analysis of the BF data
During the process of BF ironmaking, when a certain con-

trol measure is obtained by the operator,  a certain period is
needed for the decision variables to play a controlling role, a
phenomenon called lag. Most existing methods are based on
the  correlation  coefficient  or  manual  experience  method  to
obtain  the  maximum correlation  of  a  certain  lag  time.  Gao
[28] calculated the lag time between the blast volume, oxy-
gen  content,  permeability,  and  coal  injection  based  on  the
autocorrelation  coefficient  method.  An et  al. [29]  showed
that the gray relative correlation analysis method was used to
analyze the time lag between BF operation,  gas  usage rate,
[Si], and BF status. Li et al. [22] assigned weights to the con-
trol parameters on the same day, day 1 later, and day 2 later
through manual experience and carried out aging processing.
However,  in  the  actual  production  process,  the  lag  time  of
parameters is uncertain and changes within a certain range in
different stages or under various working conditions, and the
parameters  fluctuate  to  different  degrees  within  this  range.
Therefore, this kind of method may cause inaccurate lag time
and  the  lack  of  fluctuation  information,  resulting  in  the  in-
consistency with the actual furnace status. Wang et al. [30]
proposed a time lag analysis method for BF parameters with
uncertain time delay information. By calculating the time lag
at different stages, the lag time range of parameters was ob-
tained.  Then,  the  mean  value  and  variance  of  the  process
parameters corresponding to the lag range were used as the
model  input,  effectively  improving  the  accuracy  of  model
prediction.

Table 1.    Data pre-processing of BF

Type Class Method Description

Missing data
processing

Small amount of missing
data（<5%）or significant amount
of missing data (>60%)

Delete Efficient and effective

Intermittently short-term loss of data Interpolation High-frequency and
predictable

Continuously long-term loss of data Machine learning Correlations between other
variables

Outlier data
processing

Manual input error or sensing device
failure

Statistical methods such as box plot and three-
sigma; Machine learning methods such as
clustering and isolated forests; Process methods
such as operating guidelines of BF

Delete or correct or as
missing value

Abnormal furnace state Save and analyze separately

Mixed-
frequency data
processing

High-frequency data are converted
to low-frequency ones Average or sum or latest value Information waste

Low-frequency data are converted to
high-frequency ones Copy Information inflation

Mixed-frequency data model Mixed data sampling and mixed frequency vector
autoregression Lossless
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 3.2.2. Correlation analysis of the BF data
Association analysis, also known as association rule min-

ing, can discover the relationship between items in the data
set and determine the association pattern between item sets,
such  as  the  Apriori  and  the  frequent  pattern-growth  (FP-
growth) algorithm. The number and quality of rules based on
the  preset  minimum  support  degree  and  minimum  confid-
ence  degree  can be  controlled  by the  FP-growth algorithm,
especially for the high quality rules.  The BF data are noisy
and  easily  jittered,  and  the  FP-growth  algorithm  with  low
data requirements is suitable for their processing. Li [16] ad-
opted FP-growth algorithm to determine the association rules
between the quality of sinter and coke ratio, permeability in-
dex, and heat load, and the reasonable control range of sinter
quality  parameters  were  quantified  and  obtained.  However,
the data applied in the Apriori and FP-growth and their min-
ing results must be discrete. Although most of the BF data are
sequenced, the results of data mining should be accurate val-
ues or ranges. Ming [31] put forward the concept of temporal
association rules to solve the problem of furnace status pre-
diction. Based on this, a weighted temporal association rule
was constructed to reflect the time value of data, and its ef-
fectiveness was proven by simulation experiments.

 3.3. Prediction of the key variables for BF

 3.3.1. Important feature screening of BF
The BF ironmaking  process  is  complex,  and  the  data  of

the BF system originate from many sources and have a wide
range. However, among these many parameters, the covari-
ates that have an evident relationship with a specific key in-
dex  of  BF  are  limited.  In  contrast,  if  irrelevant  factors  or
weakly  correlated  factors  are  selected,  not  only  the  predic-
tion  accuracy  of  the  model  will  decrease,  but  the  training
speed of the learner will also increase. Therefore, the accur-
ate dimensionality reduction of BF data is needed. The meth-
ods commonly used in processing BF data include feature ex-
traction and selection.

(1)  Feature  extraction  is  an  essential  process  in  machine
learning in terms of dimensionality reduction and removal of
irrelevant  and  redundant  data,  and  it  can  increase  the  effi-
ciency and effectiveness of machine learning. Feature extrac-
tion is very different from feature selection, though both are
means of data dimensionality reduction. The former includes
the conversion of arbitrary data into numerical features that
can be used for machine learning while the latter is the ap-
plication  of  these  features  to  machine  learning.  Feature  ex-
traction is generally applied for processing data from high-di-
mensional  to  low-dimensional  feature  space  through  math-
ematical  methods.  The  original  feature  space  is  changed  if
different attributes are combined to obtain a new one. For ex-
ample [32–34], principal component analysis, kernel princip-
al  component  analysis,  and  independent  principal  compon-
ent analysis have been adopted to achieve the dimensional-
reduction  treatment  of  BF  parameters.  Feature  extraction,
while  enabling dimensionality  reduction,  can also  construct
more meaningful underlying variables to help generate deep-

er insights into data.  However,  the physical meaning of the
new features constructed by feature extraction is far from that
of the original features, and the extracted features show weak
interpretation [35], which is very unfavorable for guiding the
operation  of  the  BF  and  analyzing  the  causes  of  abnormal
furnace status.

(2)  The  feature  selection  of  BF includes  feature  sequen-
cing  and  combination  (Fig.  2(a)  and  (b)).  Feature  ranking
method is  used to  score  each feature  by the  specific  evalu-
ation criteria, and the features are sorted in descending order
based on the score and the first k features as input features of
the prediction model are selected. For example [36–37], the
features showing a strong correlation with key indicators of
BF  are  screened  out  using  Pearson  correlation  coefficients,
Spearman correlation coefficients, and maximal information
coefficient  (MIC).  Although  the  characteristic  selection
method  has  a  high  efficiency,  the  coupling  relationship
between BF parameters is ignored. Feature combination can
be divided into global,  sequence,  and random searches.  Al-
though  the  optimal  feature  combination  has  been  found  by
global search, the calculation cost is extremely high. For 100-
dimensional BF parameters, there are 2100 characteristic com-
binations.  Sequential  searches  can  be  divided  into  forward,
backward, and bidirectional searches. The time complexity of
the sequence search is low, but the feature subset is locally
optimal  [35,38].  Random  search  is  better  than  sequence
search,  exceeding the  locally  optimal  solution has  a  certain
probability,  and  the  approximate  optimal  solution  can  be
found.  Common  random  search  methods  include  particle
swarm  optimization  and  genetic  algorithms  [39–41].  The
model prediction accuracy or error is a metric used to meas-
ure the overall performance of feature combination, and it is
better  than  feature  ranking,  which  is  used  to  estimate  the
score of a single feature. Practically, multiple feature selec-
tion methods can be combined to improve the efficiency and
performance of the model (Fig. 2(c)). For example, the fea-
ture sorting method is used to remove irrelevant features, and
the optimal feature subset is selected by the feature combina-
tion method.

In  the  process  of  characteristic  selection  of  BF,  the  dis-
tinction between ex ante and ex post variables should be giv-
en considerable attention. If the ex post variables exist in the
feature  set,  the  model  will  lose  its  meaning.  Additionally,
characteristic  selection  of  BF should  be  combined  with  the
metallurgical process. Over-reliance on algorithms will occa-
sionally lead to the elimination of important features. For ex-
ample  [23,42],  BF  characteristics  were  first  screened  from
the BF smelting mechanism, and the remaining characterist-
ics were screened by feature selection technology.
 3.3.2. Forecasting of BF key variables

With the continuous development of big data technology,
many machine learning algorithms have achieved good res-
ults in the application of prediction of BF key variables; such
machine learning algorithms include those of support vector
machine (SVM) [35,43–44], gradient lift [45–48], neural net-
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work [36,49–50], and ensemble learning [22,51–52].
The SVM is a machine learning algorithm based on stat-

istical  theory.  It  has  many  unique  advantages  in  solving
small-sample,  nonlinear,  and  high-dimensional  pattern  re-
cognition problems. Wang et al. [36] built a prediction mod-
el for temperature of hot metal by support vector regression
and extreme learning machine.  The prediction model based
on the support vector regression algorithm was superior, with
5.5% higher prediction than that of the extreme learning ma-
chine. The gradient lift is an ensemble learning algorithm and
machine  learning  technique  commonly  used  in  regression
and classification. It generates a prediction model in the form
of a set of weak prediction models. Zhao et al. [45] used XG-
Boost to build a prediction model of BF permeability.  XG-
Boost  showed great  advantages  compared  with  the  random
forest and linear regression models, and the accuracy of the
model was 94.27% within the error range of ±1.5%; it can ac-
curately predict the permeability index of the next hour. BF
ironmaking is a dynamic time series. The reaction process of
BF  is  gradual,  and  the  current  furnace  status  is  correlated
with  historical  furnace  condition  and  requires  a  neural  net-
work to dynamically remember and keep the persistence of
historical  information  while  learning  the  new  information.
The  long-  and  short-term memory  neural  network  (LSTM)
has achieved remarkable results in the BF parameter predic-
tion.  Cui et  al. [49]  introduced  neural  network  time  series
model to realize the intelligent prediction of silicon content in
hot metal, and the absolute error of prediction was less than
0.2% under the condition that the confidence interval of pre-
diction results was more than 95%.

By constructing and combining multiple learners to com-

plete learning tasks, more significant generalization perform-
ance  was  obtained,  and  the  stability  of  the  learning  system
was also enhanced by ensemble learning [51].  A combined
model based on complete ensemble empirical mode decom-
position  with  adaptive  noise  (CEEMDAN)  and  SVM  and
LSTM was proposed to improve the prediction accuracy of
the gas utilization rate  [52].  LSTM and SVM were used to
predict the decomposed high- and low-frequency modes, re-
spectively. Finally, a combined prediction model of the gas
usage rate was established, and it was more accurate than the
single SVM model and LSTM model.

The prediction models of BF key variables can be roughly
divided  into  two  categories:  regression  analysis  and  time
series prediction models. For BF operators, determining the
changing trend of  the  furnace  status  at  the  next  moment  in
advance and guiding the BF production were more valuable.
The time series prediction cannot be randomly divided into
the training and test  sets,  such as  in  the regression analysis
prediction, but should be divided based on the time sequence
of data.  Given the approximate data distribution of the ran-
domly divided training and test sets, the accuracy of the pre-
diction model will be inflated, which is one of the most com-
mon problems in the current research. Additionally, the pre-
dictive models in some studies achieved high accuracy rates,
but the ex-post variables were used as input variables to the
model, which is a fatal problem. Therefore, the BF smelting
process in the modeling process must be understood to avoid
such problems.

 3.4. Evaluation of BF status

In traditional BF operation, the furnace status is judged by
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the experience of operators. The advantage of expert experi-
ence is the very high degree of integration with metallurgical
theory  and  actual  furnace  conditions.  However,  due  to  the
limited energy of operators, they can only deduce and make
decisions about furnace conditions by focusing on changes in
a small number of key indicators. A comprehensive analysis
was conducted on raw fuel conditions, operating system, and

furnace  status.  Therefore,  a  long  recovery  cycle  of  furnace
status was required through expert experience. With the de-
velopment  of  AI  technology,  the  stability  of  the  BF  status
was evaluated using big data and machine learning methods,
and some achievements have been obtained. At present, the
evaluation  methods  of  BF status  based  on  big  data  techno-
logy are mainly divided into three categories (Fig. 3).
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(1)  One aspect  affecting the BF status  is  considered and
used as the basis for evaluation. Such as furnace heat or coke
ratio. Although this kind of method greatly reduces the diffi-
culty of characterizing the BF status, it  is a one-sided com-
prehensive evaluation. Particularly, when the selected index
is  in  a  reasonable  range,  the  actual  performance  of  the  BF
may be poor due to the influence of other factors. Zhao [53]
analyzed the BF status from the perspective of BF temperat-
ure,  and  various  machine  learning  algorithms  were  used  to
evaluate the BF status by assessing whether the BF was cool-
ing or heating. The furnace temperature level is only one of
the  important  indexes,  and  the  status  cannot  be  reflected
completely.

(2)  Some representative  indexes  are  selected  from many
aspects of BF. Each index is assigned a weight, and an inde-
pendent scoring rule is established for each index. Finally, the
score for each index is weighted and summed to obtain a total
score  to  evaluate  the  BF  status.  By  classifying  the  various
parameters, setting weights, and limiting the range of the up-
per and lower limits and interval  scores for each index, the
comprehensive  BF  evaluation  and  analysis  model  of  the
smooth  smelting  index  has  been  established  by  Maanshan
Iron and Steel Co.,  Ltd, China, and the quantitative scoring
method  was  adopted  to  evaluate  real-time  parameters  [54].
As  a  result,  the  BF  status  was  reflected  more  comprehens-

ively by the selected wide range of BF parameters. The dis-
advantage  was  that  the  expert  experience  was  applied  to
judge the scoring rules of parameters, and valuable informa-
tion in the BF data was not fully used. Therefore, the evalu-
ation system is more difficult to update due to the lack of in-
telligent algorithm support.

(3)  Representative  indexes  are  selected  from various  as-
pects of BF, and the dimensions of the selected indexes are
reduced to a comprehensive index or category label instead
of  the  whole  original  index  set  to  evaluate  the  BF  status
through  unsupervised  learning.  For  example  [55–56],  mul-
tiple indexes of BF are selected as basic parameters, and the
comprehensive  indexes  of  BF status  are  calculated  through
factor analysis or principal component analysis. The advant-
age is that multiple indexes of BF are concentrated into one
comprehensive index, and judging the furnace status by ob-
serving the comprehensive index becomes more convenient
and efficient. However, the disadvantage is that the common
factor interpretation after concentration by factor analysis or
principal component analysis cannot be completely determ-
ined. Additionally, the traceability of the comprehensive in-
dex worsens after  the 2D reduction processes,  which indic-
ates that the initial factors causing the BF status disorder can-
not be accurately located when the status index deteriorates.
Jiang [57] and Ren [58] used K-means clustering algorithm
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to  convert  multiple  BF parameters  into a  category or  grade
label by which the BF status was classified and evaluated dir-
ectly; however, this special label required an accurate defini-
tion.  Additionally,  with the increase in the number of para-
meters  involved  in  clustering,  the  clustering  space  became
more  complex,  and  the  overlap  of  the  clustering  boundary
became more evident.

Given the complex characterization of BF status, many re-
searchers have used the quality and production of hot metal
and fuel consumption indicators to represent the smooth op-
eration of a BF. The output and energy consumption of BF
are the final indicators, and the quality of the process is re-
flected by the quality of the results. A smoothly functioning
BF is represented by high output and low energy consump-
tion, and the opposite condition is a sign of poor BF condi-
tions. Through the weighing and evaluation of hot metal pro-
duction,  [Si],  and  fuel  ratio,  Deng et  al. [42]  evaluated  the
comprehensive BF status. This description was not accurate
enough,  and  the  logic  of  cause  and  result  was  reversed.
Meanwhile, a stable furnace status is the basis of high yield
and low consumption; it is the reason but not the result. If the
furnace status is ignored in the pursuit of output and energy
consumption,  the  benefit  is  short-lived.  Once  the  furnace
status becomes abnormal, the loss becomes greater, and the
life of the BF is affected. Therefore, when evaluating the BF
status, not only the quality of output and energy consumption
but also the quality of indicators reflecting the BF status, such
as  permeability  index,  heat  load,  furnace  temperature,  and
gas usage rate, should be considered.

Additionally, a large number of BF operation data contain
the deep characteristics of the BF smelting process; however,
the BF mechanism is not fully analyzed and used, and only
the  conventional  data-driven  modeling  algorithm is  used  to
build the BF model, which is bound to present difficulty in
achieving the ideal effect [59]. Additionally, most proposed
methods for BF fault diagnosis only diagnose BF states us-
ing short-term scale data. However, the probability of faults
is also related to the long-term scale running state of the BF.
An et al. [60] presented a two-layer fault  diagnosis method
for BFs on multiple time scales. The deterioration trend of the
BF was analyzed on a long-term scale, and an improved De-
mpster–Shafer  evidence  method  was  designed  to  diagnose
the faults of the BF on a short-term scale. Compared with the
traditional method, this novel method improves the accuracy
of  furnace  condition  diagnosis.  To  date,  specific  abnormal
furnace status has been diagnosed and analyzed by most re-

searchers,  and  no  complete  evaluation  system  of  the  BF
status has been observed. The excellent BF status evaluation
model not only makes a comprehensive and scientific evalu-
ation of the BF status but also traces and analyzes the cause
accurately when the status fluctuates or is abnormal. There-
fore, we should establish a complete furnace condition evalu-
ation system from four aspects, such as BF-operating state la-
bel, state score, condition prediction, and BF operating con-
dition root cause analysis.

 3.5. Optimization of BF parameters

Improvement  in  the  economic  benefit,  reduction  of  the
smelting cost,  and realization of  the low carbonization pro-
duction  should  all  be  based  on  the  stable  operation  of  BF.
When  the  furnace  status  fluctuates  or  is  about  to  fluctuate,
providing timely optimization suggestions for the operator to
prevent  the  occurrence of  abnormal  furnace status  or  to  re-
store the furnace status in time with minimum cost is the key
to ensure the stable operation of the BF. Given the complex-
ity of the BF smelting process and the limitation of the auto-
mation level, the stable production of BF at this stage mainly
depends  on  the  operation  of  technical  personnel,  and  true
closed-loop control cannot be realized. A more effective way
is  recommending  optimization  suggestions  to  the  operator
through the BF optimization model and assisting the operat-
or in guiding stable production.

In the actual production, the optimization of BF is mainly
based on metallurgical theory or expert experience [61–63].
Although it is highly explanatory and low risk, the efficiency
is low. With an increasing number of researchers engaged in
this research, big data technology achieved preliminary res-
ults  in dealing with parameter optimization of the BF. This
parameter  optimization  is  mainly  divided  into  single-and
multi-objective optimizations (Table 2).

The single-objective optimization of BF is usually based
on the local aspect. Although the solved optimization strategy
can  exert  a  good  optimization  effect  on  the  target  index,  it
will also cause an uncertain influence on other indicators of
BF,  which cannot  meet  the  comprehensive  requirements  of
high quality, low consumption, high yield, and smooth run-
ning of BF; therefore, achieving the expected effect on prac-
tical applications is difficult. Tian et al. [64] established the
optimized model of the BF fuel ratio. And although the op-
timization effect of the fuel ratio was predicted, the influence
on  furnace  status  during  the  implementation  of  the  adjust-
ment scheme was ignored. If the furnace status is not smooth,

Table 2.    Optimization of the BF parameters

Type Advantages Disadvantages
Single-objective
optimization

The solution is easier, and the
optimization effect is better.

The combined requirements of high quality, low consumption, high
production, and stability of the blast furnace could not meet.

Multi-objective
optimization

Multiple objectives are coordinated so
that each objective is as optimal as
possible.

The optimization model is complex and difficult to solve. The Pareto
optimal solution is applied directly, and the final solution selection is
difficult.

Multi-objective
converted to single-
objective

The difficulty of optimization is greatly
reduced.

The allocation of weights is subjective to a certain extent.The objective
function is complex when the objectives are constrained to each other.
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the  final  optimization  effect  will  be  greatly  reduced.  In  the
multi-objective optimization problem of BF, a strong coup-
ling is  observed between indexes,  and the performance im-
provement  of  one index may cause the performance reduc-
tion of another or more indexes. Attaining all the indexes of
BF to reach the optimal value is difficult. The best method is
to compromise and coordinate the treatment among indexes.

Common  multi-objective  optimization  methods  include
linear programming, genetic algorithms, and particle swarm
optimization.  For  example  [65],  the  linear  programming
method was  adopted  to  establish  a  mathematical  model  for
BF  ironmaking  optimization  with  energy  consumption  and
cost  as  objective  functions.  The  optimization  variables  and
constraints were determined based on the objective functions
and BF process characteristics. Then, the multi-objective op-
timization  results  were  obtained  through  a  single-objective
optimization.  Li et  al. [22] applied the genetic algorithm to
optimize the  two objectives  of  coke ratio  and permeability,
which can be controlled in a rational range by Pareto optimal
solutions. Dong [66] established a multi-objective optimiza-
tion model for coke ratio and output of hot metal of BF using
particle swarm optimization algorithm. However, with the in-
crease  in  the  number  of  optimization  objectives,  the  com-
plexity of the optimization model increased, which was dis-
advantageous for obtaining the solutions.

Therefore, the multi-index optimization problem of BF is
usually converted into a single-index problem by the weight
method. For example [67], the weighted method was applied
to convert the cost, energy consumption, and carbon dioxide
emission  of  BF  ironmaking  into  a  comprehensive  index  to
solve  the  multi-objective  optimization  problem.  However,
the distribution of the weighted value of each index of BF is
subjective. When the objectives are restricted to each other,
the objective function will become very complicated.

In the study of BF parameter optimization, especially the
multi-index  optimization  problem,  the  Pareto  optimal  solu-
tions are not unique. From the results, an approximate optim-
ization effect was achieved. However, given the complexity
of  the  BF  ironmaking  process,  practical  application  results
will  vary  greatly.  A  selection  mechanism  for  an  optimal
strategy  suitable  for  the  current  furnace  status  from  many
Pareto  optimal  solutions  is  a  powerful  standard  to  measure
the  applicability  of  the  optimization  model.  If  attention  is
only paid to the optimization effect, and the constraints of BF
production conditions are ignored, the application of the op-
timization strategy will be poor. The stable and smooth oper-
ation of BF practical production must be ensured. The oper-
ator expects to stabilize the furnace status by controlling the
operation with the most convenience, lowest risk, and lowest
cost.  Therefore,  in  the  feedback  optimization  strategy,  we
should not  only pay attention to the optimization effect  but
also comprehensively consider the feasibility and cost of op-
erations. Only with low risk, low cost, and high return as the
optimization criteria can big data technology be promoted to
achieve  better  results  in  the  application  of  BF optimization
control.

 4. Research  of  intelligent  BF  technology  at
NEU

Some preliminary works on the development and applica-
tion of intelligent BF ironmaking technology have been car-
ried out by Professor Chu’s team from NEU. Both the theor-
etical foundation and practical experience were accumulated,
and some results  revealed  good industrial  applications.  Ac-
cording  to  the  process  and  data  characteristics  of  BF  iron-
making,  the  historical  and  real-time  data  of  the  whole  pro-
cess were integrated. On the basis of data preprocessing, an
intelligent  BF  model  was  developed  by  integrating  process
mechanisms, data analysis, and expert experience and using
the time series correlation analysis  method and big data AI
technologies, such as deep learning and integrated learning.
This  new  technology  is  described  in Fig.  4.  Based  on  the
whole BF ironmaking process on an industrial big data plat-
form, ironmaking data were managed in a standardized way,
and data quality was improved. A digital twin-model learn-
ing system for BF was proposed based on the fusion of pro-
cess  mechanisms,  data  algorithms,  and  expert  experience,
where the state of the BF smelting process was scientifically
analyzed  based  on  online  multi-objective  optimization  and
dynamic  control  systems to  guide  the  safe,  stable,  low car-
bon, and efficient production of BF. The ultimate goal was to
improve the low-carbon and intelligent level of the BF iron-
making process.

 4.1. Data  management  and  association  rule  mining  for
the whole BF system

In  accordance  with  the  BF ironmaking  process,  the  pro-
duction historical and real-time data, including the raw ma-
terials and fuel data, operation data, smelting status data, and
slag and iron data, were collected, and the detailed classifica-
tion is presented in Fig. 5. Based on data preprocessing tech-
nology and expert experience, data conversion, missing value
and  outlier  identification,  scientific  processing,  and  data
standardization were  carried  out.  Through mixed-frequency
data  processing,  the  problem  of  data  sample  imbalance
caused  by  different  data  acquisition  cycles  of  various  pro-
cesses  was  solved,  and  evident  improvement  was  observed
among data that could not be directly matched and invoked
between different processes. Finally, standard and high-qual-
ity  data  for  correlation  analysis  and  intelligent  prediction
were provided by scientific  data  management  to  ensure  the
accuracy of the intelligent model.

For the aspect of delay and correlation analysis, based on
MIC  analysis,  the  influences  of  BF  raw  materials  and  fuel
and operating parameters on the time lag of BF key indicat-
ors were analyzed. The sliding time window was adopted to
solve the lag results within 0–6 h (within the smelting cycle
of small BFs), and the corresponding time lag with the max-
imum correlation was extracted. With permeability index as
an example, a part of the results is shown in Fig. 6. The lag
time for permeability index due to blast pressure was 14 min,
and the lag time of coal injection on permeability index was
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30 min. Additionally, the FP-growth algorithm was used to
mine the association rules for the key parameters of BF status
from  raw  materials  and  fuel  and  operating  parameters,  im-
portant factors associated with the key parameters were ex-
tracted, and the reasonable range of BF operation was quanti-

fied. Some results are listed in Table 3. For example, when
the  blast  volume  was  in  the  range  of  2058.4  to  2157.0
m3/min,  the  hot  air  temperature  ranged  from  1183.4  to
1229.0°C, oxygen enrichment was in the range of 6653.34 to
7299.0 m3/min, coal injection was in the range of 15981.32 to
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17875.56 kg/h, and the permeability index was within 82.48
to 88.73.

 4.2. Intelligent  prediction  of  key  variables  of  BF  driven
by mechanism and data

In terms of the prediction of the direct key variables of BF,
the radial coke load and drop point of the burden calculated
by the BF burden distribution simulation model as derivative
features, six machine learning methods, including SVM, ran-
dom forest, gradient-boosted regression trees, XGBoost, light
gradient-boosting  machine,  and  artificial  neural  network,
were applied to predict the coking ratio, permeability index,
heat load, and production hot metal. To avoid the adaptabil-
ity difference of a single machine learning method to differ-
ent data characteristics and variable parameters, we used the
hyperparameter tuning technology and ensemble learning to
optimize the above intelligent model to further improve the
accuracy, stability, and generalization of the prediction mod-
el.  After  optimization,  the  deviation  between  the  predicted
and  actual  values  of  each  parameter  was  significantly  re-
duced,  and  the  coefficient  of  determination  (R2)  was  more
than  0.9.  This  indicates  that  the  prediction  effect  was
good,  and  the  model  had  an  excellent  robustness  perform-
ance, realizing the accurate prediction of the key parameters
of  the  BF  operating  status  (Fig.  7).  The  BF  key  parameter
prediction model was predicted 1 h in advance with an R2 of
0.9186  for  the  coke  ratio  prediction  model,  0.9314  for  the
permeability index prediction model, 0.9026 for the heat load
prediction model, and 0.9228 for the iron production predic-
tion model.

In terms of predicting the indirect key variables of BF, the
physical and chemical heats of hot metal were used to char-
acterize furnace heat. A slag–iron heat index model based on
the BF process principle was established using the heat and
carbon–oxygen balances in the high-temperature zone of the
BF. An intelligent prediction model of BF heat with high fre-
quency and accuracy was constructed by integrating industri-
al  big  data,  smelting  mechanism,  and  expert  experience
(Fig. 8). The accuracy of the temperature of hot metal predic-
tion model was 92.16%, with an error range of ±10°C, and
that  of  [Si]  in  prediction  model  was  90.34%,  with  an  error
range of  ±0.1%. The furnace temperature  prediction results

were predicted 1 h in advance. An intelligent prediction mod-
el  of  BF  heat  has  been  applied  online  in  steel  enterprises.
During  the  application  period,  the  prediction  accuracy  was
more than 90%. Additionally, the stability rate of the BF tem-
perature  increased  by  30%.  Moreover,  the  mechanism  and
data dual-driven modeling method was used to realize the in-
telligent  evaluation and prediction of  the activity  of  the BF
cylinder and the thickness and stability of the slag crust. The
related research results have been applied in the industry.

 4.3. Multi-objective  intelligent  optimization  of  BF  iron-
making parameters

With the coke ratio, permeability index, and thermal load
of  BF  as  the  core  optimization  objectives  and  constraining
the criteria of high yield, low consumption, high quality, and
smooth  behavior,  genetic  algorithms  and  machine  learning
were adopted to conduct multi-objective optimization of the
nonlinear system of BF ironmaking. Then, the comprehens-
ive optimal interval of the key variables of BF was obtained.
A part of the results are shown in Fig. 9 and Table 4. The red
points  are  the  Pareto  fronts,  and  the  blue  points  denote  the
non-Pareto  solutions  resulting  from  the  optimization  al-
gorithm process. The ranges of Pareto optimal solutions for
the  coke  ratio  and  permeability  index  obtained  by  the  im-
proved  optimization  algorithm  were  reduced  to  [340.1,
349.2] and [2.53, 2.57], respectively. Based on multi-object-
ive optimization results,  the BF operator can select the cor-
responding  control  parameters  from  them,  considering  the
BF production  requirements  and  its  smelting  conditions,  to
achieve optimal control of the BF. During the application of
the technology in a steel plant, the qualified rate of hot metal
increased from 74.5% to 86.8%, the stability of the coke ra-
tio  and  permeability  index  significantly  improved,  and  the
fuel cost was reduced by 2.5 yuan per ton of hot metal.

 5. Conclusions and prospect

(1) The implementation of intelligent technology has been
actively promoted by domestic and foreign steel enterprises.
Basic data platforms and intelligent system architecture were
built, and the application of big data and information physics
systems in the steel field was explored. Intelligence is an im-

Table 3.    Rules for correlating blast furnace operating parameters with permeability index

No. Affiliation rules Result Confidence / %

1 Blast temperature ∈ (1094.0, 1153.43], blast volume ∈ (1943.0,
2016.56], and oxygen enrichment ∈ (4201.0, 6037.21] Permeability index ∈ (71.0, 82.48] 94.9

2 Blast volume ∈ (1943.0, 2016.56] and
blast temperature ∈ (1094.0, 1153.43] Permeability index ∈ (71.0, 82.48] 92.7

3 Coal injection ∈ (15981.32, 17875.56], blast volume ∈ (1943.0,
2016.56], and blast temperature ∈ (1094.0, 1153.43] Permeability index ∈ (71.0, 82.48] 91.5

4
Blast volume ∈ (2058.4, 2157.0], blast temperature ∈ (1183.4,
1129.0], oxygen enrichment ∈ (6653.34, 7299.0], and coal
injection ∈ (15981.32, 17875.56]

Permeability index ∈ (82.48, 88.73] 95.4

5 Coal injection ∈ (15981.32, 17875.56], blast volume ∈ (2058.4,
2157.0], and oxygen enrichment ∈ (6653.34, 7299.0] Permeability index ∈ (82.48, 88.73] 93.6

6 Coal injection ∈ (15981.32, 17875.56], blast temperature ∈
(1183.4, 1129.0], and oxygen enrichment ∈ (6653.34, 7299.0] Permeability index ∈ (82.48, 88.73] 90.2
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portant strategic direction for developing the steel industry. A
number of policy decisions have been made in our country to
promote intelligent transformation and upgrading of the steel
industry.

(2)  For  the  aspect  of  BF  data  preprocessing,  regarding
problems, such as missing data, abnormal data, and difficulty

in matching data, the data problems and characteristics of the
algorithm itself must be comprehensively considered. Here,
data  processing  methods  were  scientifically  selected,  and
cleaning and integration of  complex data  of  BF were  com-
pleted,  which was conducive to  improving the authenticity,
accuracy,  and  integrity  of  data  in  multiple  dimensions  and
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enhancing data quality effectively.
(3) For the analysis of important BF characteristics, elim-

ination  or  weakening  of  the  influence  of  BF  raw  materials
and fuel conditions and operation on the time lag of econom-
ic indicators through time lag analysis was beneficial and im-
proved the accuracy of data. Based on this,  through the BF
process mechanism combined with feature selection and ex-
traction  technology,  the  selection  of  important  BF  features

was effectively completed to ensure the accuracy of the lo-
gical relationship between the operating parameters and eco-
nomic indicators. Additionally, for the complex BF smelting
process, the data model not only obtained a high accuracy but
also assisted the BF operator in guiding the production. Thus,
a mechanism that will enable the model and its features to at-
tain good interpretability is an important research direction in
the future.

(4)  For  the  BF  parameter  prediction  and  furnace  status
evaluation,  their  changing  trends  must  be  mastered  in  ad-
vance to assess and stabilize the running status. However, re-
lying on experience to judge the trend of furnace conditions
and determine the status accurately and dynamically was dif-
ficult.  Also,  the  results  of  the  data-driven  BF  status  evalu-
ation  method  showed  poor  interpretation,  and  tracing  the
cause of furnace status disturbance was difficult. Therefore,
an intelligent BF model integrating data information and pro-
cess mechanism was built to achieve the accurate prediction
of key indicators and scientific evaluation of BF status. Fu-
ture research is  needed to identify abnormal  furnace condi-
tions, especially the use of AI techniques to predict abnormal
furnace  conditions.  Additionally,  BF  parameter  prediction
and  furnace  status  evaluation  model  should  be  combined

Table 4.    Pareto solution set (partial results)

No. Sinter
basicity

Sinter
strength / %

Coke breaking
strength, M40 /

%

Coke abrasion
strength, M10 /

%
… Slag

basicity
Pellet

ratio / %

Coke
ratio /
(kg∙t−1)

Permeability
index

Thermal
load /

(GJ∙h−1)
1 2.05 81.3 90.7 5.20 … 1.24 25.7 340.1 2.57 130.78
2 2.05 81.3 90.7 5.20 … 1.24 25.7 340.1 2.57 130.99
3 2.05 81.3 90.7 5.20 … 1.24 25.9 340.2 2.57 135.25
… … … … … … … … … … …
48 2.17 84.0 91.2 5.12 … 1.25 34.3 349.1 2.53 126.09
49 2.17 84.1 91.2 5.11 … 1.25 34.3 349.2 2.53 126.57
50 2.18 84.0 91.2 5.12 … 1.25 34.2 349.2 2.53 126.43
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with expert systems to maximize the use of AI technology to
improve BF production efficiency.

(5) For the multi-objective optimization of BF parameters,
the low risk, low cost, and high return should be considered
as optimization criteria,  and the risk degree,  operation cost,
and optimization effect of the optimization strategy should be
comprehensively  evaluated.  The  operation  with  the  lowest
risk,  and  the  lowest  cost  was  finally  applied  to  improve
smooth smelting. The ultimate goal of BF parameter optim-
ization is to achieve closed-loop automatic control of the BF,
which  is  still  difficult  to  achieve  under  current  production
conditions  and  operating  technology,  especially  when  fur-
nace  conditions  fluctuate  drastically.  Therefore,  further  re-
search  on  the  optimization  and  control  of  BF  conditions  is
still needed, especially with regard to feedback under abnor-
mal furnace conditions.

(6) AI technology has a huge potential to be used in solv-
ing “black box” problems and optimizing the BF ironmaking
process. With the effective integration of process mechanics
and  AI  technologies,  the  future  of  the  BF  ironmaking  pro-
cess will be highly automated, digital, and intelligent and no
longer rely on the experience and feelings of operators. The
current research will increase operator’s awareness of intelli-
gent  BF technology.  Meanwhile,  the  gradual  application  of
big data technology in BF has a positive effect on improving
the BF status. However, the current level of application of AI
technology  in  ironmaking  is  at  a  technical  inflection  point
from “impractical” to “practical,” and  a  number  of  bottle-
necks must be solved before it can be deemed “very useful.”
To  achieve  an  intelligent  BF,  considerable  work  should  be
explored and improved continuously.
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