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Abstract: Data-driven algorithms for predicting mechanical properties with small datasets are evaluated in a case study on gear steel hardenab-
ility.  The limitations  of  current  data-driven algorithms and empirical  models  are  identified.  Challenges  in  analysing small  datasets  are  dis-
cussed, and solution is proposed to handle small datasets with multiple variables. Gaussian methods in combination with novel predictive al-
gorithms are utilized to overcome the challenges in analysing gear steel hardenability data and to gain insight into alloying elements interaction
and structure  homogeneity.  The  gained fundamental  knowledge  integrated  with  machine  learning  is  shown to  be  superior  to  the  empirical
equations in predicting hardenability. Metallurgical-property relationships between chemistry, sample size, and hardness are predicted via two
optimized machine learning algorithms: neural networks (NNs) and extreme gradient boosting (XGboost). A comparison is drawn between all
algorithms,  evaluating their  performance based on small  data  sets.  The results  reveal  that  XGboost  has  the  highest  potential  for  predicting
hardenability using small datasets with class imbalance and large inhomogeneity issues.
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1. Introduction

In steel metallurgy, the mechanical response of materials
directly depends on the microstructure and its  homogeneity
across multiple length scales including chemical microalloy-
ing,  phases,  and  grain  size  distribution.  Linking  the  micro-
structure to the mechanical properties requires solving com-
plex coupled multi-physics approaches consisting of several
underlying  differential  equations.  The  task  becomes  ex-
tremely  challenging  to  resolve  with  finite  element  analysis
(FEA)  when  non-linear  microstructure  response,  inhomo-
geneous element distribution, and rapid phase transformation
are  involved  [1–2].  As  an  alternative,  numerically  solving
non-linear solid mechanics problems such as the quenching
of  high-alloyed  steel,  is  commonly  achieved  via  empirical
based  modelling,  relying  on  thousands  of  costly  laboratory
tests.

The  mechanical  performance  of  gear  steels  is  evaluated
through hardenability i.e., the ability of a material to change
its hardness as a result of a given heat treatment. Thus, hard-
ness is the most important indicator for gear steel fatigue life,
resistance  to  deformation,  and  performance,  directly  affect-
ing the application of the manufactured steel component. In
steelmaking,  quenching  is  an  abrupt  cooling  process  indu-
cing  martensitic  transformation  through  diffusionless  shear

crystallographic deformation [3]. The homogeneity and frac-
tion  of  the  formed  meta-stable  structures,  martensite,  and
bainite depends on the kinetics of transformation as a func-
tion of the micro-alloying element additions and cooling rate.
However, building a computational model which relies upon
thermally activated process simulation of the different phases
and  differential  cooling  rates  is  complex,  time-consuming
and  requires  high  calibre  skills.  Consequently,  in  industry,
determining  the  processing–metallurgical–microstructure–
property causal relationship in gear steel manufacturing typ-
ically  relies  upon  the  empirical  knowledge  of  composition
and hardness.

A number of empirical hardenability mixture models exist
in literature, most established of which is Maynier equation
[4]. His equation takes into account martensite, bainite, and
ferrite  fraction,  each  expressed  through  simplified  physical
approximation  determined  via  parametric  calibration.
However,  the  fraction  of  phases  varies  along  the  steel  pro-
duction bars due to the afore mentioned differential cooling
rate. Performing microscopy identification of phases on mul-
tiple locations per test component is not only be highly time
consuming but also costly and ineffective. Hence, alterations
of  Maynier  equation  purely  based  on  alloy  chemistry  were
developed through the years [5]. Nowadays, steelmaking in-
dustry still puts considerable resources into measuring harde- 
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nability through Jominy end quench test to expand the ever-
increasing standard steel families and their parametric harde-
nability  expressions.  However,  the ever-increasing need for
rapid alloy modification and improvement in gear perform-
ance gives  rise  to  considerable  research efforts  towards de-
veloping  better  predictive  models,  forecasting  hardenability
of high-performance steels.

In recent years, a number of attempts to achieve more ro-
bust  non-linear  material  modelling  were  made  using  artifi-
cial  intelligence,  specifically  focusing  on  neural  networks
(NNs) and decision trees [6–8]. The industrial digitalization
is  increasing  in  attention  and  importance  attributed  to  the
data-driven materials science for new high-added value ma-
terials design. Since the end of the last century, Badeshia [9]
highlighted the role of NNs as a highly supportive technique
in material science. However, it is only in the last decade that
the evolution of  the machine learning (ML) techniques and
the  availability  of  large  and  low-cost  computational  re-
sources,  allow  material  scientists  to  investigate  and  utilize
measured data in novel ways. ML techniques, and in particu-
lar NNs, are now increasingly applied in steel alloy optimiza-
tion and in striving for superior target properties, as they ap-
pear capable to overcome the lack of efficiency in traditional
experimental  and  industrial  alloy  characterization  [10–11].
Through  NN  regression,  even  small  data  sets  can  produce
simple  quantitative  expression  capturing  the  complex  rela-
tion between chemical compositions and resulting properties
[6]. However, researchers face a number of challenges when
dealing with NN modelling such as overfitting, high oscilla-
tions and lack of transparency.

Gradient tree boosting [12], also known as gradient boost-
ing  machine  (GBM)  or  gradient  boosted  regression  tree
(GBRT),  belongs  to  the  family  of  ensemble  models.  It  is  a
state-of-the-art  technique  for  solving  regression  problems
with  a  wide  implementation  in  real-world  applications.  Ef-
fective implementation of statistical models that capture the
variables dependencies and scalable learning systems is key
to  construct  machine-learning-based  analytics  for  complex
non-linear processes. Extreme gradient boost (XGBoost) is a
novel sparsity-aware algorithm for sparse data and weighted
quantile  sketch  for  approximate  tree  learning  proposed  by
Chen  and  Guestrin  [13].  It  has  well-acknowledge  impact
among  ML  community  due  to  exceptional  performance  in
ML and data mining challenges [14]. Due to its outstanding
performance,  >10  times  faster  than  other  machine  learning
algorithms, XGBoost’s scalability in multi-disciplinary fields
across  all  scientific  fields  in  both  regression  and  classifica-
tion [13].

XGBoost  provides  several  merits  in  terms  of  data  pro-
cessing.  First,  it  has  higher  accuracy  in  comparison  with
GBRT, which only used first derivative of Taylor expansion,
while,  XGBoost  offers  degree  of  freedom  in  defining  loss
function in expansion function [15]. Introduction of regular-
ized  objective  controls  the  complexity  of  models  by  using
parameters, including number of leaf nodes, optimal weights
of  leaves.  Shrinkage,  sharing  similar  principles  of  learning

rate, reduces the influence from individual tree enabling fur-
ther  improvement  of  model  via  future  trees.  Subsampling
prevents overfitting and accelerates computations of the par-
allel algorithm. Thus, XGBoost holds a promising potential
towards industrial  applications where accuracy,  fluctuations
and transparency are critical.

In this work we investigate the performance of three dif-
ferent  data-driven  models  with  the  specific  application  of
small  industrial  hardenability  dataset  on  gear  steel  alloy:
20CrMnTi.  An  empirical  model  is  generated  through  a
guided  parametric  calibration  with  non-linear  multivariate
minimization. A state-of-the art NN and the novel XGboost
models  are  also  utilized  to  generate  target  hardness  predic-
tion. In this paper, empirical and data-driven approaches are
compared  based  on  their  ability  to  predict  and  understand
hardenability  through investigating alloying additions influ-
ences and microstructure homogeneity in gear steel samples. 

2. Hardenability  prediction  for  industrial  ap-
plications

The Jominy profile, Fig. 1, is used for characterizing each
steel grade hardenability. Specific requirements are imposed
by the customers to the steel producers, in the form of upper
and  lower  bound  for  the  hardness  value  corresponding  to
specific  Jominy  distance  values  (J).  Thus,  controlling  the
range of hardenability for each steel grade is crucial for meet-
ing the customers’ needs and reducing scrappage. Each steel
alloy possesses unique hardenability target range. The main
alloying  elements  for  gear  steel,  which  affect  hardenability
include  carbon  (C),  chromium  (Cr),  manganese  (Mn),  mo-
lybdenum (Mo), silicon (Si), nickel (Ni), and titanium (Ti), as
shown in Fig. 1(d). The influence of these microalloying ele-
ments can be separated into direct and indirect effect. Carbon
strongly  affects  the  hardness  of  the  martensite,  as  C delays
the  onset  of  pearlite  formation  hence  stimulates  the  forma-
tion of martensite at  slower cooling rates.  However,  the ef-
fect  is  not  significant  enough  to  be  purely  used  for  phase
formation control, hence other elements are commonly used
to control the hardenability. Cr, Mo, Mn, Si, Ni, and V (espe-
cially  Cr,  Mo,  and  Mn)  retard  the  martensitic  and  bainitic
transformation. The distribution of these microalloying addi-
tions  have  a  direct  effect  on  the  microstructure  transforma-
tion from austenite to ferrite and pearlite. On the other hand,
elements such as Al, Ti, N show complex interactions among
each  other,  indirectly  affecting  the  temperature  during  the
transformation phase. For instance, for the investigated gear
alloy 20CrMnTi, the Ti content interacts with N2. A TiN pre-
cipitate is formed reducing the interstitial solid solution of N
which in turn causes lattice distortion influencing the phase
transformation. Empirical methods are designed for direct in-
fluences hence there is an apparent gap in the investigation of
the indirect influences.

Other  than  controlling  the  hardenability  range  and  in-
creasing the consistency of the hardness,  the industry is fo-
cused on reducing the time required for the steel grade design
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and testing. Microstructure phase fraction and grain testing is
costly to perform on a large number of product specimens of
various alloys.  Any model  predicting hardness without  tak-
ing these variables into account is beneficial in mitigating the
laboratory  work  burden  and  reducing  costs.  Further  saving
can be achieved by reducing the number of tests per Jominy
location (J). In many cases an asymmetric hardness distribu-
tion is observed, i.e., the sensitivity of indentation at the same
distance from quenched end is related to the inhomogeneity
of microalloying elements distribution. Such inhomogeneity
is  also  the  primary  reason  for  the  reduced  model  accuracy
and  fluctuations  and  target  predictions.  Further  indirect  ef-
fect on the hardenability is caused by the component size. It
is challenging to achieve consistency of the alloying and mi-
crostructure  on  larger  components.  Hence,  the  dataset  ex-
amined in this study takes into account hardness measured on
samples with a range of diameters. Thus, a model is required
that increases the reliability of the hardenability models, de-
signed for small  data sets with limited variables and with a
consideration of component size. 

2.1. Industrial data analysis

ϕD)

The investigated in this study alloy 20CrMnTi is a relat-
ively  new gear  steel  alloy.  Up to  the  knowledge of  the  au-
thors,  there  isn’t  any  readily  available  empirical  model  or
chart  for  estimating  its  hardenability.  Thus,  steelmaking
manufactures  must  perform  Jominy  quench  tests  for  each
batch taking into consideration both microalloying elements
and component diameter ( . The data in this study comes
from such industrial quality control tests. Hardness measure-

ĤJ=9mm

(ĤJ=15mm

ϕD

ments  are  taken  at  Jominy  distances  of  9  ( )  and  15
mm ) for component diameter in the range 30–130
mm, as shown in Fig. 1(b). The data contains measurements
taken  at  total  of  30  different  sample  diameters  ( ),  where
between  2  to  16  hardness  measurements  are  taken  at  each
diameter  per  specific  batch.  Each sample batch has slightly
different  alloying  chemistry  and  microstructure  due  to  the
prior  processing.  All  hardness  measurements  are  repeated
twice and average is taken to remove any influences from the
test  equipment.  Mass  spectrometer  is  used  to  measure  the
steel chemistry for each steel bar. All samples are made from
20CrMnTi steel alloy with a manufacturing variation in the
chemistry across the following elements: C, Mn, Ti, Cr, Cu,
Mo, Ni, P, S, Si, and V recorded in weight percent. The ob-
tained data is 370 heats total, hence it belongs to the group of
small industrial data sets. Consequently, performing removal
of data though data cleaning is not appropriate.

Both  the  hardness  measurements  and  alloying  constitu-
ents are investigated prior to the modelling. A novel Ppscore
[17] algorithm is used to investigate the correlation between
the parameters. Ppscore is an asymmetric, data-type-agnostic
score that can detect linear or non-linear trends between vari-
ables. It assigns a predictive power value between 0 and 1. As
seen in Fig. 2, Si, Cr, and Mn possess the highest interactiv-
ity out of all microalloying additives. Such mid-level correla-
tion (0.02 >Ppscore value < 0.6) indicates that any informa-
tion that these three elements add to the model will be partial
(semi-dependant) in comparisons to the other fully independ-
ent elements (score <0.2). Interestingly, neither of the hard-
ness measurements are directly related to the alloying chem-
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Fig. 1.     Hardenability study of gear steel 20CrMnTi: (a) diagram of Jominy test set [16]; (b) Jominy profile is obtained by the meas-
ured hardness values as a function of the distance from the quenched end (J). The hardness along the bar depends on the cooling rate
where both hardenability and cooling rate are at their maximum at the quenched (leading) end; (c) as illustrated in (c) the hardness
depends on the alloy composition which in turns affects the formed microstructure; (d) illustrates all the alloying elements (highlight
with colors) involved in 20CrMnTi alloy.
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istry. The lack of such direct dependence between hardness
and the chemistry is suggested to be one of the main reasons
why parametric studies struggle to predict consistently alloy
hardenability. 

2.2. Unsupervised learning for data classification

Unsupervised learning uses ML algorithms to analyze and
cluster  unlabelled  datasets.  These  algorithms  discover  hid-
den patterns  or  data  groupings  without  the  need for  human
intervention.  From observations  performed in  the  industrial

hardenability dataset, Fig. 3, it is apparent that there are two
distinct distributions within both the hardness at 9 and 15 mm
Jominy  distances.  To  better  understand  this  hardenability
separation, multivariate gaussian analysis was applied to both
the hardness measurements at 9 and 15 mm, as shown in Fig.
3. In engineering, the Gaussian mixture model (GMM) is the
one  of  the  most  commonly  used  probabilistic  clustering
methods, where data points are clustered based on the likeli-
hood that they belong to a particular normal distribution.
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ĤJ=9mm = 0.57

The  GMM  analysis  on  the  hardness  measurements  re-
veals  that  there  are  two  distinct  peaks  within  the  data.  The
primary  peak  is  distributed  around  the  target  hardenability
value .  However,  the  secondary  peak  is  loc-
ated at much lower values (0.1) and is undesired by the steel-
making  manufacturers.  It  is  crucial  to  understand  its  origin
and  mitigate  its  occurrence.  As  an  unsupervised  ML  al-
gorithm, GMM are capable of quantitatively separating and
labelling  the  clusters  of  measured  data  points,  however,  a
knowledge-based approach is required to metallurgically de-
scribe their occurrence. As described in the introduction sec-
tion, two effects are not accounted for in the data variables:
the fraction of martensite and bainite and the grain size, both

of  which are  a  function of  the  alloying elements,  assuming
the samples underwent identical austenitization and quench-
ing procedure in laboratory-controlled setting. Consequently,
the samples with lower hardenability have higher percentage
of retained austenite, i.e., lower volume fraction of martens-
ite and bainite. The multivariate gaussian analysis was imple-
mented as an alternative method to account for this distinct
change  in  microstructural  conditions.  By  labelling  this
change  into  a  separate  variable  which  is  then  subsequently
encoded into the machine learning algorithms to increase the
data-driven  modelling  accuracy  and  provide  a  reference
which guides the model optimization.

All data is consistently normalized between 0 and 1 prior
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to any of the processing and modelling. Standard approach in
ML is to split  the data into training, testing, and validation,
however,  by  reducing  the  training  data,  we  risk  losing  im-
portant patterns/trends in data set, which in turn increases er-
ror  induced  by  bias.  Thus,  a  method  is  required  which
provides sample data for training the model and still  leaves
sample data for validation. This is achieved via k-fold cross
validation. In k-fold cross validation, the data is divided into k
number of subsets. The holdout method is repeated k times,
such that each time, one of the k subsets is used as the test set
and the other k−1 subsets are put together to form a training
set. The model effectiveness is evaluated by averaging the er-
ror (MSE) over all k = 5 trials. In such way, every data point
gets evaluated at  least  once alleviating the large categorical
imbalance. 

2.3. Empirical hardenability model

In parametric mathematical hardenability models, each of
the parameters is linked to the steel chemical composition by
non-linear  equations.  In  this  study,  a  constrained  nonlinear
multivariable  function  [18]  is  used  for  parameter  optimiza-
tion  to  generate  an  empirical  hardenability  model  for  steel
grade 20CrMnTi. The algorithm finds a constrained minim-
um of a scalar function of several variables starting at initial
estimates. It  uses  sequential  quadratic  programming  (SQP)
method where the objective function is minimized by iterat-
ing through 14 parameters. The minimized equation is of the
type:

H = a1
√

wC+a2J2√wC+a3wCr+a4wNi+a5wMn+a6wTi+

a7wSi+a8wMo+a9wV+a10wCu+a11wP+a12wS+

a13wAl+a14

√
ϕD (1)

J
ϕD a1→12

where H is hardness at a distance  from quenched end, and
 is component diameter;  are the tuneable parameters;

wM means the mass fraction of element M.  Equation coeffi-
cients from similar studies but for a different alloy (20CrMn
Mo) are used to obtain the initial estimates in Eq. (1) solver.
A MSE function is used to evaluate the difference between
the predicted with  Eq.  (1)  and measured hardness  for  alloy
20CrMnTi. The resulting empirical equation is as follows:
H = 63.31

√
wC−0.136J2√wC+10.45wCr+5.00wNi+

2.92wMn+3.93wTi−1.29wSi+32.34wMo+9.92wV+

3.04wCu+11.99wP−8.58wS+0.00wAl−0.0807
√
ϕD (2)

The interaction of the alloying elements and their effect on
hardness  is  reflected  through  the  empirically  tuned  interac-
tion parameters. According to Eq. (1), in this study, hardness
decreases with distance from quenched end and with increas-
ing  the  component  diameter,  both  of  which  are  reasonable
and expected. Interestingly, hardness also decreases with the
increase in Si  content.  Si  generally influences hardenability
positively,  however,  Si  is  one  of  the  elements  with  the
highest recorded fluctuation both with varying microalloying
and distance from quenched end [19]. By standard, S content
is reduced as much as possible, but even traces are detriment-
al to the alloy. 

2.4. Neural networks for small industrial dataset

As shown in Fig. 1, 14 chemical components, N = 14, are
considered in  this  application (C,  Mn,  Si,  P,  S,  Cu,  Cr,  Ni,
Mo,  Ti,  Nb,  Al,  V).  Component  diameter  and  Jominy  dis-
tance are also considered. Both the mean hardness at 9 and 15
mm is used as a target for the study. The implemented NN
model is a three-layer feed-forward perceptron type network
with a variable number of neurons in the hidden layers. The
NN consists of two hyperbolic tangent (tanh) transfer func-
tions  and  a  linear  activation  (purelin).  The  weights  and  bi-
ases of which are trained by backpropagation algorithm that
employs  Bayesian  regularization  to  improve  the  network
generalization capabilities and robustness [20].

I = tanh

 N∑
j=1

W (1)
0 j X j+b(1)

j

 (3)

Hk = tanh

Nk−1
H∑

j=1

W (k+1)
i j X jg

(k)
j +b(k+1)

i

 ,k= 1,2,3, i= 1,2 . . .NH

(4)

O = f

 N4
H∑

j=1

W (5)
i j g(4)

j +b(5)
i

 ,{ f (x) , x > 0
α f (x) , x ≤ 0 (5)

Hk

Hk

W (k+1)
i j j

i W (k+1)
i j

W (1)
0 j

W (k+1)
i j W (5)

i j

N4
H bk

i

i g j

i X j

f (x)
α

I

Hk

Nk−1
H )

where I, , and O stands for input layer, transfer layer, and
output layer, respectively, with k being the number of layer.
In this work we use 3 NN tanh layers, therefore  k varies from
1 to 3 in , plus an input ( k = 0) and an output layer ( k = 4).

 are the trainable weights for node  in layer k+1 for in-
coming node . For example, in the input layer I,  be-
comes , i.e., i = 0, k = 0, and j is in the range from 1 to N
(number of input); in the output layer O,  becomes 
and i varies from 1 to  (number of neurons) , k = 4.  are
the biases for node  in layer k;  represents the first order
gradient of the loss function for node ;  is the input matrix;

 represents a linear transfer function which has a gradi-
ent of one for positive x, and gradient  for negative x. The
upper bound of the internal summation in the input layer ( )
depends on the number of inputs (N), whereas in the transfer
layer (  ), it depends on the number of nodes in the preced-
ing layer ( . The maximum number of layers (k) for a re-
gression type NN is recommended to be three [6], where k >
3 has been shown to cause overfitting for minor increases in
accuracy.

To improve generalization and reduce the overfitting, reg-
ularized  performance  function  MSEreg have  been  used  in
training the NN.
MSEreg = γMSE+ (1−γ)MSW (6)

MSE =
1
N

N∑
i=1

(ti− ii)2 (7)

MSW =
1
N

N∑
j=1

W2
j (8)

γwhere  is the regularization; ti is the predicted by NN target;
Wj represents the trained weights.
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γ)
Nk

H

(N1
H N2

H N3
H)

γ =

The NN hyperparameters  were fine-tuned to achieve the
optimal network configuration. Five main hyper parameters
were  optimized  via  the  Bayesian  search  algorithm  namely:
learning rate, regularization ( , number of neurons in each
layer ( ). The Bayesian search was performed >100 times
using different random seeds and selected hyperparameters,
then the optimal NN were chosen for this study. The best NN
with lowest MSE out of the all NNs within the training grid
was 14-(4-8-17)-2, where the number represents the follow-
ing: input– – – –output. Learning rate was determ-
ined to be 0.01 and best  regularization parameter  0.91.
All calculations were carried out in Matlab 2021a. 

2.5. Decision trees

XGBoost  is  a  decision-tree-based  ensemble  Machine
Learning algorithm that uses a gradient boosting framework.
In  regression  problems  with  small-to-medium  structured
data,  decision  tree-based  algorithms  are  considered  state-of
the-art.

L (ϕ)The objective function, , for training is expressed in
Eq. (9) consisting of sum of loss function and regularized ob-
jective:

L (ϕ) =
∑

i
l
(̂
yi,yi
)
+
∑

k
Ω ( fk) (9)

l ( f )
ŷi yi

Ω ( fk) = γT +
1
2
λ|ω|2

T λ ω

where the loss function  measures the difference between
the predicted data  and target data  (i.e., variance), while

 is  called  regression  tree  functions
which penalize the complexity of the model. , , and  rep-
resents the number of leaves in the tree, weight decay (also
commonly known as L2 regularization), and leaf weights, re-
spectively.

Since  the  tree  ensemble  model  in  Eq.  (4)  includes  func-
tions as parameters and cannot be optimized using traditional
optimization  methods  in  Euclidean  space,  second-order  ap-
proximation  of  Taylor  expansion  is  introduced  to  optimize
objective without interfering other settings.

j
Ω

With definition of as the instance set in leaf . The object-
ive function can be derived as Eq. (10) by expanding :

L (ϕ) ≈=
∑

i

[∑
i∈I j

giW j+
1
2

(∑
i∈I j

hi+λ
)
W2

j

]
+γT (10)

I j gwhere  is defined as the instant set for leaf j while  and h
represents first and second order gradient statistics on the loss
function using Taylor expansion.

W∗
j j

q (x)
By calculating the optimal weight  for leaf  that has a

fixed tree structure :

w∗j = −
∑

i∈I j
gi∑

i∈I j
hi+λ

(11)

Eventually, the optimal value in the objective function is
calculated by Eq. (12):

L (ϕ) = −1
2

∑T

j=1

(∑
i∈I j

gi

)2∑
i∈I j

hi+λ
+γT (12)

η)

η

Analogous  to  the  NN,  hyperparameter  optimization  was
performed  across  selected  optimizable  parameters  within
Boost.  A  grid  search  was  applied  over  the  following  para-
meters learning rate ( , depth of tree, maximum bins, and L1
and L2 regularization. The optimum XGboost configuration
was  found to  be:  =  0.03  with  1000 iterations,  depth  =  6,
bins = 50, L1 = 0, and L2 = 0.3. The algorithm and all calcu-
lations were carried out in python 3.8. 

3. Results 

3.1. Parametric model

ϕD

ϕD Ĥ

ϕD ϕD

ϕD

The parametric model, Eq. (1), is evaluated on the set of
input data outlined in section 2.1. As a result, a hardness pre-
diction is obtained as a function of the microalloying chem-
istry, diameter ( ) and Jominy distance (J). To standardise
the results, a mean is taken for all hardness values measured
at the same . The predicted mean hardness ( ) is plotted
against the measured mean hardness in Fig. 4, for both  J = 9
mm and J = 15 mm. The empirical model shows a good cor-
relation  with  the  measurements  for  the  small  (30–40  mm)
diameters and is close comparison for the mid-range diamet-
ers (55–90 mm). However, as observed, the measured hard-
ness varies significantly with . In the small  range these
oscillations  are  small  with  consistently  decreasing  hardness
value,  when  error  bars  are  considered.  The  predicted  with
parametric model (PM) hardness captures well  some of the
oscillations,  especially  where  sufficient  data  was  provided.
The  disparity  between  the  empirical  model  and  measure-
ments is more pronounced at the larger diameters (>90 mm).
Parametric  models  are  designed to  capture  the  mean of  the
target variable; however, owing to their highly conservative
nature,  they  often  underestimate  the  standard  deviation  in
hardness at each diameter. This trend is even more apparent
at the J = 15 mm distance where only one fluctuation in hard-
ness at  = 55 mm was captured. The PM provides a good
average prediction.  In overall,  the PM has a  MSE of  0.051
and 0.075 for J =  9  mm and J =  15 mm, respectively.  For
consistency,  the  error  is  taken  for  the  normalized  hardness
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Fig. 4.    Parametric model (PM) prediction against measured hardness values at (a) J = 9 mm and (b) J = 15 mm.
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range between 0 and 1 in this and any further studies. 

3.2. Neural networks

Ĥ = 0

Once the network is trained using the training dataset and
pre-processing outlined in section 2.1, the hardenability data
is  evaluated  with  the  resulting  NN model.  The  accuracy  of
the NN model is showed in Fig. 5, where the coefficient of
determination for both predictions at J = 9 mm and J = 15
mm is 0.92. From the plot it can be seen that the lower range
hardenability values are well predicted. There is a scatter of
points around the mid-to-top range values ( .6 to 0.9).
To  investigate  this  scatter  in  predictions,  a  plot  of  sorted
measurements  against  predicted  values  is  plotted  in Fig.  6.
The predicted with NN hardness (orange points) follow well
the measured hardness across the entire range of values. All
values were sorted in increasing order to provide clear visual
contrast between the predicted and actual results. Again, the

Ĥ = 0

ϕD

low and mid-range hardness are well predicted. The highest
mismatch  between  prediction  and  measurements  is  seen  at
the  location  of  largest  change  in  hardness,  at .45  to
0.60.  This  effect  occurs  at  both  Jominy  distances.  Identical
procedure  to  the  empirical  model  is  followed  where  mean
hardness  measurements  and  NN  predictions  are  plotted
grouped  according  to  diameter,  as  seen  in Fig.  7.  The  NN
model manages to capture the hardness variation much better
than the empirical. The highest error is at  = 45 mm. This is
contributed  to  the  lack  of  data  at  this  point.  In  overall,  the
MSE result for the neural network is MSENN = 0.0048, which
is ten orders smaller than the parametric. 

3.3. Extreme gradient boosting

The hardenability  results  using XGBoost  are  reproduced
as shown in Fig. 8(a) and (b), which contains moderate im-
provements on predictions at J = 9 mm and J = 15 mm with R
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values of 0.94 and 0.96, respectively. In addition, XGBoost
also has better performance in prediction of fluctuated data as
shown in Fig.  8(c)  and  (d).  Despite  of  experimental  uncer-
tainties during hardness measurement, the XGBoost predic-
tion is showing less deviated scatters in comparison with ex-
perimental  measurements.  Mean  hardness  measurements
grouped according to diameter and XGBoost predictions are

plotted in Fig. 9. The model manages to capture the hardness
variation  best  out  of  the  three  investigated  models,  where
XGboost  provides  reasonable  estimate  even  for  diameters
with only one measurement.
 

3.4. Importance of the data pre-processing

The added GMM pre-processing does increase the accur-

 

1.0

30

0.8

40

0.6

50

0.4

60

0.2

70
0

80 90 100 110 120 130

H
 p

er
 ϕ

D
 a

t 
J
 =

 9
 m

m
^

Measurements

Predictions (NN)

ϕD / mm

(a)
1.0

30

0.8

40

0.6

50

0.4

60

0.2

70
0

80 90 100 110 120 130

ϕD / mm

H
 p

er
 ϕ

D
 a

t 
J
 =

 1
5
 m

m
^

(b)

Measurements

Predictions (NN)

Fig. 7.    Comparison between measured and predicted data on small industrial data set for steel grade 20CrMnTi for (a) J = 9 mm
and (b) J =  15  mm.  Values  are  grouped according to  the  diameter.  The  standard deviation shows the  consistency  in  the  achieved
hardenability per ϕD both for the measurements and predictions of those measurements.
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acy  of  the  ML  algorithms  significantly.  The  introduced
GMM pre-processing is added through encoding the labelled/
categorised  points  as  input  to  indicate  the  unaccounted  mi-
crostructural  effects.  This  engineered  feature  is  in  effect
guiding the machine learning models indicating that there is a
change in the conditions. As shown in Fig. 10, the NN coeffi-

cient of determination without taking account the GMM is R
= 0.75 and R = 0.78, respectively for J = 9 mm and J = 15
mm. Similarly, the coefficient of determination for XGboost
is R = 0.82 and R = 0.85, respectively for J = 9 mm and J = 15
mm.  The  spread  of  points  is  much  larger,  especially  in  the
lower hardness range where the secondary peak in hardness
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was observed. 

3.5. Accuracy comparison—MSE and MAE

The algorithms are compared against two well established
errors:  mean  absolute  error  (MAE)  and  MSE,  as  shown  in

Fig.  11.  The  ML  algorithms  perform  much  better  than  the
parametric method. As seen above, XGboost has a minor ad-
vantage over the NN with a percent increase in accuracy and
reduction  in  the  overall  deviation  of  the  predicted  values,
seen from the error bars.
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dicted  and  measured  values  is  shown.  ML performs  few orders  of  magnitude  better  whilst  the  difference  between  NN and  XG is
marginal. (b) MSE is also shown for all models. Similarly, XGboost has the lowest error, hence best performance.
 
 

4. Discussion 

4.1. Challenges in industrial data for machine learning

Industrial  data  is  subject  to  multiple  challenges,  which
must  be  accounted  for  prior  to  any  data-driven  modelling,
namely:

(1) Lack in quantity—small data set;
(2) Lack in diversity—limited variables;
(3) Class imbalance—few measurements per category.
Unlike  controlled  laboratory  experiments,  industrial  test

facilities do not have the time and resources to cover and test
across all aspects of a process. Despite following established
standards,  the  resulting  data  is  limited,  sufficient  to  cover
customers’ needs  but  lacking  in  quantity  and  diversity.  For
instance,  the  hardness  data  examined  in  this  study  is  only
limited to chemistry, Jominy distance, and diameter size. Me-
tallurgical variables from the smelting and rolling process are
considered in affect the hardenability although indirectly, as
shown  in Fig.  1.  These  additional  unaccounted  for  process
components such as the element,  phase fraction (martensite
and bainite)  distribution,  and grain size  have their  footprint
on  the  hardness  leading  to  the  observed  variations  and  in-
homogeneity in hardenability across the test samples, Fig. 3.
To account for these variable influences, the data in our study
is  categorized  into  homogeneous  and  inhomogeneous,  as
shown in Fig. 3. The inhomogeneous effect in hardenability
is highly undesired by industry, hence its occurrence must be
investigated and better understood. This effect is integrated in
our  data-driven  algorithms  through  the  performed  GMM
classification, Fig.  3.  Each  hardenability  component  is
defined by its mean and covariance. The mixture of both ho-
mogeneous and inhomogeneous microstructure is defined by
a vector  of  mixing proportions,  where each mixing propor-
tion represents the fraction of the population described by a
corresponding  component.  This  gained  additional  know-

ledge about the data set  is  directly integrated in all  the ma-
chine learning algorithms.

Apart from the diversity of the data set, its quantity is also
challenging. For the investigated 20CrMnTi gear steel grade,
only 370 data points have been recorder spread out across 30
diameter sets. One can quickly notice that there is a potential
class imbalance issue when modelling such data. To resolve
this  problem, a k-fold validation was implemented for  both
the NN and XGboost models. This allows all the data to be
utilized  covering  a k-number  of  variations  of  training  and
testing data sets. This method significantly reduces bias be-
fore implementing data for fitting, and significantly reduces
variance as most of the data is also being used in validation
set.  Interchanging, k-fold  validation  increases  the  effective-
ness and robustness of the data-driven modelling. 

4.2. Limitations of empirical models

In  empirical  equations,  specific  complex  dynamical  pro-
cesses  are  replaced  by  simplified  physical  approximations
whose  associated  parameter  values  are  estimated  from data
i.e.,  PM.  PM  models  are  still  relied  upon  in  industry;
however, they have multiple fundamental limitations:

(1) Limited to specific alloy grades;
(2) Time consuming and costly: require extensive testing

and tabulation;
(3)  Assume  no  interaction  between  microalloying  ele-

ments;
(4) Assume homogeneous microalloying.
Most numerical models forecasting the Jominy profile of

steels  provide  good  subject  to  specific  of  steel  grades,  on
which their internal parameters were tuned, and do not show
good  generalization  properties  when  applied  outside  those
ranges,  as the relationship linking such parameters with the
steel  chemical  composition  are  mostly  empirical  and  diffi-
cult  to  extend.  Moreover,  often  the  accuracy  is  acceptable
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only on a few points of the Jominy curve. This is due to each
alloy element being individually analyzed, while interactions
are neglected. As shown in Fig. 2 and highlighted in the in-
troduction, a lot of the microalloying elements cause indirect
effects  on  the  hardenability  of  the  alloy.  These  interactions
between elements are problematic to capture through empir-
ical equations hence more advanced modelling methods are
implemented. The investigated in this work empirical mod-
els clearly shows the drawback of such methods. As shown in
Fig. 4, empirical methods can predict a mean value but fail to
capture the range or deviation in hardness. 

4.3. Comparison between NN and XGboost

R = 0.92 R =
∑

i

(̂
yi− yi

)2
(y− yi)2

ŷi)

ϕD

(ϕD

Machine  learning  used  collaboratively  with  fundamental
knowledge of  metallurgy has  been shown to  be superior  to
empirical models [10,21]. Hence, there is great interest in us-
ing  ML models  to  gain  new insight  directly  from observa-
tions  and  high-resolution  model  simulation.  NNs  as  one  of
the main representatives of machine learning come into con-
sideration when faced with small challenging data sets. NN
are capable of compensating for the shortcomings of empir-
ical  formulas.  NN  can  capture  the  non-linear  interaction
between the elements as well as the indirect effect of process
parameters, once integrated with knowledge-based classific-
ation. As seen in Fig. 5, NN successfully predicts the meas-
urements.  The  overall  accuracy  is  satisfactory  high  with

;  , where (yi) is the measured value

and (  is the predicted value, employed to evaluate the per-
formance  of  the  ML models.  Naturally,  the  more  the  hard-
ness measurement per , the better the NN prediction. This
is evident from Fig. 7, where at diameters ) with only one
or two measurements, the hardness predictions were severely
over- or underestimated by the NN model. Thus, despite be-
ing able to account for multiple direct and indirect influences
on the microstructure, NN falls short in predicting: (1) out-of-
range and (2) limited data relationships, accounting for class
imbalance.

Interestingly,  the  deviation  in  hardness  predicted  by  the
NN model corresponds well to the standard deviation range
of the measurements, taken per diameter.

Another  examined  in  this  work  machine  learning  al-
gorithms  is  XGboost.  Gradient  boosting  is  an  approach
where  multiple  residual  calculation  models  are  created  and
added  together  to  make  the  final  prediction.  These  models
utilize  a  gradient  descent  algorithm  to  minimize  the  loss
across all combined models. XGBoost is one of the leading
algorithms that effectively utilizes this approach through: (1)
boosting; (2) regularization.

XGBoost  offers  a  systematic  methodology  for  combina-
tion of the predictive power of multiple learners. The result-
ant is a single decision tree model resulting from the aggreg-
ated output from several trees, where each subsequent tree re-
duces  the  errors  of  the  previous  one.  Another  advantage of
XGboost is in its regularization. The algorithm has an option
to penalize complex models through both L1 and L2 regular-

ϕD = 45 ϕD = 55

ization. Regularization helps in preventing overfitting and as
seen from our results Fig. 9, the predictions with XGboost are
more conservative than the NN. The fluctuations are smaller
especially  for  the  predictions  at J =  15  mm.  The  predicted
hardness  standard  deviation  is  also  smaller  than  that  of  the
NN. Interestingly, XGboost manages to provide good estim-
ation even for points where data is insufficient such as hard-
ness  at  mm  and  mm.  All  this  combined
leads to the overall better performance R = 0.94 and R = 0.96
coefficient  of  determination,  respectively  for J at  9  and  15
mm  and  best  performance  in  terms  of  MSE  in  overall  as
shown in Fig. 11. Thus, XGboost shows the highest potential
for predicting small industrial data sets with class imbalance
and large inhomogeneity issues in a conservative manner. 

5. Conclusion

In this work, hardenability prediction of gear steels is in-
vestigated in both a data-driven and theoretical context. The
limitations  of  current  empirical  methods  are  identified  and
clearly illustrated. A number of challenges are discussed, and
solution proposed to handle small data sets with a large num-
ber  of  categories.  Effective  strategies  for  inferring  micro-
structure homogeneity and microalloying interaction are util-
ized. Two modelling routes are investigated combining XG-
boost and NNs with Gaussian process algorithm to signific-
antly improve the hardenability prediction. The data-driven,
optimized  and  intelligent  machine  learning  methods  show
significant  advantages  over  the  traditional  costly  and  time-
consuming  experimental  parametric  studies.  With  absolute
errors lower that 5%, XGboost and NN prove capable of dra-
matically  accelerating  process  optimization  and  quality  as-
sessment. The high accuracy of prediction ensures a reliable
forecast  of  gear  steel  performance  contribution  to  lowering
costs and improving efficiency of industrial production. 
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