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Abstract: Transition metal dichalcogenides (TMDs) show great advantages in electromagnetic wave (EMW) absorption due to their unique
structure and electrical properties. Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years,
and the comprehensive and systematical summary is still a rarity. Therefore, it is of great significance to elaborate on the interaction among the
morphologies, structures, phases, components, and EMW absorption performances of TMD-based absorbers. This review is devoted to analyz-
ing TMD-based absorbers from the following perspectives: the EMW absorption regulation strategies of TMDs and the latest progress of
TMD-based hybrids as EMW absorbers. The absorption mechanisms and component-performance dependency of these achievements are also

summarized. Finally, a straightforward insight into industrial revolution upgrading in this promising field is proposed.
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1. Introduction

A new round of scientific and technological revolution is
emerging all over the world, and 5G has become the essen-
tial development direction of the new generation of informa-
tion and communication technology. Although such techno-
logy brings great convenience to human life, electromagnetic
wave (EMW) interference and pollution have increasingly
become urgent problems. To tackle this issue, the explora-
tion of functional materials for electromagnetic interference
(EMI) shielding and EMW absorption is necessary [1-7].
Compared with EMI shielding materials, electromagnetic
wave absorption materials (EWAMs) converting EMW pro-
jected onto their surface to thermal or other energies can re-
duce the secondary pollution of EMW in the environment
and play an important role in the military and civil fields
[8—10]. Traditional EWAMSs mainly include ferrites, metal
powder, barium titanate, silicon carbide, and conductive
fibers [11-12]. Nevertheless, traditional EWAMs have
gradually been insufficient to fulfill the demands of thin
thickness, lightweightness, wide absorption bandwidth, and
strong attenuation ability [13—15]. Therefore, two-dimen-
sional (2D) nanomaterials with high specific surface areas
and lightweightness have become competitive EWAMs with
good application prospects [16-20].

Generally, transition metal dichalcogenides (TMDs), ex-
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pressed as MX, (M =Mo, W, Nb and X =S, Se, Te), possess
lamellar structure that are connected by covalent bonds and
stacked along the c-axis by van der Waals force, with an in-
terlayer spacing of only a few angstroms (Fig. 1(a)). 2D TM-
Ds have attracted considerable attention and have been
promptly developed in various fields because of their high
specific surface area, excellent semiconductor behavior, and
unique electric feature [21-22]. The quantum confinement
effect, relative slippage between adjacent lamellae, and de-
crease of layers can dramatically influence the transmission
behavior of carriers, allowing TMDs to present fascinating
and diverse conductive properties [23-26]. Recently, TMDs
have also emerged as promising EWAMs and exhibited sev-
eral similarities and differences in comparison with other 2D
materials. First, layered structures endow TMDs with an in-
creased specific surface area and ample inherent defects, in-
cluding vacancies, intercalated impurities, and substitutional
impurities, which can effectively improve their dielectric
loss. Second, various interfaces will be formed in TMDs due
to their unique lamellar stacking structure, which will un-
doubtedly enhance EMW attenuation. Third, the difference
of d orbitals in various transition metals results in versatile
electronic structures and physical properties of TMDs, even-
tually resulting in a distinct EMW absorption ability. Mean-
while, MXenes and graphene always exhibit excessive con-
ductivity, which is not conducive to impedance matching.
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Fig. 1. (a) Typical structure of TMDs and (b) phase structures of TMDs. Republished with permission of Royal Society of Chem-
istry, from Phase engineering of transition metal dichalcogenides, D. Voiry, A. Mohite, and M. Chhowalla, 44, 2015, permission con-

veyed through Copyright Clearance Center, Inc.

Furthermore, edge states existing in nanoribbons and nano-
clusters can significantly affect the chemical, electronic, and
magnetic properties of TMDs. In particular, for the magnetic
property, in addition to unsaturated spin states caused by un-
saturated coordination atoms in the edges of TMDs, unsatur-
ated spin states occur near vacancy defects in some TMDs
materials. The existence of these unsaturated spin states will
lead to the generation of magnetism, which is the major dif-
ference from other 2D absorbers.

Essentially, the modifications based on TMDs have been
conducted to pursue exceptional EMW absorption perform-
ances to date. As regards single-component TMDs, phase
transition and defect engineering are two main concerns in
regulating physical and chemical properties. The changes in
the chemical bonds and crystal textures of transition metal
atoms could form various phases (Fig. 1(b)) [27], such as the
semiconducting H-phase involving the monolayer (1H) and
multilayer (2H), metallic 1T-phase induced by the transform-
ation of one chalcogen plane, distorted 1T-phase, and 3R-
phase [28-29]. The rational regulation of ineluctable defects
can enable TMDs to modulate phase structures, adjust the
band, and facilitate carrier transmission [29-30]. Apart from
single-component TMDs, the construction of heterointer-
faces based on multiple components and hierarchical struc-
tures is another approach to ameliorate the EMW ability of
TMDs because most TMDs are dielectric with a single loss
mechanism, which restricts the improvement of impedance
matching [14,31-32].

Among the 2D TMD-based EWAMSs, MoS, is the most
investigated substance [12,14,32-35]. Several reviews have
presented a nice wrap-up of the progress of MoS, in EMW
absorption [16,36-39], but a comprehensive and systematic-
al summary of 2D TMDs and their hybrids as EWAMs is still
a rarity. Hence, it is imperative and significant to understand
the interaction among the morphologies, structures, phases,
components, and EMW absorption performances of TMD-
based absorbers. In this work, we systematically summarize
the EMW absorption regulation strategies of TMDs, includ-
ing phase manipulation, defect engineering, chemical doping,
and morphology configuration. In addition, state-of-the-art
TMD-based EWAMs are reviewed, and the synergistic ef-
fect of various components is emphasized by balancing their
impedance matching and attenuation ability. Finally, some

future research perspectives are proposed.

2. Brief knowledge of EMW absorption mech-
anisms for TMD-based absorbers

Generally, absorption performance mainly depends on the
impedance matching and attenuation ability of EWAMs
[40—41]. First, an ideal impedance matching can direct an in-
cident EMW inward absorbers without surface reflection,
which is a prerequisite for designing EWAMSs. Then, the
EMW energy can be further dissipated or converted to other
energies dominated by a dielectric-magnetic dual loss. In this
section, the most widely recognized transmission line model
is chosen as the basic theory to portray the interaction
between annular absorbers and variable EMWs [42—43].

2.1. Impedance matching

After several simulations and simplifications on the trans-
mission line model, impedance matching can be acquired by
|Z:/Zy|, as shown in Eq. (1). Z;,, Z,, f, d, and ¢ represent the in-
put impedance, impedance of free space, EMW frequency,
thickness of the absorber, and light velocity, respectively. &,
and y, are the relative complex permittivity and complex
permeability, respectively, which can be expressed as &, = &’
—je"and y, = ¢ — ju". On the basis of Kirchhoff’s law, Z,
can be calculated as 377 Q. If the value of |Z,/Z| is near 1,
the absorber possesses a well-matched impedance [44—46].
Analogously, another parameter evaluating the impedance
matching of absorber and air is the delta function (A) (Eq.
(2)), where the values of K and M are obtained with &, and u,
(Egs. (3) and (4)). The value of A approaching 0 indicates ex-
cellent impedance matching [47—49]. In these equations, the
regulation of the electromagnetic parameters of absorbers is
significant to the acquisition of good impedance matching. In
other words, the complementary balance between the dielec-
tric property and magnetism is instrumental in EMW absorp-
tion. For instance, Zhang et al. [50] designed and constructed
a one-dimensional (1D) Co@NC@MoS, absorber to bal-
ance the dielectric constant and permeability, and impedance
matching could be tailored by adjusting the lamellar MoS,
loading. Moreover, the quarter-wavelength (1/4) matching
model can normalize the thickness of EWAMSs (Eq. (5)), so
two reflected EMWs with a phase difference of 180° can off-
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set each other at the interface of the absorber and air, which
can attenuate the EMW to the maximum [51-54]. Many
studies have revealed that the minimum reflection loss
(RL,,) is closely linked with the quarter-wavelength cancel-
lation and impedance matching (Fig. 2(a)), and the corres-
ponding matching frequency moves to the low region with
the matched thickness (#,,) increasing [2,47,55].
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2.2. EMW attenuation ability

The attenuation constant () is of great significance in as-
sessing the EMW dissipation ability of absorbers, as shown
in Eq. (6). Generally, the higher the a value is, the more be-
neficial the dissipation of EMW energy is [56-58]. In addi-
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tion, the RL values can directly reflect the EMW absorption
capacity to a great extent (Eq. (7)), and the smaller the RL is,
the better the EMW consumes. Usually, RL < —10 dB
matches 90% of the EMW absorption, and the correspond-
ing frequency range would be an effective absorption band-
width (EAB) [59-61]. In addition, the dielectric loss tangent
(tand, = &"/&") and magnetic loss tangent (tand, = u'/y) can
provide a preliminary reference for estimating the dielectric
loss and magnetic loss [62—64].

V2
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To analyze the dielectric loss in detail, &, can be further ex-

pressed as Egs. (8) and (9), where o, 7, &, and &, are the

electric conductivity, relaxation time, static permittivity, and

RL = 20lg

permittivity at an “infinite” high frequency, respectively. In
these equations, the dielectric loss mainly includes polariza-
For TMD-based
EWAMs, the unique electric properties from the semicon-
ductor to the conductor allow them to easily induce charge
transportation under an alternating electromagnetic field,
leading to the generation of local current. A high o can aug-

tion relaxation and conduction loss.

ment &” in light of free electron theory. Polarization relaxa-
tion mainly involves dipole polarization and interfacial polar-
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Fig. 2.

Absorption mechanisms of EMW absorbers: (a) impedance matching. Reprinted with permission from L.L. Xu, J.Q. Tao,

X.F. Zhang, et al., ACS Appl. Nano Mater., 4, 11199-11209 (2021) [55], Copyright 2021 American Chemical Society; (b) dielectric
loss; (¢) RL curves and attenuation constant; (d) magnetic loss. Reprinted from J. Mater. Sci. Technol., 82, Z.G. Gao, Z.H. Zhao, D.
Lan, K.C. Kou, J.Q. Zhang, and H.J. Wu, Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrys-
talline electromagnetic absorbents, 69, Copyright 2021, with permission from Elsevier.



S.J. Zhang et al., Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review 431

ization under low frequencies [65—68]. In particular, elec-
tronic polarization and ion polarization belonging to polariz-
ation relaxation should be excluded because they always ex-
ist in terahertz. The vacancies, adatoms, grain boundaries,
and impurities in TMDs could form abundant dipoles and po-
larization sites, and chargers would undergo “aggregation—
dispersion,” causing the dissipation of EMW energy [69-70].
Analogously, the natural advantage of lamellar structures en-
ables TMDs to easily construct heterointerfaces or hierarch-
ical structures. The interfacial polarization stemming from
the displacement of spatial charges in heterointerfaces makes
a valuable contribution to the dielectric loss of TMD-based
EWAMs. Based on the Debye theory, Cole—Cole semicircles
were introduced to investigate the polarization relaxation,
which can be described as Eq. (10) [71-73], where w is the
angular frequency. Each semicircle in the curve of &' vs. &”
indicates a polarization relaxation process, and the higher the
number and larger the radius of semicircles are, the stronger
the multiple polarization is. Significantly, the Cole—Cole
plots can also embody the conduction loss when the tail tends
to a straight line, and the conduction loss is positively interre-
lated to the slope of the line segment [74-75].
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Although most magnetic TMDs are single dielectric loss,
the magnetic loss will be another cardinal attenuation mech-
anism for magnetic TMDs or composites of TMDs and mag-
netic components. The magnetic loss mainly stems from the
hysteresis loss, domain-wall resonance, eddy current loss,
natural resonance, and exchange resonance [76-78]. The
hysteresis loss and domain-wall resonance are inappropriate
in 2—-18 GHz, which can be ignored. The magnetoelectric
conversion can be induced to consume the EMW energy
when magnetic EWAMs are in an alternating magnetic field,
which is the eddy current loss. It can be evaluated by the C,
parameter, as shown in Eq. (11). If the C, value is close to a
constant as the frequency changes, the eddy current loss can
make a major contribution to the magnetic loss. Furthermore,
exchange resonance always exists at higher frequencies
(10-18 GHz) than natural resonance (2-10 GHz) [79-80].
Therefore, multiple resonances and eddy current loss mainly
derive the magnetic loss of magnetic TMD-based EWAMs.

(11)

’7”

__H
W)’ f
To sum up, the dielectric loss and magnetic loss are the

main attenuation mechanisms for EWAMs, as shown in

Fig. 2(b—d) [81]. In addition, multiple scattering and reflec-

tion derived from hierarchical structures can not only pro-

long the propagation path of EMWs in materials boosting the

EMW energy dissipation but can also ameliorate impedance

Co

matching. For example, three-dimensional (3D) MoS,/car-
bon nanofiber (CNF) aerogels with multiple heterogeneous
interfaces and hierarchical porous structures exhibited excel-
lent EMW absorption performances under an ultralow filler
loading [82]. Sun ef al. [83] constructed a zero-dimensional
(0D)-1D-2D CoySg/CNTs/MoS, hybrid and realized the
maximized synergistic effect of multiple reflections, conduc-
tion loss, and interfacial and dipole polarization. Nonetheless,
although TMD-based EWAMs have made considerable pro-
gress, the thorough inner link between EMW absorption
mechanisms and their bewitching structures should be asso-
ciated.

3. Strategy for the absorption performance
regulation of TMDs

In this section, we mainly focus on the strategies to tailor
the microcomponent and microstructure of TMDs so as to
improve their EMW absorption performances in view of the
reported achievements, including phase manipulation, chem-
ical doping, and morphology and structure configuration.

3.1. Phase manipulation

As mentioned above, the phase structures of TMDs are
determined by the d orbital electron. When the d orbital is
fully filled, TMDs usually exhibit semiconductor properties,
whereas partially filled TMDs generally show metal proper-
ties. Different phases have various influences on EMW ab-
sorption performances. For example, the intrinsic low con-
ductivity of stable 2H-MoS, is the main restriction for its fur-
ther application in EMW absorption, whereas that of meta-
stable 1T-MoS, is its excessively high electrical conductivity.
Thus, the multiple phases can effectively tailor the electro-
magnetic parameters of TMDs and ameliorate their EMW at-
tenuation capacity. Ding et al. [84] reported that 1T@2H
WS, nanosheets showed more remarkable absorption proper-
ties than pure 2H WS, nanosheets, the RL,,;, of 1IT@2H WS,
reached —47.1 dB, and the EAB covered 5.2 GHz with
35wt% filler loading at 2.2 mm. Yan ef al. [33] also investig-
ated the absorption performance of mixed 1T and 2H MoS,,
which exhibited an ultrawide EAB of more than 10 GHz. Re-
cently, increasing efforts to further investigate the effect of
the phase transition of TMDs on the absorption mechanism
have been made. Ning et al. [85] fabricated a series of 1T/2H
MoS, with different phase ratios through a facile magneto-
hydrothermal method and systematically investigated the
phase-dependent EMW absorption performance (Fig. 3
(a—)). The authors believed that introducing metal-semicon-
ductor phase-forming abundant interfaces could facilitate the
dipole distribution dynamics, and the dual phases enhanced
the electron transfer ability, which eventually optimized the
polarization relaxation and boosted the attenuation ability.

3.2. Defect engineering

As mentioned above, abundant and various intrinsic de-
fects exist in the crystal structure of TMDs, such as point de-
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Sons. Reproduced with permission.

fects (vacancies, substitution, adatoms, and substitutional im-
purities) and line defects (line vacancies, grain boundaries,
and edge states). Tremendous research works have demon-
strated that the custom design of these defects is an effective
approach in tailoring the physical-chemical properties of
TMDs and boosting device performances [29]. Generally,
defect engineering for TMDs mainly includes the suppres-
sion and repair of defects and defect manufacturing. Taking
the application in EMW absorption, we focus on defect man-
ufacturing in this review. Cao et al. [86] developed NbS,
nanosheets with abundant active sites located at their edges
and substrates for EMW absorption. Wu ef al. [14] conduc-
ted an experiment where they controlled defects in MoS, to
regulate the EMW absorption ability. The recent investiga-
tion is largely concentrated on the dielectric loss regulation of
TMDs, and the effect of defect engineering on magnetic loss
has attracted our attention. For instance, the introduction of a
small amount of heteroatom (e.g., Cu, Mn, and Co) should
adjust the spin states of electrons in TMDs by hybridizing or
coupling the 3d states of these heteroatoms with the trans-
ition metal 4d states and chalcogenide 3p states of TMDs,
leading to the change in the magnetic property.

3.3. Chemical doping

Chemical doping is an important approach to regulating
the EMW absorption property of TMDs. Theoretical studies

and experimental research have demonstrated that doping
TMDs with transition metals can endow them with magnetic
properties [87]. Wang et al. [88] investigated the effect of
magnetic moments on the EMW absorption performance of
Ni-doped MoS,. When the content of doped Ni was 3wt%,
the Ni-doped MoS, could obtain an optimized saturation
magnetization (M) absorption performance without changes
in the crystal structure of MoS,. They believed that the zig-
zag edges and variations in abundant vacancies were re-
sponsible for the magnetic properties, and the regulation of
electromagnetic parameters led to good absorption perform-
ance. In addition, suitable doping may change the electron in
the d orbital, which can stabilize the distorted 1T-phase struc-
ture by reducing the energy barrier between the H-phase and
quasi-metallic distorted 1T-phase [28]. Thus, Wu et al. [14]
proposed a novel strategy to develop a MoS, solid solution as
an efficient EMW absorber through the coordination between
Cu?" and polydopamine (PDA) as shown in Fig. 4(a). After
doping, the MoS, with a controllable S vacancy, Cu intersti-
tial, and N substitutional exhibited typical metal phases, and
the layer number could be effectively decreased (Fig. 4(b)).
In addition, the solid solution possessed an excellent EMW
absorption performance, i.e., RL,,;, of —48.22 dB and EAB of
7.12 GHz, attributed to the synergistic polarization of the
point—point interaction, point—face interaction, and face—face
interaction.
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Fig. 4. (a) Fabrication of the MoS,-based solid solution; (b) HRTEM images, SAED images, and line profiles of the samples; (c)
structures of polarization centers in the corresponding samples. Reprinted from Z.G. Gao, Z.H. Ma, D. Lan, et al., Adv. Funct.
Mater., 32, 2112294 (2022) [14]. Copyright John Wiley and Sons. Reproduced with permission.

3.4. Morphology and structure configuration

The design of a hierarchical structure and geometrical
morphology is crucial to achieving exceptional absorption
performances [89-90]. In terms of TMDs, 3D flower-like
nano-/micro-structures assembled by randomly oriented 2D
nanosheets possess large specific surface areas and always
own an outstanding absorption performance, such as flower-
like MoSe, [91-92], 1T/2H MoS, nanoflower [93], and
MoS,/FeS, microflower [94]. In addition, the nanoscale
design of the hierarchical structure with tailored heterointer-
faces has become an efficient approach to optimize electro-
magnetic parameters, and the construction of core—shell
nanostructured TMDs is a popular method. Qi et al.[95-96]
have made considerable contribution in this regard and ex-
plored many high-performance TMD hybrids, such as
flower-like FeSe,@MoSe, nanocomposites and MSey/
FeSe,@MoSe, (M = Co, Ni) nanocomposites. Recently, they

proposed a strategy to optimize EMW absorption by con-
structing inner and outer interchangeable heterojunctions
based on 2D-2D MoSey/MoS, nanocomposites [97]. The
results showed that a well-designed heterojunction and
flower-like morphology generated enhanced interfacial po-
larization and multiple reflections/scattering, thus, leading to
an exceptional EMW absorption. Similar to the core—shell
structure, hollow-structured TMDs also possess promoted
dielectric loss and multiple reflections [98]. Cao et al. [86]
successfully fabricated the hollow-sphere structure based on
NbS, nanosheets. They found that the reaction time and the
ratio of Nb and S sources could affect the morphology and
content ratio of 1T to 2H phases (Fig. 5(a-b)) and endowed
NbS, hollow nanospheres with abundant electrochemical act-
ive sites and high conductivity, which facilitated the polariz-
ation relaxation, electron transfer and hopping, multiple re-
flections, and good impedance matching. Attributed to these
merits, the hollow NbS, eventually achieved an unpreceden-
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(a) Schematic illustration of the growth mechanism of a hollow-sphere NbS,; (b) crystal structure and HRTEM of the 1T

and 2H phases in NbS;; (c) schematic illustration of the EMW absorption mechanisms of a hollow-sphere NbS,. Reprinted from H.B.
Zhang, J.Y. Cheng, H.H. Wang, et al., Adv. Funct. Mater., 32, 2108194 (2022) [86]. Copyright John Wiley and Sons. Reproduced with

permission.

ted EMW absorption performance (RL,;, of —43.85 dB and
EAB of 6.48 GHz), as shown in Fig. 5(c).

By and large, the strategies mentioned above can tackle
the problem of having a narrow EAB and poor reflection loss
of TMDs to some extent. However, most modified TMDs ac-
quired better absorption at large thickness or filler loading,
which was not conducive to the development of “thin, light,
wide, and strong” absorbers.

4. State of the art of TMD-based hybrids as
EWAMs

In addition to the modification of TMDs, the conventional
method of improving EMW absorption is the combination of
TMDs with other functional materials. In this regard, the
state-of-the-art achievements were divided into two categor-
ies: one is the coupling of TMDs with high-conductivity ma-
terials to eliminate the skin effect, and the other is the coup-
ling of TMDs with magnetic loss materials to obtain a syner-
getic EMW absorption. Of course, there are several ad-
vanced composites of TMDs with other semiconductors,
such as TiOy/WS, [99], MoS,/Nd,0,CO; [100], and ZnO/
MoS, [101]. However, the research in this aspect has been far
from adequate.

4.1. Coupling with high-conductivity components

4.1.1. TMDs/carbon

Carbon materials are attractive materials owing to their
many advantages, such as low density, low cost, and good
stability [102]. Generally, carbon-based EWAMs possess a
high attenuation ability, but their exorbitant conductivity
leads to weak impedance matching. The hybrids of semicon-
ductor TMDs/carbon materials can significantly ameliorate
the comprehensive conductivity and increase heterointer-
faces, thus, boosting the EMW absorption [103—105]. In ad-
dition, TMDs/carbon composites can effectively ameliorate
the high density of pure TMDs. Many strategies to construct

TMDs/carbon composites have been developed in recent
years. Zhang et al. [106] designed carbon fiber (CF)@MoS,
composites with an ultrawide EAB of approximately
10.85 GHz at 3.8 mm. Liu et al. [107] fabricated 3D carbon
foam@1T-2H MoS, nanosheets, which showed an excellent
absorption performance (RL,;, of —45.88 dB and EAB of
5.68 GHz at 2.2 mm). Xu et al. [55] constructed hollow car-
bon@MoS, nanospheres, and the composites obtained a
high-performance EMW absorption by controlling the
graphitization of carbon cores and the thickness of the MoS,
shell. Lu et al. [108] acquired lotus leaf-derived gradient
hierarchical porous C/MoS, hybrids with RL,;, of —50.1 dB
at 2.4 mm and EAB of 6 GHz at 2.2 mm, attributed to the
synergistic effect of improved conductive loss, enhanced po-
larization loss, and well-matched impedance. Xu ef al. [109]
reported a P-doped bacterial cellulose-derived carbon nan-
ofiber/MoSe, nanocomposite with a superior minimum re-
flection loss. Significantly, Zhang ef al. [35] constructed a 3D
layered structure, nitrogen-doped carbon (NC)@MoS,,
where MnO, nanowires were used as a hard template
(Fig. 6(al)). Benefiting from ell-designed structures and ra-
tional compositions (Fig. 6(a2)), the hollow tubular hybrids
possessed an outstanding EMW absorption.

Carbon nanotubes (CNTs) and graphene, as two main
members of the nanocarbon family, have attracted tremend-
ous attention in the construction of hierarchical structures
based on TMDs [110]. Thus far, Cao et al. have performed
significant efforts to develop CNT/TMD composites with ex-
traordinary absorption performances, such as WSe, @CNTs
and WS,/CNTs [111-113]. Essentially, the CNTs@MoS,
fabricated by Qi et al. [114] achieved an excellent absorption
property, i.e., RL;, of —=54.75 dB at 1.49 mm and EAB of 4
GHz at 1.26 mm. For reduced graphene oxide (rGO), re-
markable work was conducted by Chen ef al. [115]. In this
work, they adopted density functional theory (DFT) calcula-
tions to design and construct vertically aligned MoS, mono-
layers on N-doped rGO, which showed the highest electric
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conductivity and largest dipole moment among different
models (Fig. 6(b1-b5)). Accordingly, this composite exhib-
ited an outstanding EMW absorption (RL,,;, of —72.83 dB
and EAB of 4.81 GHz at 1.8 mm) due to the enhanced polar-
ization loss (Fig. 6(c1—c4)).
4.1.2. TMDs/conductive polymers

Conductive polymers (CPs) with adjustable electric con-
ductivity and good environmental stability are promising
candidate EWAMSs, especially for polyaniline (PANI),
polypyrrole (PPy), and polythiophene (PTh) [116—117]. Sim-
ilar to carbon composites, these polymers can provide an ex-
cellent conduction loss for EMW attenuation. Moreover, the
varied conductivity from insulator to conductor is instru-
mental for tuning impedance matching because high con-
ductivity contributes to the strong attenuation ability and low
conductivity leads to well-matched impedance. Considering
the facile fabrication of CPs and the merits of TMDs, the
combination of TMDs and CPs in optimizing the EMW ab-
sorption ability has been studied for a long time, and recent
research has been focused on the design of hierarchical nano-
composites [118—119]. Gai et al. [120] designed and fabric-
ated core-shell PPy@MoS, nanotubes, which exhibited a
wider EAB than pure MoS, nanoflowers and pristine hollow
PPy nanotubes. The hierarchical structure provided a mass of
heterojunctions and a well-designed conductive network,
causing enhanced interfacial polarization, multiple reflec-
tions, and conduction loss.
4.1.3. TMDs/MXenes

MXenes, with a typical 2D microstructure and physico-
chemical performance, exhibit great potential in EMW ab-
sorption and shielding due to their excellent conductivity,
rich element composition, multilayer structure, and rich func-
tional groups [121-123]. The hierarchical structure and rich
composition endow MXenes with strong multiple reflections,
polarization, and anisotropy, which can help in EMW attenu-
ation [123-124]. While the exceptional conductivity may
lead to impedance mismatching, the combination of MXenes
and 2D TMDs is ingenious in developing their advantages.
On the one hand, 2D TMDs can easily enter the interlayer
and expand their layer spacing to tailor their electrical prop-
erties and prevent 2D TMD agglomeration. On the other
hand, the introduction of 2D TMDs can tailor the overall
electric conductivity and optimize impedance matching. Re-
cently, TMDs/MXenes have achieved huge EMW absorp-
tion performances, such as MoS,@Ti;C,T, [125], folded
Ti;C,T/MoS, [126], Ti;C,T.@MoS, [127], and Ti;C,T./WS,
[128]. MXenes are usually used to construct promising mi-
crostructures, such as foam and aerogel, which possess a high
porosity that facilitates the entry and transmission of EMWs
inside samples. Li et al. [34] utilized different surface ten-
sions of Ti;C,T, and ammonium tetrathiomolybdate to in-
duce the self-rolling of Ti;C,T,, thereby constructing a
Ti;C,T,/MoS, self-rolling rod-based foam (Fig. 7(al)). The
unique structure not only remarkably improved the polariza-
tion loss but also reduced the conductivity to obtain well-
matched impedance (Fig. 7(a2)). As a result, the RL,;, of this
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foam could reach —52.1 dB, and the EAB could cover the
whole X band (8.2-12.4 GHz) with a density of only 0.009
g-em” (Fig. 7(a3-a4)). In addition, Yang et al. [129] de-
signed a 3D porous MoS,/Ti;C,T, hybrid aerogel through
atomic layer deposition (ALD) based on a Ti;C,T, aerogel,
and they investigated the interaction between the EMW ab-
sorption performance and ALD cycles during MoS, fabrica-
tion (Fig. 7(b1)). After optimization, the hybrid aerogel ac-
quired under 300 ALD cycles exhibited RL,;, of —61.65 dB
at 4.53 mm and EAB of 5.9 GHz at 2 mm. The rational con-
struction of this aerogel optimized the impedance matching
by tailoring the conductivity and provided a tremendous in-
terfacial polarization and dipole polarization, as shown in
Fig. 7(b2).

4.2. Hybridization with magnetic loss materials

Magnetic components (e.g., ferrites, metals, alloys, and
metal oxides) have high permeability and exhibit a strong
EMW attenuation ability. However, the limited dielectric
loss, high density, and narrow absorption bandwidth make
them hard to be ideal modern absorbers. The combination of
dielectric functional components with magnetic constituents
is an effective approach to achieving efficient EWAMs by
fully realizing the synergetic effect of dielectric—-magnetic
loss. Of course, dual-loss composites based on TMDs are
more attractive. Recent years, many composites of TMDs
and magnetic materials with excellent EMW absorption per-
formances have been developed, such as plate-like
MoS,/Co;0, [130], WS,/NiO [131], CoFe,O4@MoS, [132],
Fe;0,@1T/2H-MoS, [133], MoSy/Fe;O, [134], and
MoS,/CoNi [135]. In addition, novel magnetic components
have been introduced into this system. Wang et al. [136] fab-
ricated M-type hexagonal BaFe;,O;(@MoS, composites,
which had an RL,,;, of —61.0 dB and EAB of 4.4 GHz at
1.7 mm. Recently, our group introduced magnetic ferrite
CuFe,0, to construct an efficient absorber of MoS,/CuFe,0,
composites, where CuFe,0, nanoparticles were decorated on
the flower-like MoS, [12]. Stemming from the balanced im-
pedance matching and strong attenuation capacity, this com-
posite exhibited an impressive wide EAB of 8.16 GHz at just
2.3 mm. In addition, Wang et al. [137] reported core—shell
ZnFe,O4@MoS, hybrids with RL,;, of —61.8 dB at 3 mm and
EAB of 2 GHz at 2 mm. As mentioned above, structural
design can improve the electromagnetic parameters of ab-
sorbers partly, and it is no exception for TMDs/magnetic
components. Wang ef al. [138] embedded CoFe,O, nano-
spheres in nest-like 1T/2H-MoS,, where 1T/2H-MoS,
showed ferromagnetism superimposed onto a large diamag-
netism. The EMW absorption performances could be tailored
by adjusting the content of 1T/2H MoS,, and the tunable per-
mittivity and optimized impedance matching of the compos-
ites led to an outstanding absorption ability. Another recent
achievement was to design and prepare binary flower-like
composites of WS, nanoclusters on Co nanosheet compos-
ites (Fig. 8(a—b)) [139]. The hierarchical structure could in-
troduce effective heterointerfaces that enhanced the multiple
reflection and polarization relaxation. The lamellate Co also
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balanced the impedance matching and supplied the magnetic
loss and conduction loss. These factors eventually endowed
hybrids with excellent absorption performances (RL,,;, of
—46.5 dB at 1.7 mm and EAB from 2.7 to 18 GHz with op-
timized thickness from 1.0 to 5.0 mm) (Fig. 8(c)).

4.3. Enhanced synergistic effect of multiple components

TMD composite-based binary components have exhib-
ited better absorption performances than single-component
TMDs owing to the synergistic or complementary effect. Ac-
cordingly, we assume that multiple components (e.g., ternary
and quaternary) can achieve more remarkable properties
through rational design. Therefore, we review TMD hybrids
with multiple components for EMW absorption and focus on
ternary composites in this section because quaternary or more

complex composites generally need a complicated fabrica-
tion process and have not undergone great breakthroughs
[140-143]. The hybrids of semiconductor (TMDs)—conduct-
ive component-magnetic material (SCM) are the main sub-
ject of research in developing high-performance TMD-based
EWAMs, and the synergistic effects between the three phases
can be enhanced, including the magnetic—dielectric loss and
conduction loss [144]. Chen et al. [145-146] synthesized
MoS,@PPy@Fe;O, and MoS,@PPy@CoFe,0, composites
with good EMW absorption performances. By introducing
the novel magnetic component LiFesOg, hierarchical coral-
like PPy/LiFesOg/MoS, nanocomposites were designed and
fabricated by Li ez al. [147]. Benefiting from the conduction
loss and magnetic loss, these nanocomposites possessed ex-
tremely attractive absorption performances, as shown in
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orating with WS, nanoclusters for enhanced electromagnetic wave absorption, 165269, Copyright 2022, with permission from Elsevier.

Table 1. Yu et al. [151] prepared ZnCo@C@1T/2H-MoS,
through the metal-organic frameworks (MOFs) self-tem-
plate approach. This composite exhibited excellent photo-
thermal performance and excellent EMW absorption, which
make it an eligible EMW absorption candidate in cold condi-
tions. Microstructure construction is an interesting engineer-
ing topic for ameliorating impedance matching and attenu-
ation ability [148]. Zhang et al. [50] designed a novel 1D
Co@NC@MoS, nanotube with cobalt—nitrilotriacetic acid
chelate nanowires as template. Owing to the rational struc-
ture construction and a good balance of the magnetic loss and
dielectric loss, the RL,,;, of this nanotube could reach —61.97
dB, and the EAB could cover 5.6 GHz at 2 mm. Recently,
Ning et al. [149] fabricated dumbbell-like Fe;O,@N-doped
C@?2H/1T-MoS, yolk-shell nanocomposites through a facile
etching and wet chemical synthesis strategy (Fig. 9(a-b)).
The authors achieved a well-matched impedance by regulat-
ing the Fe;O, component, and the composite possessed the
optimized synergistic effect of the dielectric loss and

magnetic loss toward an excellent EMW absorption (Fig. 9
(c)). Apart from the SCM system mentioned above, other
composites have also attracted considerable attention as effi-
cient EWAMs due to the amplified synergistic effect, such as
PPy@MoS,/C and MoS,/MXenes/semiconductors [32,150,
152], which are typical representatives of a conductive—semi-
conductive—conductive network and conductive—semicon-
ductive—dielectric network, respectively.

Although the performances of multiple-component TMD-
based absorbers could exhibit excellent performances, there
is still plenty of room to improve. In general, multiple com-
ponents can achieve hierarchical structures based on con-
stituents. Moreover, the electromagnetic parameters of TM-
Ds can be easily regulated to obtain as-expected perform-
ances by replenishing specific functional materials. In addi-
tion, multiple-component absorbers can integrate their merits
and endow them with overall improved performances. These
factors make multiple-component TMD-based materials
highly competitive absorbers.
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Table 1. Representative TMDs and corresponding composites with EMW absorption performances

Materials Domina.ted Matrix Al?sorbers RLuin EAB Ref.
mechanism ratio / wt%

1T/2H WS, Dielectric Paraffin 35 —47.1 dB, 2.2 mm 5.2 GHz, 2.2 mm [84]
1T/2H MoS, Dielectric Paraffin 15 —43 dB, 2.6 mm 10.5 GHz, 2.6 mm [33]
Ni-doped MoS, Dual Paraffin 50 —58.08 dB, 2.05 mm 5.19 GHz, 2.05 mm [88]
Co@NC@MoS, Dual Paraffin 15 —61.97 dB, 2.9 mm 5.6 GHz, 1.9 mm [50]
Cu/C@MosS, Dielectric Paraffin 30 —48.22 dB, 2.5 mm 7.12 GHz, 3.1 mm [14]
MoS,/CNF Dielectric Paraffin 5 —36.19 dB, 2 mm 5.68 GHz, 2 mm [81]
CoySg/CNTs/MoS, Dielectric Paraffin —35.4dB, 4 mm 8.4 GHz, 3.8 mm [82]
Flower-like MoSe, Dielectric Paraffin 50 —57.2 dB, 2.7 mm 4 GHz, 2.77 mm [92]
1T/2H MoS, nanoflower Dielectric Paraffin 60 —63.78 dB, 2.57 mm 5.34 GHz, 2.04 mm [93]
MoS,/FeS, microflower Dielectric Paraffin 50 —60.2 dB, 2 mm 6.48 GHz, 2 mm [94]
CoSe,/FeSe,@MoSe, Dielectric Paraffin 50 —62.08 dB, 1.97 mm 4.6 GHz, 1.72 mm [95]
NiSe,/FeSe,@MoSe, Dielectric Paraffin 50 —50.82 dB, 2.01 mm 4.6 GHz, 1.77 mm [95]
FeSe,@MoSe, Dielectric Paraffin 30 —59.84 dB, 3.1 mm 10 GHz, 3.66 mm [96]
MoSe,@MoS, Dielectric Paraffin 60 —53.42 dB, 1.99 mm 7.6 GHz, 1.98 mm [97]
MoS,@MoSe, Dielectric Paraffin 60 —61.71 dB, 1.88 mm 6.0 GHz, 2.16 mm [97]
NbS, hollow sphere Dielectric Paraffin 40 —43.85 dB, 2 mm 6.48 GHz, 2 mm [86]
CF@MoS, Dielectric Paraffin 20 -21.4 dB, 3.8 mm 10.85 GHz, 3.8 mm [106]
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Table 1 (Continued)
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Dominated

Absorbers

Materials . Matrix . RLin EAB Ref.
mechanism ratio / wt%
C foam/1T-2H MoS, Dielectric Paraffin 40 -45.88 dB, 2.2 mm 5.62 GHz, 2.2 mm [107]
Hollow C@MoS, Dielectric Paraffin 50 —54.24 dB, 2.1 mm 5.95 GHz, 2.1 mm [55]
Porous C/MoS, Dielectric Paraffin 40 —50.1 dB, 2.4 mm 6 GHz, 2.2 mm [108]
NC@ MoS, Dielectric Paraffin 25 —52.56 dB, 2.4 mm 6.2 GHz, 2.3 mm [35]
WS,-NS/CNTs Dielectric Paraffin 40 —51.6 dB, 1.95 mm 54 GHz, 1.95mm  [111]
WSe,-MWCNTs Dielectric Paraffin 50 -51.9dB,1.79 mm  3.84 GHz, .79 mm [112]
CNTs@MoS, Dielectric Paraffin 40 —54.75 dB, 1.49 mm 4 GHz, 1.26 mm [114]
WS,-rGO Dielectric Paraffin 40 —41.5dB, 2.7 mm 3.5 GHz, 1.7 mm [110]
Monolayer MoS,/rGO Dielectric Paraffin 30 —72.83 dB, 2 mm 4.81 GHz, 2 mm [115]
MoS,-PANI Dielectric Paraffin 50 —56.52dB,2.34mm 528 GHz,2.34 mm [118]
PPy@MoS, nanotube Dielectric Paraffin 40 —49.1 dB, 2.5 mm 6.4 GHz, 2.5 mm [120]
MoS,@Ti;C,T, Dielectric Paraffin 30 —51dB, 4 mm 4.8 GHz, 4 mm [125]
Folded Ti;C,T,/MoS, Dielectric Paraffin 30 —51.2dB, 2.5 mm 4.6 GHz, 1.6 mm [126]
Ti;C, T, @MoS, Dielectric Paraffin — —46.72 dB, 2 mm 4.32 GHz, 2 mm [127]
Ti;C,T,/WS, Dielectric Paraffin 50 —61.06 dB, 2.14 mm 6.5 GHz, 2.5 mm [128]
MoS,/C030,4 Dual Paraffin 20 —43.56 dB, 4 mm 4.76 GHz, 2 mm [130]
MoS,/Fe;0, Dual Paraffin 90 —87.24dB, 7.84 mm  5.52 GHz, 7.84 mm  [134]
BaFe ,00@MoS, Dual Paraffin 30 —61 dB, 1.7 mm 4.4 GHz, 1.7 mm [136]
MoS,/CuFe,0, Dual Paraffin 30 —40.33 dB, 2.3 mm 8.16 GHz, 2.3 mm [12]
ZnFe,04@MoS, Dual Paraffin 20 —61.8 dB, 3 mm 6 GHz, 2 mm [137]
CoFe,04,@MoS, Dual Paraffin 30 —68.5 dB, 1.81 mm 4.56 GHz, 1.6 mm [138]
MoS,/Fe;0,/graphite Dual Paraffin 30 —46.67 dB, 3.3 mm 4.56 GHz, 2.1 mm [144]
MoS,@PPy@Fe;0, Dual Paraffin 30 —32 dB, 2 mm 4.3 GHz, 2 mm [145]
PPy/LiFesOg/MoS, Dual Paraffin 40 =73.25dB,3.07mm  7.2GHz 3.14mm [147]
Hollow MoS,@Fe;04-graphite Dual Paraffin 55 —48.1 dB, 2.6 mm 4.08 GHz, 1.7mm  [148]
Co@NC@MoS, nanotube Dual Paraffin 15 -61.97 dB, 2 mm 5.6 GHz, 2 mm [50]
Dumbbell-like Fe;O0,@NC@MoS, Dual Paraffin 15 —68.9 dB, 4.1 mm 5.25 GHz, 2 mm [149]
MoS,/Ti0,/Ti;C,T, Dielectric Paraffin 15 —33.5dB, ] mm 3.1 GHz, 1 mm [150]
NiS/MoS,/Ti;C,T, Dielectric Paraffin 15 —58.48 dB, 2.4 mm 5.04 GHz, 2.1 mm [32]
NiS/Ni;S;@PPy@MoS, Dual Paraffin 50 =51.29dB,2.29 mm  3.24 GHz, 229 mm  [143]
CoZn/C@MoS,@PPy Dual Paraffin 30 —49.15dB, 1.5 mm 4.56 GHz, 1.5 mm  [140]
MoS,/MgFe,0,/MgO/C Dual Paraffin 40 —56.94 dB, 2.7 mm 3.9 GHz, 2.7 mm [141]
ZnFe,0,@C@MoS,/FeS, Dual Paraffin 50 =52.5dB,2.23 mm 498 GHz,2.23 mm [142]

Notes: — represents the values are not available; Dual means the magnetic loss and dielectric loss.

5. Summary and perspectives

TMDs have been regarded as a class of prospective
EWAMs due to their large specific surface area, excellent
semiconductor behavior, and unique electric feature. This
work systematically reviews the absorption mechanisms and
EMW performance regulation strategies of TMDs and the
latest research advances in TMD-based EWAMSs. For TMDs,
phase manipulation, defect engineering, chemical doping,
and hierarchical structure configuration are the most import-
ant approaches in adjusting their electromagnetic parameters
and pursuing excellent absorption performances owing to
their charming characteristics. For TMD-based composites,
the introduction of other loss mechanisms is highly valuable
to ameliorate impedance matching and enhance the attenu-
ation ability of TMDs. Despite the huge achievements, sever-
al issues still need to be addressed to achieve excellent EMW

absorption performance, clear EMW absorption mechanisms,
and high practical application abilities. First, more novel TM-
Ds should be explored, including but not limited to the intro-
duction of different transition metals and compounding with
other functional materials. Second, the phase transition and
defect engineering of TMDs can tune their absorption ability.
Hence, it is necessary to focus on fabrication strategies and
stabilize metallic phases. Third, novel absorption mechan-
isms and physical models of TMDs based on their character-
istic structures and composition should be developed. In ad-
dition, taking the transformation from laboratories to practic-
al applications into consideration, smart multifunctional
devices based on TMDs should be taken into consideration to
adapt to extreme environments, such as corrosion resistance,
flexibility, bacteriostasis, and high/low temperature resist-
ance. Finally, the facile preparation strategies of TMD-based
absorbers with high yields and green environmental protec-
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tion should be developed, and EMW performances in low
frequency should be focused on because most civil wireless
electronic devices and important military devices work in
low frequency.
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