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Abstract: The technology of cemented paste backfill (CPB) is an effective method for green mining. In CPB, mixing is a vital process aiming
to prepare a paste that meets the non-stratification, non-segregation, and non-bleeding requirements. As a multiscale granular system, homo-
genization is one of the challenges in the paste-mixing process. Due to the high shearing, high concentration, and multiscale characteristics,
paste exhibits complex rheological properties in the mixing process. An overview of the mesomechanics and structural evolution is presented in
this review. The effects of various influencing factors on the paste’s rheological properties were investigated, and the rheological models of the
paste were outlined from the macroscopic and mesoscopic levels. The results show that the mechanical effects and structural evolution are the
fundamental factors affecting the rheological properties of the paste. Existing problems and future development trends are presented to change
the practice where the CPB process comes first and the theory lags.
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 1. Introduction

The development  and production of  metallic  mineral  re-
sources have resulted in many solid wastes and mining areas.
Based on statistics, the solid waste stock is approximately 70
billion tons, and underground mining goaves account for 1.28
billion cubic meters in China [1–2]. Solid wastes stacked on
surfaces occupy a large amount of land and pose a severe en-
vironmental threat. There is a high risk of dam breaks in tail-
ings  ponds,  landslides  in  waste  rock  fields,  and  numerous
collapse  accidents  in  goaves.  Solid  wastes  and  goaves  are
two  primary  sources  of  pollution  and  hazards  from  metal
mines.  The  best  approach  is  to  fill  the  goaves  with  solid
wastes from mines [3–4]. As a new stage in the development
of filling technology, the process of cemented paste backfill
(CPB) involves preparing solid mine wastes into a high-con-
centration  slurry  that  meets  the  non-stratification,  non-se-
gregation, and non-bleeding requirements and then piping to
a goaf [5]. The CPB technology can optimize solid waste re-
source  utilization  and source  reduction,  promote  a  coordin-
ated solution to solid waste pollution and disaster prevention,
and  become  a  goal-oriented,  green,  efficient,  and  safe  pro-
duction in mines [6].

With the ascendant and rapid advancement, the CPB tech-
nology is being developed, which has been widely adopted in
more  than 200 metal  mines  in  China,  proving it  to  be  eco-

nomically beneficial [7]. However, in practice, filling materi-
als,  such as  tailings,  aggregates,  and binders,  in  the  mixing
process  are  not  evenly mixed.  As a  result,  the paste  cannot
meet the non-stratification, non-segregation, and non-bleed-
ing requirements, leading to pipe blocking in the transporta-
tion process and uneven strength of the stope-filling body [8].
The problem is mainly because engineering practices far ex-
ceed fundamental knowledge, and there is inadequate theor-
etical  research  on  complex  particle  transportation  during
mixing.  Hence,  it  is  critical  to  investigate  the  dispersion  of
materials.

The effect of paste mixing is affected by the particle scale,
concentration, and shearing effect. The composition of paste
spans more than six orders of magnitude, coarse aggregates
can reach the centimeter level, and tailings can be even smal-
ler than 100 nm [9].  Meanwhile,  the characteristic of being
more solid than liquid results in the paste with high viscosity.
The high concentration and multiscale features of paste cause
complex changes in the rheological properties [10]. Another
critical influence factor is the mixing condition. Continuous
shearing changes the mesostructure of the paste,  which dir-
ectly affects the macroscopic rheological properties [11]. The
aggregation, breakage, and dispersion of particles during the
mixing  process  are  governed  by  interparticle  interactions
[12–13].  Therefore,  the  rheological  properties  of  paste  are
primarily  determined  by  the  mesomechanics  and  internal 
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structure  [14–15].  However,  most  previous  studies  focused
on  the  mixing  method,  material  dispersion  simulation,  and
macroscopic  evaluation  of  homogenization  effects,  lacking
an understanding of the mesomechanics and mesostructure of
the  paste  [16–17].  Consequently,  clarifying  the  correlation
among  the  mesomechanics,  structure  evolution,  and  rhe-
ology of the paste during the mixing process is essential.

Based on the macroscale and mesoscale rheological mod-
els  of  the  paste,  this  paper  reviews  the  research  process  of
paste mixing. In view of the paste’s multiscale and high con-
centration characteristics, this paper is dedicated to studying
the rheological properties of multiscale granular systems un-
der shearing. It also presents a summary to clarify the mech-
anical  interactions  and  structure  evolution  that  governs  the
rheology of the paste. In this article, we hope to provide new
insights  into  the  effects  of  mesomechanics  and  structural
evolution on the rheological properties of paste, intending to
achieve a precise paste preparation.

 2. Mesomechanics  mechanism  of  multiscale
granular systems

In the mixing process, particles are in full contact with wa-
ter and are connected by liquid, resulting in a meso-hetero-
geneous  state  of  paste.  Continuous  shearing  changes  the
multiscale  granular  system from the  heterogeneous  state  to
the  homogeneous  state,  the  connection  between  particles  is
destroyed,  and  particles  are  fully  dispersed.  Based  on  the
particle  distribution  state,  the  mixing  process  in  the
multiscale granular system is divided into the pre-stage and
while-stage,  and  the  mechanical  mechanisms  of  the  two
stages are quite different [18].

 2.1. Mesomechanics mechanism in the pre-stage

The shearing force promotes the liquid to wet the particles
in the pre-stage of mixing. When the wet particles are close,
the liquid forms a liquid bridge at the contact point and the
nearby area so that the particles are connected, and a liquid
bridge  force  exists  between  the  particles.  The  liquid  bridge
force consists of a static liquid bridge force and a dynamic li-
quid bridge force. The dynamic liquid bridge force is gener-
ally more prominent than the static liquid bridge force [19].
Capillary,  viscous,  and  friction  forces  control  the  liquid
bridge force [20]. The capillary force is the resultant force of
the liquid surface tension and hydrostatic pressure. The vis-
cous force originates from the liquid between particles, and
the  accumulation  of  particles  generates  friction.  The  capil-
lary  force  promotes  particle  aggregation,  and  the  viscous
force and friction help particles to disperse. The water con-
tent of the paste is the main factor leading to the change in the
force between particles [21]. The capillary force reaches the
maximum and decreases with the increase in the water con-
tent  [22].  Correspondingly,  when  the  liquid  saturation  ratio
comes  to  approximately  20vol%,  the  liquid  bridge  force
reaches its maximum and then decreases [23].

Studies on the mesomechanics of the pre-stage are gener-
ally  conducted  with  research  knowledge  on  related  fields,

such as wet granulation and concrete rheology. By contrast,
studies  on  paste  mixing  are  described  qualitatively.  Mean-
while,  capillary,  viscous,  and  frictional  forces  continuously
act on particles at all scales. Hence, more research is needed
to  quantify  the  effects  of  mesomechanical  interactions  dur-
ing the pre-stage.

 2.2. Mesomechanics mechanism in the while-stage

Due to the extensiveness of the particle size in multiscale
granular systems, forces between particles are complex and
variable in the while-stage of mixing [24]. Mechanical inter-
actions between particles depend on particle gradation.  The
multiscale  granular  system is  divided into a  colloidal  and a
non-colloidal granular system based on the particle size of the
composition.  There are different interparticle forces for dif-
ferent granular systems.

In  the  colloidal  granular  system,  Brownian,  van  der
Waals, electrostatic repulsion, hydration, hydrodynamic, and
friction forces dominate the mechanical interaction between
particles.  Driven  by  the  temperature  gradients,  Brownian
forces  are  generated  that  promote  particle  diffusion  [25].
Several forces affect particle interactions with particle sizes
larger than the range of the Brownian force, including van der
Waals,  electrostatic,  hydration,  hydrodynamic,  and  friction
forces  [26–27].  The  granular  system exhibits  differences  in
interparticle  forces  depending  on  the  concentration  and
shearing conditions. The hydrodynamic force dominates the
colloidal  system of  medium-concentration  slurries,  whereas
the friction force dominates the system of high-concentration
slurries  [28].  The electrostatic  force prevents  particles  from
contacting one another at low shear rates, whereas the hydro-
dynamic  force  promotes  particle  aggregation  at  high  shear
rates [29–30].

Γ

In  the  non-colloidal  granular  system,  the  motion  of
particles  is  controlled  by  the  hydrodynamic  and  frictional
forces. The hydrodynamic force has a great effect on particles
larger than 10 µm [31]. The friction force is generated by dir-
ect contact between particles depending on two parameters,
i.e.,  the  distance  between  particles  and  particle  roughness
[32]. The particle roughness increases the apparent radius of
particles, increasing the density of the frictional contact net-
work. As the distance between particles is less than or equal
to  the  particle  roughness,  friction  occurs  between  particles
[33–34]. Particles tend to rearrange, and the slurry transitions
from frictionless to friction-dominated states [35]. The con-
centration  significantly  affects  the  interparticle  forces,  with
the  hydrodynamic  force  dominating  between  aggregates–
particles  and  aggregates–mortar  in  low-concentration  slur-
ries  and the frictional  force dominating between aggregates
in high-concentration slurries [36–37]. The dominant force in
a  multiscale  granular  system  can  be  determined  by  dimen-
sionless numbers, such as the Péclet number (used to evalu-
ate the relative magnitude between the hydrodynamic force
and Brownian force),  number (generally used to compare
the effects of the hydrodynamic force and colloidal force on
particle interactions), and Ba number (a modified Bagnold’s
number, which can be used to estimate the effect of the iner-
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tial force and viscous force) [38].
The  schematic  diagram  of  the  mesomechanics  of  the

multiscale  granular  system  during  the  mixing  process  is
shown in Fig. 1. The mesomechanics differ in the pre-stage
and  while-stage  mixing.  The  capillary  force,  viscous  force,
and friction dominate the interparticle forces in the pre-stage.
The Brownian force, electrostatic force, van der Waals force,
hydrodynamic  force,  and  friction  influence  the  while-stage

mesoscopic behavior. Combining the study of the interaction
force between particles  with  the analysis  of  the  influencing
factors  is  necessary.  The  interparticle  mechanics  research,
however, emphasizes the effects of colloidal particles on the
rheological  properties  of  paste  and  less  on  the  influence  of
non-colloidal particles. To fully explore the mesomechanics
mechanism,  colloidal  and  non-colloidal  particles  must  be
considered together.
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Fig. 1.    Mesomechanics during the pre-stage and while-stage mixing.
 

 3. Structural  evolution  of  multiscale  granular
systems

Particles  migrate  due  to  the  shearing  force  and  inter-
particle force, and the mesostructure of the multiscale particle
system  continues  to  evolve.  There  is  a  difference  in  the
mechanical  causes  of  the  structural  evolution  at  pre-  and
while-stage mixing. That is, the capillary force connects the
particles through the liquid bridge to form clusters [39]. The
friction force,  viscous force,  and shearing force prevent  the

particles from agglomerating at the pre-stage mixing. At the
while-stage mixing,  the Brownian force and van der  Waals
force  agglomerate  the  particles  into  clusters.  The  shearing
force  combined  with  the  electrostatic  repulsion,  hydro-
dynamic force, and friction force promotes the dispersion of
clusters [40].

 3.1. Structural evolution in the pre-stage

In the pre-stage of mixing, the dry particles are agglomer-
ated into clusters in contact with water. The formation of ag-
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glomerates in the pre-stage is shown in Fig. 2 [41]. As the li-
quid  content  of  the  system increases,  the  clusters  gradually
shift from the pendular state and funicular state to the capil-
lary state. The water content of the clusters varied in differ-
ent states. A liquid bridge connects the particles at the con-
tact  point  in  the  pendular  state.  In  the  funicular  state,  the
clusters are not completely wet, while in the capillary state,
all gaps in the clusters are filled with liquid [42]. The high li-
quid content enables the particle clusters to connect and form
agglomerates until the end of the pre-stage mixing, when the
paste  behaves  like  a “raspberry-like” shape  [43].  Liquid
bridges  connect  particles  to  form  the  network  in  the
multiscale granular system. As the water content of the gran-
ular system increases, the shortest distance required for the li-
quid  bridge  to  break  increases,  and  the  strength  of  the  net-
work structure decreases as the distance between particles in-
creases [44].  In the field of wet granulation, the water con-
tent of liquid bridges at different states is different. The max-
imum moisture content of liquid bridges in the pendular state

is approximately 13vol%, and the moisture content of liquid
bridges in the funicular state is 13vol%–25vol% [45]. Due to
the difference in the particle size and gradation of materials,
the moisture content of paste is more complicated than that in
wet granulation, so the effect of capillary force on the meso-
structure should be analyzed deeply.

The  agglomerates  are  destroyed  before  dispersion  [46].
Agglomerate  breakage has  two mechanisms:  one is  surface
erosion that generates small particles without overall damage
to the agglomerate, and the other is large-scale fragmentation
caused by tensile  stress,  which leads  to  the  cleavage of  the
agglomerate into two similar-size clusters [47–48]. Continu-
ous shearing simultaneously induces aggregation,  breakage,
and dispersion, jointly determined by the liquid surface ten-
sion, moisture degree of the particle surface, particle size, and
particle shape. The agglomeration and destruction of particles
maintain a dynamic equilibrium at the end of the pre-stage of
mixing [49].

 
 

Pendular state Funicular state Capillary state Agglomerate

Fig. 2.    Formation of agglomerates in the pre-stage [41]. Modified from Powder Technol., 117, S.M. Iveson, J.D. Litster, K. Hapgood,
and B.J. Ennis, Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review, 3–39, Copyright 2001,
with permission from Elsevier.
 

 3.2. Structural evolution in the while-stage

In the while-stage, the multiscale granular system is trans-
formed from the meso-heterogeneous slurry to the homogen-
eous paste. Multiscale particles agglomerate and destroy, and
reversible  and  irreversible  agglomerates  exist  at  this  stage.
Reversible  aggregation  forms  from  perikinetic  aggregation,
orthokinetic  aggregation,  and  differential  sedimentation.
Perikinetic aggregation is promoted by the Brownian force,
the  shearing  force  induces  the  orthokinetic  aggregation  of
particles, and differential sedimentation is caused by the dif-
ference in the particle settling velocity [50]. Irreversible ag-
glomerates form from the binder hydration, which is encap-
sulated  in  a  hydrate  film.  Reversible  agglomerates  may  re-
cover  after  the  clusters  and  agglomerates  are  destroyed  by
shearing. However, irreversible agglomerates cannot recover
to the original state, with a new hydrate film forming around
the released binder particles [51].

Studies on the structure evolution in concrete preparation
have  shown  that  fine  particles  agglomerate,  nucleate,  and
grow under continuous shearing [52]. Aggregates are mostly
wetted,  some wrapped in  fine  particles  simultaneously.  Af-

terward, the agglomerates are destroyed, and a slurry with a
uniform  distribution  of  multiscale  particles  is  formed  [53].
Paste  and  concrete  are  multiscale  granular  systems,  but  the
existing forms and mesoscopic structures of the materials are
different.  Paste  comprises  binders,  aggregates,  and  slurries
that have formed a network structure by tailings. Concrete is
composed of water, binders, sand, and aggregates.

The  mechanism  of  the  mesostructure  evolution  of  the
multiscale granular system during mixing is shown in Fig. 3.
A significant difficulty in the current research on the evolu-
tion  process  of  multiscale  granular  systems  is  that  most
choose to use macroscopic parameters to analyze the struc-
tural evolution qualitatively or only quantitatively analyze the
mesostructure  at  different  times.  The  information  on  the
structural  evolution  during  mixing  cannot  be  provided,  and
the theoretical model of structure destruction and generation
in the multiscale granular system has not been developed.

 4. Influencing  factors  of  paste  rheological
properties

In the mixing process, paste has high shearing, high con-
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centration, and multiscale characteristics. Shearing promotes
collision  between  particles,  and  the  concentration  and
multiscale  affect  particle  packing.  The  mesomechanics  and
structure evolution affect the paste rheology.

 4.1. Shearing

One of the factors that affect the paste’s rheological prop-
erties is shearing [54]. As the shear rate increases, the electric

double layer of particle diffusion decreases in cement-based
paste, and large-size agglomerates are formed by the particles
[55]. A high-concentration slurry exhibits a shear thickening
behavior under a high shear rate [30]. Based on the structural
evolution of  colloidal  suspensions and paste  characteristics,
the  rheological  properties  of  paste  can  be  categorized  into
equilibrium,  shear  thinning,  and  shear  thickening  stages,  as
shown in Fig. 4 [56].
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Fig. 4.    Mesoscopic evolution and rheological properties of a paste under shearing. Modified from E. Brown and H.M. Jaeger, Sci-
ence, 333, 1230-1231 (2011) [56]. Reprinted with permission from AAAS.
 

The slurry behaves as  shear  thinning as  the shear  rate  is
lower than the first threshold. The fluidity of the paste is bet-
ter  as  the  shear  rate  is  between  the  first  and  second
thresholds. When the shear rate exceeds the second threshold,
the  double  layer  structure  collapses,  and  the  ions  and  early
hydrates dissolve in water. The rheological properties of the
paste are similar to shear thickening. However, several stud-
ies  have  concluded  that  the  mesostructure  cannot  recover,
and the paste is a pseudo-shear thickening slurry [57–58].

Due to the high concentration and multiscale characterist-
ics  of  the  paste,  it  takes  longer  to  reach  the  homogeneous
state. Based on studies on cement-based slurries, binders un-
dergo a hydration reaction with water, and the short mixing
time efficiently induces the uneven dispersion of the binder
[59].  Increasing  the  mixing  time  can  effectively  reduce  the
size of agglomerates in the cement-based slurry and promote
the hydration reaction [60]. Appropriate mixing time is suffi-
cient to ensure the lowest apparent viscosity of paste, where-
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Fig. 3.    Mesostructure evolution of multiscale granular systems during mixing.
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as excessive mixing reduces the fluidity of the paste and the
CPB body strength [61].

 4.2. Concentration

Concentration (including the volume fraction, which is the
ratio of the solid volume to the slurry volume, and the mass
fraction,  which  is  the  ratio  of  the  solid  mass  to  the  slurry
mass)  affects  the  paste  mesostructure.  The  critical  volume
fraction φc and maximum volume fraction φm characterize the
packing state of particles [62], as shown in Fig. 5 [24]. When
the volume fraction is less than φc, the colloidal force domin-
ates  between  particles.  The  particles  begin  to  contact,  the
continuous  rigid  particle  network  is  formed  as  the  volume
fraction is greater than φc, the friction controls the flow beha-
vior of the slurry, and the colloidal force has little effect on
the mesostructure. Under a high volume fraction, the repuls-
ive force between particles cannot gradually bear the normal
force, and the direct contact area of particles increases. When
the volume fraction approaches φm, the particles are connec-
ted by solid-like substances [63].
 
 

(a) (b)

Fig.  5.      Packing  state  of  particles:  (a)  critical  concentration
and  (b)  maximum  concentration  [24].  Modified  from  Cem.
Concr. Res., 40, B.D. N. Roussel, A. Lemaître, R.J. Flatt, and P.
Coussot,  Steady  state  flow  of  cement  suspensions:  A  mi-
cromechanical state of the art, 77-84, Copyright 2010, with per-
mission from Elsevier.
 

The effect of the mass fraction on the rheological proper-
ties of paste is reflected in that a low mass fraction results in a
high porosity. By contrast,  a high mass fraction results in a
high viscosity [64].  Homogenization is hard at  a high mass
fraction of paste. As the slurry mass fraction is greater than
the critical mass fraction, the water content is too low, which
is not conducive to the hydration reaction of the binder. The
paste  yield  stress  and  dynamic  viscosity  exponentially  in-
crease with the increase in the mass fraction, and the fluidity
worsens  [65].  A  mass  fraction  of  paste  between  75%  and
85% is required for CPB technology.

 4.3. Particle scale

The particle scale affects the rheological properties of the
paste. A paste is composed of fine particles and aggregates,
and the fine particles contain tailings and binders [66].  The
particle  size  of  tailings  is  classified  into  three  categories:
sand, mud, and clay. Cement is generally used as the binder;
ground  blast  furnace  slag  and  phosphogypsum  can  also  be
utilized  [67–68].  Aggregates  are  usually  derived  from  the

waste rock generated in the mining process and the slag in the
smelting process. According to the technical specification for
unclassified tailing paste, the particle size of coarse aggreg-
ates is 4.75–20 mm, and the particle size of fine aggregates is
0.075–4.75  mm  [69].  The  effects  of  fine  particles  and  ag-
gregates on the rheological properties of the paste are signi-
ficantly different [70].

Tailings  and  binders  affect  the  rheological  properties  of
paste  in  terms  of  particle  size  composition,  particle  shape,
and  chemical  reaction  [71].  The  tailings  lubricate  and  pre-
vent aggregates from settling [72]. To ensure the transporta-
tion process, the mass fraction of tailings less than 20 µm in
the paste should be greater than 15% [73]. The particle shape
has a great impact on the fluidity of the paste, especially for
the paste with high aspect ratio particles [74]. There are two
theories on the binder on rheological properties of paste: One
theory holds that the binder alters the paste’s gradation distri-
bution, and at an appropriate amount of the binder, the paste’
s  viscosity  and  yield  stress  decrease  [75].  Another  theory
holds that hydrates cannot be discounted, and there is a net-
work structure composed of hydrates in the paste [76].

Another vital component of paste is aggregates. The struc-
tural effect caused by aggregates cannot be ignored [77]. A
high aggregate content leads to the loosening effect [62]. A
sufficient fine particle content efficiently induces the wall ef-
fect, whereas the wedging effect occurs as there are insuffi-
cient  or  too many particles  to  fill  the inter-aggregate voids.
The  particle  packing  density  decreases  by  the  structural  ef-
fects,  and  the  optimal  aggregate  content  can  be  found  in
multiscale granular systems [78]. The rheological properties
of  the  paste  need  to  be  comprehensively  considered  in
terms of the aggregate content, shape, and gradation [79–80].
In  the  case  of  high  aggregate  contents,  the  large-sphericity
aggregate is highly conducive to the paste flow [81]. Under a
low aggregate content, the plastic viscosity of a slurry is re-
duced  [82].  However,  increasing  the  content  of  large-sized
aggregates can also easily raise the possibility of pipe plug-
ging and stratification of  the  filling body [83].  The particle
size distribution and maximum particle size of the aggregate
play  a  significant  role  in  the  rheological  properties  of  the
paste. The greater the maximum particle size, the lower the
rheological  parameters  of  the  paste  [84].  Meanwhile,  if  the
particle  size  distribution  of  aggregates  is  overly  fine  or
coarse,  the  micropores  and  cracks  increase,  and  thus  the
strength of the filling body decreases. Therefore, optimizing
the particle size distribution of the coarse particles is essen-
tial  to  ensure  the  paste’s  fluidity  and  backfill  strength
[85–86].

In  summary,  the  shearing  effect,  concentration,  and
particle scale jointly determine the rheological properties of
paste, shearing induces multiscale particle migration, and the
determination  of  shearing  conditions  needs  to  combine  the
concentration  and  gradation  distribution.  Various  influen-
cing factors must be comprehensively considered in the mix-
ing  process,  and  the  multi-factor  optimization  design  can
achieve the goal of preparing the homogeneous paste.
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 5. Macroscale  and  mesoscale  rheological  mod-
els of paste

The shearing effect,  concentration,  and particle size sub-
stantially  impact  the  interaction  between  particles  and  the
mesostructure, which in turn affects the paste rheology. The
rheological  model,  including  the  macroscopic  and  meso-
scopic rheological models, can predict the rheological prop-
erties  of  the  paste  [87].  In  the  macro-rheological  model,
macro-parameters are considered to predict the granular sys-
tem’s  rheological  properties.  By  contrast,  the  meso-rheolo-
gical model quantifies the rheology from the perspective of
mesomechanics and structural evolution [88].

 5.1. Macroscopic rheological model of paste

Paste  exhibits  non-Newtonian  fluid  properties,  and  the
viscosity  and  yield  stress  are  two  characteristic  parameters
that quantify the rheological properties of a multiscale granu-
lar system. Viscosity is affected by the interparticle force, and
increasing the spacing or  reducing the particle  surface con-
tact can reduce friction and thus reduce viscosity [89]. Thixo-
tropy is manifested in the reduction of viscosity under shear-
ing and the gradual recovery of viscosity under static condi-
tions.  The  yield  stress  is  the  minimum  stress  at  which  the
slurry begins to flow. As the shear stress is smaller than the
yield  stress,  the  paste  resembles  an  elastic  solid.  When  the
shear stress is greater than the yield stress, the slurry begins to
flow viscously. The static and dynamic yield stress can char-
acterize the paste rheology. The static yield stress is the stress
required  to  initiate  the  slurry  flow,  and  the  dynamic  yield
stress  is  the  minimum  stress  to  maintain  the  flow  of  the
slurry, which corresponds to the shear stress at the shear rate
of zero in the equilibrium flow curve [90].

The macroscopic rheological model assumes that the paste
is  an  ideal  homogeneous  non-Newtonian  fluid.  Typical
macro-rheological  models  include  Bingham,  Herschel–
Bulkley (H–B), and Casson models.  The macro-rheological
model holds the view that the solid–fluid transition stage is
continuous, but the paste is in a coexistence state of solid and
liquid during the transition stage, and the macro-rheological
model cannot explain the paste yielding. In addition, the yield
stress obtained by the fitting of the macro-rheological model
is high, and generally, the higher the slurry solid concentra-
tion,  the worse the fitting [91].  The modified Bingham and
H–B  models  can  describe  the  shear  thickening  behavior,
avoiding the negative yield stress [92].

Considering  the  influence  of  the  physical  properties  of
tailings on the rheological properties, the macro-rheological
model of the paste can introduce the stability coefficient as an
index to analyze the effect of the particle size distribution on
the rheological parameters. The yield stress exponentially in-
creases with the increase in the stability coefficient [93]. The
rheological model of uncemented thickened tailings (UTTs),
combined  with  parameters  such  as  true  solid  density,  bulk
density, and solid concentration, can characterize the rheolo-
gical properties. The yield stress of UTTs increases with the
true solid density and solid concentration and decreases with

the bulk density [94].
Machine learning methods for predicting paste properties

have been proven to be effective. Due to the rapid growth of
machine  learning  theory,  machine  learning  models  can  be
used  to  estimate  rheological  properties.  Based  on  least-
squares support vector machines and particle swarm optimiz-
ation methods, the model can be established to predict the in-
terface yield stress and plastic viscosity of concrete [95]. A
prediction model applied to the sparrow search algorithm to
optimize the relevance vector machine has high accuracy in
predicting the yield stress of the paste [96].

The macroscopic rheological model is a phenomenologic-
al  model  that  can describe  the  rheological  properties  of  the
paste under specific conditions but has limitations in charac-
terizing  the  phenomena  during  the  solid–fluid  transition
stage. Predicting the rheological properties of paste through
machine learning is a developing method. Nonetheless, such
models mainly rely on a large amount of reliable data and rel-
atively good learning models, and machine learning models
need to be further developed. The mesoscopic properties es-
sentially determine the macroscopic rheological properties of
paste,  and  the  rheological  model  needs  to  be  extended  to-
ward essence. Hence, studying the rheological properties in
combination with mesomechanics and structural evolution is
necessary.

 5.2. Mesoscopic rheological model of paste

The  mesoscopic  rheological  model  can  be  divided  into
two  categories  in  the  slurry:  the  indirect  structural  model,
which describes the mesostructure by structural parameters,
and the direct structural model, which is used to describe the
change of agglomerates by the bonds connecting the particles
[88].

The indirect structural model simplifies the mesostructure
to a  structure factor λ [97].  Combining structural  dynamics
with  macro-rheological  models,  indirect  structural  models
provide a possibility for studying thixotropy [98–99]. Mean-
while, the indirect structural model is suitable for describing
the instantaneous transition of slurries from a solid to a fluid
state. For the shear localization problem, it can judge wheth-
er the fluid is in a steady state [71]. Indirect structural models
are suitable for paste and can predict the rheological proper-
ties of highly concentrated paste. Combining the constitutive
equation and structural evolution equation, an eight-paramet-
er  paste  rheological  model  can  quantitatively  describe  the
thixotropic behavior of the paste [100].

By  contrast,  based  on  the  number  of  particle  bonds,  the
direct  structural  model  combines  the  force  balance analysis
of a pair of particles with the volume fraction, gradation dis-
tribution, maximum accumulation, percolation threshold, and
other parameters to develop the Yodel model, which can be
constructed  to  accurately  predict  the  yield  stress  of  sub-
micron particle slurries [101]. However, the establishment of
the Yodel model lies in the ideal assumption that a linear re-
lationship  exists  between  the  maximum  coordination  num-
ber  of  particles  and  the  volume  fraction.  Based  on  the  dis-
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crete  element  method  and  Derjaguin–Landau–Verwey–
Overbeek  theory,  the  results  of  the  modified  Yodel  model
show  good  consistency  with  the  experiment  results  [102].
The mesoscopic rheological model is shown in Table 1.

The macroscopic rheological model can describe the rhe-
ological properties of the paste in a steady flow. Nonetheless,

there are limitations in characterizing the rheological proper-
ties of the paste in the mixing process. The paste rheology is
closely related to mesoscopic properties. Therefore, it is ne-
cessary  to  construct  a  rheological  model  suitable  for  paste
from the aspects of the interparticle force and structural evol-
ution.

 
Table 1.    Mesoscopic rheological model

Model Equation Variables

Toorman [98] τ = (λ0 +λ−λe(γ̇))τ0 + (µ∞ + cλ) γ̇ γ̇

τ—shear stress, λ0—the maximum value of the structural parameter,
λ—structural parameter, λe—equilibrium value of the structural
parameter, —shear rate, τ0—initial yield stress, µ∞—Bingham
viscosity, c—the difference between the Bingham viscosity and the
initial differential viscosity

Roussel [99]
τ = (1+λ)τ0 + kγ̇n ∂λ

∂t
=

1
Tλm −αλγ̇, 

γ̇τ—shear stress, τ0—initial yield stress, —shear rate, λ—flocculation
state, T, m, α—thixotropy parameters, k—consistency coefficient,
n—flow index

Coussot et al. [103]
τ = η0 (1+λn) γ̇

dλ
dt
=

1
θ
−αλγ̇, 

γ̇τ—shear stress, —shear rate, λ—structural parameter, n—constant
positive parameter, η0—viscosity at an infinite shear rate,
1/θ—characteristic time of the build-up structure, α—dimensionless
parameter

Møller et al. [104]
dλ
dt
= 0⇒ 1

ζ
= αλssγ̇⇒ λss =

1
αζγ̇

σss(γ̇) = γ̇η0 ·
(
1+β · (αζγ̇)−n)

σss(γ̇) = γ̇η0

,

,
 (for high shear rate)

γ̇
λ—structural parameter, ζ—characteristic time of the build-up
structure at rest, λss—structural parameter at the steady state, —shear
rate, σss—shear stress at the steady state, η0—limiting viscosity at high
shear rates, α, β, and n—parameters that should be specific for a given
material

Yang et al. [71] τ =
(
1+β0e−ξγt

)
τ0 +µγ

n
τ—shear stress, γ—shear rate, β0—parameters of the initial state,
ξ—thixotropic parameters, τ0—yield stress, µ—plastic viscosity,
n—flow index, t—shearing time

Flatt and Bowen [101] τ0 �
A0a∗

d2H2 f ∗σ
ϕ2
(
ϕ−ϕperc

)
ϕm (ϕm −ϕ)

f ∗σ

a∗
A0

ϕperc
ϕm ϕ

τ0—yield stress, d—average particle size, —a function of the
particle size distribution, m—pre-factor depending on the particle size
distribution, —radius of curvature of the contact point,
H—separation distance from the surface to the surface, —non-
retarded Hamaker constant, —percolation threshold,

—maximum packing fraction, —packing fraction
 

 6. Conclusions and outlook

The CPB technology is an effective method to solve the
accumulation of tailings and underground goaves. Due to the
high shearing, high concentration, and multiscale character-
istics of the granular system in the mixing process, the evolu-
tion  of  mechanics  and  mesostructure  is  complicated,  and  it
becomes quite challenging to control the paste quality. Paste
rheology is the theoretical basis of CPB technology. This pa-
per summarizes the progress in the research of the rheologic-
al properties in the mixing process under the mesomachical
and mesostructural views.

The research on the rheological properties of the paste in
the mixing process has the following limitations.

(1) In terms of the multiscale interparticle mechanics un-
der shearing, there is a lack of understanding of the mechan-
isms involved. Currently, it is impossible to quantify the in-
fluence  of  mechanics  on  the  macroscopic  properties  of  the
paste.

(2)  The  qualitative  analysis  limited  the  research  on  the
structural  evolution  of  multiscale  granular  systems  under
shearing. The paste mixing research has advanced to determ-
ine macroscopic parameters and qualitatively describe meso-
structure  evolution.  However,  it  has  been  challenging  to

characterize  the  behavior  of  the  structural  evolution  in
multiscale granular systems up until now.

(3)  It  is  necessary  to  develop  a  mesoscopic  rheological
model of the paste under shearing. The mesomechanics and
structural evolution affect the macro-rheological properties of
the paste. Macro-rheological models have limitations in char-
acterizing  the  rheological  properties  of  paste  in  the  mixing
process.

Optimizing the mixing process of the CPB technology is
necessary to improve its application performance. Further re-
search on mixing processes can be conducted using the fol-
lowing perspectives to prepare a homogeneous paste. It is es-
sential  to  analyze  the  mixing  process  of  the  paste  from the
perspectives of mesomechanics and structural evolution. As a
result, mesoscopic rheological models can be constructed for
paste  with  strong  shearing  effects.  In  addition,  extensive
laboratory and industrial experiments are necessary to obtain
the paste’s rheological properties under different conditions.
A  machine  learning  prediction  model  can  be  developed  by
taking shearing conditions as input variables and rheological
parameters  as  output  variables.  The  model  can  be  used  to
predict the rheological properties of the paste under shearing
conditions.  Moreover,  fluidity  is  not  the  only  indicator  for
evaluating  CPB.  Low  yield  stress  and  plastic  viscosity  can
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improve the paste fluidity; however, it will also increase the
risk of paste slurry segregation, making it difficult to guaran-
tee the strength of the filling body. To ensure that the paste
meets  the  engineering  requirements,  it  is  important  to  con-
sider  the fluidity of  the paste and the strength of  the filling
body when designing the mixing process. Finally, based on
the rheological properties of the paste and the strength of the
filling body,  the shearing effect  provided by various blades
and mixers in the mixing process can be quantitatively char-
acterized.  In  this  way,  the  mixer  can  be  optimized  and  de-
signed.

Overall, the mesomechanics and structural evolution dur-
ing the mixing process must be studied in the future to obtain
the mixing rheological law of all solid waste paste with ho-
mogenous characteristics.
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