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Abstract: A novel extrusion approach, entitled slope extrusion (SE), was employed to manufacture AZ31 (Mg–3Al–1Zn, wt%) alloy sheets.
The microstructures, textures, and mechanical properties were investigated, compared with those of the AZ31 sheet fabricated by conventional
extrusion (CE). Through the combination of finite element simulation and actual experiment, the ultimate results indicated that significant grain
refinement (from 9.1 to 7.7 and 5.6 µm) and strong basal texture (from 12.6 to 17.6 and 19.5 mrd) were achieved by the SE process. The es-
sence was associated with the additional introduced inclined interface in the process of SE, which could bring about more asymmetric deform-
ation and stronger accumulated strain along the ND when compared with the process of CE. As a consequence, the SE sheets exhibited a high-
er yield strength (YS) and ultimate tensile strength (UTS) than the counterparts of the CE sheet, which was mainly assigned to the synergistic
effects from grain refining and texture strengthening.
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1. Introduction

As one of the lightest metal structural materials, magnesi-
um (Mg) and its alloys have attracted remarkable attention in
automotive, aerospace, and other industries [1–2]. However,
up to date, the low absolute strength is a major bottleneck for
the widespread application of Mg alloys in structural materi-
als. As well known, grain refinement is deemed as an effect-
ive approach to upgrade the strength of Mg alloys, due to a
large K value [3–4]. However, at present the grain size of as-
cast Mg alloy is relatively bulky, and which ultimately give
rise to a low strength performance. Therefore, various severe
plastic  processing  technologies  [5–7],  such  as  extrusion
[8–10], forging [11], and rolling [12], have been dedicated to
achieve  the  goal  of  grain  refinement  and  then  significantly
improve the strength and plastic of the Mg alloys. Unfortu-
nately, it must be admitted that the plastic processed Mg al-
loys normally have a certain texture, such as a basal texture
of  conventional  extruded  AZ31  (Mg–3Al–1Zn,  wt%)  alloy
sheet [13]. Originating from the fact that both the plastic de-
formation behavior and mechanical properties of Mg alloys
are very sensitive to the crystallographic texture, texture con-
trol is regarded as an effective method to optimize the mech-
anical properties of Mg alloys [14]. In particular, reasonable
texture  enhancement  contributes  to  improve  the  strength  of
Mg alloys, albeit it may sacrifice some plasticity. In general,

strength  and  plasticity  are  not  compatible.  However,  when
the  grain  refinement  in  combination  with  the  texture  rein-
forcement, the strength of Mg alloy sheet can be effectively
increased and not at the expense of a severe deterioration in
plasticity.  Such  as,  during  the  high-ratio  differential  speed
rolling  (HRDSR)  process  [15],  the  grain  refining  can  be
achieved  by  the  continuous  dynamic  recrystallization,  and
eventually  ultra-fine  grained AZ31 shows a  relatively  large
post-uniform elongation. Meanwhile, the enormous strain in
large strain rolling (LSR) [16] causes the significant grain re-
finement.  Especially,  after  only  one  pass  with  80%  reduc-
tions,  the  strength  increases  dramatically  and  the  ductility
kept constant.

Extrusion technology is one of the economic processes to
produce the Mg alloy plate [17–18]. In recent years, extens-
ive  work  has  been  employed  to  improve  the  mechanical
properties of Mg alloys via controlling the extrusion process
parameters [19–20], the design optimization of extrusion die
[21], and so on. But these jobs not only take a long period,
but also cost a lot. Therefore, it is urgent to explore a simple
and effective extrusion approach to improve the mechanical
properties of Mg alloy.

In  our  present  research,  a  novel  extrusion  approach  en-
titled slope extrusion (SE) was employed to  produce AZ31
alloy sheets. With more details, AZ31 alloy ingots were split
into two unequal pieces along the specific path before the ex- 
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trusion. As a result, through detailed observation of the mi-
crostructure, texture, and rheological behavior, it can be con-
cluded  that  slope  extrusion  can  significantly  improve  the
strength of Mg alloy sheet. Such an investigation carried out
an  important  attempt  for  the  significant  improvement  of
strength  in  AZ31 alloy  sheet,  which  may further  accelerate
their  practical  application.  In  addition,  the  impact  of  de-
signed  inclined  interface  on  the  deformation  behavior  un-
veiled in this research could provide guidance for the devel-
opment of similar Mg alloys in the future. 

2. Experimental

The commercial AZ31 cast ingots with 80 mm in diamet-
er and 60 mm in length were homogenized at 400°C for 12 h
and then cooled in air prior to extrusion. Subsequently, three
different types of sheets with 3 mm in thickness and 60 mm
in width were extruded at 400°C under the extrusion ratio of
32:1. Schematic diagrams for the fabrication of the CE and
SE sheets are presented in Fig. 1. As shown in Fig. 1, two SE
sheets were obtained from two slope extrusion processes, re-
spectively. One process is considered as the slope extrusion I
(nominated  as  SE1),  and  the  other  one  was  entitled  as  the
slope extrusion II (nominated as SE2). In SE1, the whole in-
got was cut into two unequal pieces along a diagonal which
tilted  away  from the  axis  direction.  Then,  two  pieces  were
bundled into a complete ingot for the following extrusion. In
SE2, the ingot was split into two unequal pieces along a wavy
line. Subsequently, these pieces were tied up as a whole for
the subsequent extrusion.

The  microstructure  was  characterized  by  optical  micro-
scopy (OM), and the average grain size was measured by a
linear  intercept  method.  Electron  backscatter  diffraction
(EBSD) measurements were conducted in the extruded dir-
ection  (ED)–normal  direction  (ND)  plane  of  the  various
samples at 20 kV and the corresponding scan step was set as

0.6 µm. Furthermore, in order to verify the phenomenon of
texture  strengthening  caused  by  the  slope  extrusion,  the
macro-texture measurements were also performed on the top
surface  of  three  sheets  by  using  X-ray  diffraction  (XRD,
Rigaku D/Max 2500) with Cu Kα radiation. The tensile tests
were  carried  out  at  room  temperature  with  an  initial  strain
rate of 10−3 s−1 by using CMT6305-300KN testing machine
and each sheet was repeated three times to confirm the con-
sistency of results. Each sample was machined from their re-
spective sheets along the ED, had a gauge length of 14 mm, a
width of 6 mm, and a thickness of 3 mm. 

3. Results and discussion 

3.1. Simulation results

As shown in Fig. 2, a finite element model was employed
to  simulate  the  processes  of  CE and  SE.  In  this  simulation
model, the type of work piece is set as plastic, while others
such as the top and bottom dies are rigid. The velocity of the
top die is set as 3 mm/s. Ultimately, at the stage of post-de-
formation,  the  state  variable  between  two  points  is  used  to
analyze the strain evolution in the red zone (seen in Fig. 2),
and the point tracking is also adopted to describe the stress in
the black dot (seen in Fig. 2).

The strain and stress  evolution along the ND of the CE,
SE1 and SE2 sheets are shown in Fig. 3. Fig. 3(a) describes
the  distribution  of  effective  strain  along  the  ND  in  the  red
zone,  representing  the  incipient  extrusion  channel  for  the
sheet  forming.  The distribution of  normal  strain for  the CE
sheet  along  the  ND is  changeless,  while  it  presents  a  great
fluctuation  in  the  processes  of  SE1  and  SE2.  As  shown  in
Fig. 3(b), it can be found that the normal stress begins to drop
dramatically when the work piece enters into the severely de-
formed region.  Besides,  the  normal  compressive stresses  in
the  SE1  and  SE2  sheets  are  considerably  larger  than  the
counterparts of CE sheet.  The above phenomenon indicates
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that a larger strain gradient along the ND is formed during the
slope extrusion via the introduction of an inclined interface.
The essence is ascribed to asymmetric deformation and mu-
tual friction between the block and block. Hence, it is reason-
ably speculated that, compared with the conventional extru-
sion, the additional introduced inclined interface in the pro-
cess of slope extrusion would bring about more asymmetric
deformation and stronger accumulated strain along the ND. 

3.2. Microstructural evolution

Optical  micrographs  along  with  the  distribution  of  grain
size  obtained  from the  ED–ND plane  of  the  CE,  SE1,  and
SE2 samples are presented in Fig. 4. For the CE sample, the
microstructure is heterogeneous, occupied by a certain num-
ber of large elongated, deformed grains of 14–18 µm along
with  fine  recrystallized  grains  of  1.5–2.7 µm.  In  contrast,
after  the  slope  extrusion,  it  is  evident  that  the  above  men-
tioned  coarse  and  elongated  deformed  grains  are  signific-
antly reduced and replaced by a notable increase in the pro-
portion  of  fine  recrystallized  grains,  which  eventually  con-
tributes  to  the  improvement  of  microstructural  uniformly.
Furthermore, the average grain size of SE1 and SE2 samples
is 7.7 and 5.6 µm, respectively, which is much finer than that
of  the CE sample (9.1 µm).  Therefore,  it  can be concluded

that the application of SE process is conductive to the signi-
ficant  grain  refinement  and  homogeneous  microstructure,
compared with the CE process.  The possible reason for the
above  phenomena  can  be  attributed  to  the  generation  of  a
bigger strain gradient along the ND of sheets during the SE
process. Lu et al. [22] also reported that the distribution and
inhomogeneity of equivalent strain play an important role in
grain refinement. Meanwhile, Yang et al. [23] suggested that
the  top  surface  of  the  asymmetric  extruded  sample  is  im-
posed to larger effective strain by the interaction between the
container  and the  surface  during the  extrusion process  than
that  of  the sample at  the mid-layer,  leading to grain refine-
ment.  Hence,  significant  grain  refinement  exists  in  the  SE
sheets are pertaining to the increased strain gradient,  which
resulted  from  the  role  in  the  tilted  interface  during  the  SE
processes.

As shown in Fig. 5, the inverse pole figure (IPF) map of
the CE, SE1, and SE2 samples all contain the majority of red
grains  and a  small  number  of  grains  with  other  colors.  Be-
sides, after the slope extrusion, the intensity of basal micro-
texture in SE1 and SE2 samples presents a relatively higher
value, 17.6 and 19.5 mrd, respectively, compared with that of
the CE sample (12.6 mrd). Both of them indicate that the sig-
nificant texture strengthening is achieved by the SE processes.

The (0002) pole figures obtained from the CE, SE1, and
SE2 samples by XRD measurements are shown in Fig. 6. For
the CE sample, its basal pole slightly rotates away from the
center of the (0002) pole figure. Comparatively speaking, for
the SE1 and SE2 samples, the c-axis of grains is almost par-
allel to the ND and accompanied by a stronger texture intens-
ity  of  19.7  and  25.4  mrd,  respectively,  than  that  of  the  CE
sample (11.4 mrd). The above results (a good matching cor-
respondence between macro-texture and micro-texture) once
again confirm that the SE processes will lead to the enhance-
ment basal texture.

Fig. 7 reveals the recrystallization degree of the AZ31 al-
loy fabricated by three different extrusion processes. It can be
found  that  the  volume  fraction  of  red-deformed  grains  is
gradually decreased from the CE to SE1 and SE2 processes
(from 15.7% to 12.6% and 9.3%), which implies that in the
process of hot extrusion, the degree of recrystallization in the
SE sheets is immensely higher than that in the CE sheet.
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As a  result,  in  conjunction  with  the Figs.  6 and 7,  it  re-
flects that the SE processes can not only induce the texture
strengthening, but also accelerate the degree of dynamic re-
crystallization. The above phenomenon may be linked to the
modified stress state (intensified normal strain) during the ex-
trusion.  As  shown in Fig.  3,  the  relevant  simulation  results
clearly reveal that there exists a stronger strain along the ND
of the  sheet  during the  SE processes,  which will  inevitably
give rise to a difficulty of the rotation of the basal plane and
then contributes to basal texture enhancement. Similarly, Wu
et al. [24] also expressed that the texture of Mg–3Gd–1Zn al-
loy is enhanced during the process of cold rolling through en-

hanced normal strain. 

3.3. Mechanical behavior

True stress–true  strain  relations  at  room temperature  ob-
tained from the CE, SE1, and SE2 sheets along the ED are
demonstrated  in Fig.  8(a).  Related  average  values  for  yield
strength  (YS),  ultimate  tensile  strength  (UTS),  and  elonga-
tion-to-failure (EL) for the CE, SE1, and SE2 sheets are cal-
culated and presented in Fig. 8(b). The YS of SE1 and SE2
sheets  (191.1  MPa  and  219.7  MPa,  respectively)  are  both
much higher than that of the CE sheet (177.6 MPa). The UTS
exhibits a rising trend from CE to SE1 and SE2 sheets (from
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392.9 to 394.4 and 410.7 MPa).  Hence,  compared with the
CE  sheet,  SE  sheets  possess  the  higher  values  of  YS  and
UTS. The possible cause is associated with the fine grain size
and high basal texture intensity. In general, the effect of grain
boundary strengthening can be described via the Hall-Petch
equation as follow:

σy = σ0+ kd−1/2 (1)

where σy is  the  yield  strength; d is  the  average  grain  size;
both k and σ0 are texture dependent, where k is the Hall-Petch
coefficient  (220  MPa·µm1/2 for  the  Mg  alloys  with  typical
basal texture [25]), and σ0 is the friction stress for dislocation
movement and is given as follow [26]:
σ0 = mτ0 (2)

where m is the Taylor factor (approximately 6.5 times of the
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τ0texture intensity [27]), and  is the resolved shear stress for
glide on the easiest slip system (about 1.0 MPa [28]). By us-
ing the data of average grain size (CE: 9.1 µm; SE1: 7.7 µm;
SE2:  5.6 µm),  the  calculated  YS  of  as-extruded  alloys  is
154.8, 193.7, and 219.7 MPa, respectively, which has a good
correspondence with their actual values. Hence, the above in-
crease in strength values induced by the SE processes can be
attributed to grain refinement and basal texture enhancement.
Similarly,  research  of  Ding et  al.  [29]  revealed  that  the  in-
creased strength of the billet by procedure 10-ACB can be at-
tributed to the effects of submicron-grained structure and tex-
ture strengthening.

The EL values of SE1 and SE2 sheets present a slight de-
crease (21.1% and 21.3 %, respectively) compared with the
CE sheet (23.5%). The main factors affecting the ductility of
alloys are summarized as follows: (1) Grain size. Generally
speaking,  with  the  decrease  of  grain  size,  the  strain  differ-

ence  between  grain  internal  and  grain  boundary  becomes
smaller  under  the  condition  of  same external  force  [30].  In
other  words,  grain  refinement  can  reduce  the  cracking  in-
duced by stress concentration and result in more uniform de-
formation [31]. Hence, refined grains are in favor of enhan-
cing the ductility of the Mg alloys [32–33]. (2) Texture. As
well known, conventional hot rolling often produces a strong
basal  texture  in  Mg alloy  sheets,  and  which  will  inevitably
deteriorate  the  ductility,  due  to  the  lack  of  an  effective  de-
formation  mechanism  to  coordinate  the  strain  along  the
thickness direction [34–35].

⟨112̄0⟩
Fig.  9 demonstrates  the  Schmid  factors  (SF)  for  (0002)

 basal slip of AZ31 alloys fabricated by three different
extrusion  processes.  In  general,  SF  indicates  the  feasibility
and  activation  degree  of  a  certain  slip  mode  regarding  the
loading  direction  [36–38].  In  the  present  study,  the  higher
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value of average SF implies the easier activation of basal slip
and consequently the lower YS just from the perspective of
texture. On the basis of the similar average value of basal slip
SF  among  these  three  different  extrusion  processes  (CE:
0.243; SE1: 0.267; SE2: 0.244), it can be figured out that the

activation of basal slip in the CE and SE processes is analog-
ous.  In  conclusion,  the  excellent  ductility  of  SE  sheets  at
room temperature can be attributed to the fact that the posit-
ive effect from refined grains offsets the deteriorating effect
from the intense basal texture.
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4. Conclusions

The SE was carried out to produce the AZ31 sheet.  The
microstructures, textures, and mechanical properties at room
temperature were examined. The conclusions were drawn as
follows.

(1)  Additional  introduced  inclined  interface  in  the  slope
extrusion  process  could  bring  about  more  asymmetric  de-
formation and stronger accumulated strain along the ND.

(2) The increment of normal strain during slope extrusion
could  bring  about  grain  refinement,  reasonable  texture  en-
hancement,  and  the  improvement  of  microstructural  homo-
geneity.

(3) The increased YS and UTS of SE sheets were associ-
ated  with  the  synergistic  effects  from grain  refinement  and
texture  strengthening.  Besides,  excellent  ductility  of  SE
sheets  was  pertained  to  the  positive  effect  from  refined
grains.

Therefore,  the  SE  process  was  a  simple  and  effective
method to enhance the strength of Mg alloy sheet. 
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