
 
Effect of chromium interlayer thickness on interfacial thermal conductance
across copper/diamond interface

Xiaoyan Liu1), Fangyuan Sun2),  ✉, Wei Wang3), Jie Zhao3), Luhua Wang1,4), Zhanxun Che5), Guangzhu Bai1),
Xitao Wang6,7), Jinguo Wang4), Moon J. Kim4), and Hailong Zhang1),  ✉

1) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2) School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
3) Beijing Institute of Structure and Environment Engineering, Beijing 100076, China
4) Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
5) Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
6) Shandong Provincial Key Laboratory for High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong
Academy of Sciences), Jinan 250014, China
7) Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
(Received: 17 April 2021; revised: 13 July 2021; accepted: 28 July 2021)

Abstract: The thermal conductivity of diamond particles reinforced copper matrix composite as an attractive thermal management material is
significantly lowered by the non-wetting heterointerface. The paper investigates the heat transport behavior between a 200-nm Cu layer and a
single-crystalline diamond substrate inserted by a chromium (Cr) interlayer having a series of thicknesses from 150 nm down to 5 nm. The pur-
pose is to detect the impact of the modifying interlayer thickness on the interfacial thermal conductance (h) between Cu and diamond. The
time-domain thermoreflectance measurements suggest that the introduction of Cr interlayer dramatically improves the h between Cu and dia-
mond owing to the enhanced interfacial adhesion and bridged dissimilar phonon states between Cu and diamond. The h value exhibits a de-
creasing trend as the Cr interlayer becomes thicker because of the increase in thermal resistance of Cr interlayer. The high h values are ob-
served for the Cr interlayer thicknesses below 21 nm since phononic transport channel dominates the thermal conduction in the ultrathin Cr lay-
er. The findings provide a way to tune the thermal conduction across the metal/nonmetal heterogeneous interface, which plays a pivotal role in
designing materials and devices for thermal management applications.
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 1. Introduction

As the characteristic dimension of electronic components
is scaling down at a speed of Moore’s law, the micro-nano-
meter manufacturing techniques have advanced to the node
of 7 nm [1–5]. However, as the surface area of the electronic
components varies inversely with the square of their charac-
teristic  scale,  the  heat  flow  density  increases  dramatically
during operation, leading to heat concentration and temperat-
ure  exorbitance.  If  the  high  heat  flux  is  not  dissipated  in  a
short time, it may cause the degradation in performance and
reliability of the electronic devices [5–6]. With the improve-
ment  of  integration  and  packaging  density,  heat  dissipation
becomes a critical issue for the electronic packaging design.

Diamond particles reinforced copper matrix (Cu/diamond)
composites have become a fresh region of metal matrix com-
posites [7] for heat dissipating and spreading in electronic en-
capsulation because of the excellent thermal conductivity (λ)
and  proper  coefficient  of  thermal  expansion  (CTE).  As  the

Cu matrix is inert to the diamond reinforcement, weak inter-
facial bonding is observed in the composites. To resolve this
issue, researchers have added carbides such as Cr3C2 [8–11],
TiC [12–15], ZrC [16–17], Mo2C [18–19], WC [20], and B4C
[21]  at  Cu/diamond  interface  through  diamond  surface
metallization or metal matrix alloying to enhance the interfa-
cial  adhesion  and  bridge  the  phonon  spectra  mismatch
between  Cu  and  diamond  [22–23].  Our  previous  work
presented  the  influence  of  Cr  modification  on  the  thermal
conductivity of Cu/diamond composites and reported a high
thermal  conductivity  of  810  W·m−1·K−1 for  Cr-modified
Cu/diamond composites [24].

The interfacial thermal conductance (h) is critical to heat
transfer  in  the  Cu/diamond  composites.  Blank  and  Weber
[25]  demonstrated  the  impact  of  dielectric  surface  termina-
tion (HF-dipped or radio frequency (RF)-etched) on the heat
transfer across a great variety of metal/Si interfaces, and sug-
gested that the interfacial bonding is crucial to controlling the
heat  transfer  across  these  interfaces.  When  the  interfacial 
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bonding  strength  is  lower  than  100  mJ·m−2,  the  interfacial
bonding is the predominant factor of heat transfer of the in-
terface. When the interfacial adhesive strength is above 100
mJ·m−2, however, the predominant factor becomes the vibra-
tional  mismatch  of  phonons  of  the  two  materials  on  both
sides of the interface [12,26]. The Cr modification could en-
hance  the  interfacial  adhesion  between  the  diamond  rein-
forcement and the Cu matrix. Nevertheless, the details about
h of the Cu–Cr/Cr–diamond composites are not released, and
the effect of Cr modification on interfacial thermal conduct-
ance is also not clarified. It  is worthy to note that for some
carbide-forming elements such as VIB group metals Cr, Mo,
and W, the thermal conductivity of the carbide is much lower
than  the  metal.  The  conversion  of  the  metals  into  carbides
could decrease the h value between Cu and diamond.  Both
experimental  and  theoretical  studies  have  shown  that  the h
value of the Cu/Cr3C2/diamond structure is lower than that of
the  Cu/Cr/diamond  structure  [11].  The  modification  of
Cu/diamond interface using the metallic interlayer could be a
better  choice.  Jeong et  al.  [23]  and  Blank  and  Weber  [27]
have researched the effect of the metallic interlayer thickness
on  the h across  Au/metal/sapphire,  Au/metal/silicon,  and
Au/metal/diamond  interfaces.  To  date,  the  impact  of  the
metallic  interlayer  thickness  on  the  interfacial  thermal  con-
ductance between Cu and diamond has not been reported. For
instance, Cr has an electronic mean free path of 15.2 nm [28].
The selection of the Cr interlayer thickness with respect to the
feature value could greatly affect the interfacial thermal con-
ductance between Cu and diamond. The purpose of this art-
icle is to detect the effect on the h value of the Cu/diamond
interface by tuning the Cr interlayer thickness in Cu/Cr/dia-
mond samples. The metal Cr is selected as the interlayer for
other two reasons: (1) since Cr has a high affinity for carbon,
the  Cr  interlayer  improves  adhesion  between  Cu  and  dia-
mond [29–30];  (2)  since the Debye temperature  of  Cr  is  in
between  Cu  and  diamond,  the  Cr  interlayer  improves
bridging [31].

Heat conduction across the heterogeneous interface in the
Cu/diamond composite needs to be fully understood to con-
trol  the  efficient  heat  dissipation  better.  Heat  conduction
mechanisms across the heterogeneous interface builds up the
basis  of  theoretical  and  experimental  studies.  For  a
metal/nonmetal  heterogeneous  interface,  complicated  path-
ways of heat transport are involved, such as the electron or
phonon transmission across the interface, the electron–phon-
on interaction in the metal or at the interface [23,32–34]. The
electron–phonon  coupling  is  critical  in  the  thermal  energy
conversion  between  Cu  and  diamond  because  phonons  are
the dominant heat carriers in diamond, while electrons are the
dominant heat carriers in Cu. The view is widely shared that
the dominant heat transport channel in Cu/diamond compos-
ite  is  phononic  conduction,  and  therefore  the  electronic
thermal  conduction pathways are  usually  neglected in  most
of  the  researches  on  the  interfacial  thermal  conductance  of
Cu/diamond  composite.  In  this  paper,  three  interfacial
thermal  conduction pathways are  considered for  the Cu/Cr/

diamond nanostructure, including phonon transmission (Rpp =
1/hpp, where Rpp and hpp are the phononic interfacial thermal
resistance and conductance, respectively), electron transmis-
sion (Ree = 1/hee, where Ree and hee are the electronic interfa-
cial  thermal  resistance  and  conductance,  respectively),  and
electron–phonon coupling in the metal film near the interface
(Rep = 1/hep, where Rep and hep are the resistance and conduct-
ance to heat transfer between electron and phonon in the met-
al just before the heat flows into/from phonons on the other
side,  respectively).  The  phononic  thermal  conduction  path-
way  can  be  theoretically  predicted  by  various  methods,  for
example,  molecular  dynamics  (MD)  simulations  [35–37],
acoustic  mismatch  model  (AMM)  [10,13,16,21],  diffusive
mismatch  model  (DMM)  [11–12,38],  and  nonequilibrium
Green’s function (NGF) method [39]. The DMM is used to
describe the phononic thermal conduction pathway across the
interface.  Gundrum et  al.  [40]  have  developed  the  DMM
from phonon to electron to deal with the thermal conduction
pathway of electron transmission [27,32,40–41]. The thermal
conduction pathway of electron–phonon coupling can be the-
oretically  predicted  by  a  diffusive  two-temperature  model
(TTM),  which  has  been  generally  applied  to  interpret
pump–probe  experiment  observations  [33–34,42–46].  The
TTM is used to model the metal/nonmetal interface consider-
ing the diffusive electronic thermal conduction in the metal
film near the interface.

In this article, we insert a nanometer-thick Cr thin film at
the Cu/diamond interface by magnetron sputtering and tune
the  thickness  of  the  Cr  interlayer  by  varying  the  sputtering
time of the Cr layer. The h values of the Cu/diamond inter-
faces  are  directly  measured  via  an  experiment  system  of
time-domain  thermoreflectance  (TDTR).  The  measurement
shows that the h value firstly increases by inserting a 5 nm-
thick Cr interlayer and then decreases continually as the Cr
interlayer  thickness  increases  to  150  nm.  We  demonstrate
that the electronic thermal transport channel could not be ig-
nored when the Cr interlayer thickness is less than the elec-
tron mean free path. The results suggest that regulating an ap-
propriate  interlayer  thickness  helps  enhance  the  interfacial
thermal conductance of Cu/diamond interface.

 2. Experiment and calculation
 2.1. Sample preparation

The  Cr  film  and  Cu  film  were  prepared  on  a  synthetic
monocrystalline  diamond  substrate  (HSCD11,  Huanghe
Whirlwind Co., China) in an argon atmosphere at room tem-
perature  via  the  direct  current  (DC)  magnetron  sputtering
(Discovery  635,  DENTON,  USA).  The  [100]-oriented  dia-
mond plates have a size of around 2.5 mm × 2.5 mm × 1 mm.
The λ of  the  diamond  plates  was  calculated  to  be  1647
W·m−1·K−1 based on the nitrogen content (169 ppm, type Ib).
The  target  materials  for  sputtering  Cr  and  Cu  nanometer
films both have purities higher than 99.999%. Cr films with
thicknesses in the range of 5–150 nm were firstly deposited
on the diamond plates, and a thin Cu film with a thickness of
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200 nm was then deposited on the Cr film. A schematic of the
samples is shown in Fig. 1.
 
 

Probe

Pump

Diamond 

substrate

Cr interlayer
Cu layer

Fig. 1.    Schematic diagram of Cu/Cr/diamond setup for TDTR
measurement.
 

The root mean square (RMS) roughness values of the dia-
mond substrate surfaces were controlled to be ~1 nm through
a succession of mechanical polishing with 10 µm, 5 µm, and
2.5 µm diamond suspensions. The diamond substrates were
ultrasonically  cleaned  in  acetone,  ethanol,  and  isopropanol
baths, followed by treatment in a gas composition of Ar : O2

= 3:1 (volume ratio) for 15 min using a Fischione 1020 oxy-
gen plasma cleaner. The operations serve to clear up the sur-
face impurities and organic contaminants during mechanical
polishing.

The distance between diamond substrates and the targets
was set to 150 mm in the sputtering machine. Before deposit-
ing the metal bilayer, the substrates were treated by a bom-
bardment of ion beam cleaning for 10 min under a pressure of
0.6 Pa to eliminate adsorbed impurities and native oxides. It
is noted that the bombardment time cannot be too long; oth-
erwise, the disorder of carbon atoms could be induced on the
diamond substrate surface [47]. We have checked the bom-
bardment-cleaned  diamond  surface  and  do  not  find  dis-
ordered carbon atoms on the diamond surface [11]. The base
vacuum pressure of <5.3 × 10−5 Pa and sputtering power of
300 W were used for all the samples. The working pressures
for  sputtering  Cr  and  Cu  films  were  0.80  and  0.48  Pa,  re-
spectively. The deposition rates for Cr and Cu were 0.24 and
0.38 nm·s−1, respectively. The surface profiler (KLA-Tencor
P-6,  USA)  was  used  to  determine  the  film  thickness.  The
thickness  of  each  layer  was  further  confirmed by  transmis-
sion  electron  microscope  (TEM).  The  obtained  Cu/Cr/dia-
mond  nanostructure  samples  were  used  for  subsequent
TDTR measurements.

 2.2. Material characterization

Atomic  force  microscope  (AFM,  Dimension  FastScan,
Germany) was used to measure the surface roughness of the
diamond  substrates.  X-ray  diffraction  (XRD,  Rigaku
DMAX-RB,  Japan)  was  implemented  to  characterize  the
phase composition of the Cu/Cr films. Auger electron spec-
trometer (AES, PHI 700, Japan) was employed to provide the
chemical state and depth profile information across the inter-
face,  including composition,  concentration,  and intensity  of

elements  [48–49].  The  microstructure  and  phase  composi-
tion were examined by TEM (JEOL 2100F, Japan) and scan-
ning  transmission  electron  microscope  (STEM,  JEOL
ARM200,  Japan).  The TEM specimens were fabricated us-
ing  a  dual-beam focused  ion  beam station  (FIB,  FEI  Nova
200, USA).

 2.3. Thermal characterization

We employ the TDTR method to investigate the interfa-
cial thermal conductance between Cu and diamond with an
inserted  Cr  film  having  various  thicknesses.  The  femto-
second laser pump-and-probe setup has been described in de-
tail  elsewhere  [9].  In  brief,  the  output  of  a  mode-locked
Ti:sapphire laser with a wavelength of 800 nm is separated
into two routes. The pump laser is focused on the film sur-
face to heat it. The slight changes in the optical reflectivity of
the sample surface are measured by the probe laser [50–54].
The pulse  width  and repetition rate  of  the  Ti:sapphire  laser
are  100  fs  and  80  MHz,  respectively.  The  modulation  fre-
quency of the pump laser is fixed at 1 MHz using an electro-
optic modulator. The spot size of the pump beam is 80 µm.
All the tests were performed at ambient temperature. The ex-
perimental  data  were  fit  to  a  thermal  model  to  extract  the
thermal properties of interest.

 2.4. Theoretical  prediction  of  interfacial  thermal  con-
ductance

The  theoretical  model  is  applied  to  predict  interfacial
thermal conductance and provides insights into the physical
mechanisms.  The  interfacial  thermal  conductance  between
two different materials is estimated based on the Debye mod-
el [55–59]:

h =
1
4
ρincinνinη (1)

where the ρ, c, ν, and η are the mass density, specific heat ca-
pacity,  Debye  (or  effective)  sound  velocity,  and  average
probability for the phonon transmission across an interface,
respectively. The subscript “in” denotes the material in which
the phonon is incident. For the DMM, the interfacial thermal
conductance is further presented by [58–60]:

h =
1
4
ρincinν

3
in

ν2
in+ ν

2
tran

(2)

where the subscript “tran” denotes the material in which the
phonon is transmitted. The phononic interfacial thermal res-
istance Rpp can be formulated by Rpp = 1/h. The required ma-
terial parameters for the calculation of Rpp are summarized in
Table 1 [9,11,34,55,61–62]. The total h between Cu and dia-
mond for the Cu/Cr/diamond sample is given by:
1
h
=

1
hCu/Cr

+
lCr

λCr
+

1
hCr/diamond

(3)

where lCr is the Cr interlayer thickness.
The  deficiency  is  that  the  DMM  model  only  takes  the

phononic thermal conduction pathway into account. Unfortu-
nately,  the  predictive  value  is  relatively  low  in  most  in-
stances as the electronic thermal conduction pathway on the
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metal side is neglected. Previous studies show that the diffus-
ive two-temperature model (TTM) is convenient to estimate
electron–phonon coupling within the metal layer near the in-
terface [34,42,44,63–64]. The TTM splits electron and phon-
on into two separate subsystems and gives the temporal and
spatial evolution of their temperatures, which is designed to
qualitatively  evaluate  the  contribution  of  electrons  on  the
metal side. The steady-state TTM describes the energy bal-
ance in the metal and is given by [34,42,44,63–64]:

λe
∂2Te

∂x2 −G
(
Te−Tp

)
= 0 (4)

λp
∂2Tp

∂x2 +G
(
Te−Tp

)
= 0 (5)

where λ and T are the thermal conductivity and temperature
of electrons or phonons (subscript e or p), and G is the elec-
tron–phonon  coupling  factor  concerning  the  rate  of  energy
exchange from electron to phonon [45]. Metals have typical
G on the order of 1016–1017 W·m−3·K−1 [42,65]. For steady-
state heat flow across a film, combining Eqs. (4) and (5) with
the Fourier’s law yields [34,42,44,63–64]:
−J = λe∇Te+λp∇Tp (6)
where J is  the  heat  flux.  Then,  the  total  interfacial  thermal

resistance  of  the  two-segment  system  is  thus  obtained
[34,42,44,63–64]:

R =
∆T
J
= Rpp+Rep =

1
hpp
+

(
λe

λe+λp

) 3
2
(

1
Gepλp

) 1
2

(7)

where Gep is the electron–phonon coupling factor in the met-
al just before the heat flows into/from phonons on the other
side.

Finally,  a  simplified  form  for Rep within  the  metal  layer
near the interface is defined [34,42,44,63–64]:

Rep =

(
λe

λe+λp

) 3
2
(

1
Gepλp

) 1
2

(8)

Gundrum et  al.  [40]  have  developed  the  DMM  from
phonon  to  electron,  and  the  metal–metal  electronic  interfa-
cial thermal resistance Ree is estimated [33,40–41]:

Ree =
4(Z1+Z2)

Z1Z2
(9)

Z1 =Ce1νF1 Z2 =Ce2νF2

Ce Ce = γT e

where  and , and the volumetric heat
capacity  of  the  electron  is  calculated  as ,  with
electron specific heat constant γ (Sommerfeld’s constant) and
Fermi velocity νF [40,44,66–71]. The required material para-
meters for the calculations of Rep and Ree are summarized in
Table 2 [31,37,64–65,67,69,72–77].

 
Table 2.    Physical constants for calculations of R

Material
λe /

(W·m−1·K−1)
λp /

(W·m−1·K−1)
Gep /

(1016 W·m−3·K−1)
γ /

(J·m−3·K−2)
νF / 106

(m·s−1)
σ /

(108 Ω−1·m−1)
L /

(10−8 W·Ω·K−2)
cp /

(106 J·m−3·K−1)
Cu 384 [37] 17 [37] 26 [31] 96.6 [72–73] 11.09 [75] — — 3.5 [72]
Cr 57.096a 32.904b 42 [64] 194 [67,69,74] 0.246 [76] 0.078 [77] 2.44 [76] 3.24 [65]

λe = LTσ λp = λ−λeNote: a Calculated by ; b Calculated by .
 

The three-segment system is composed of metal A/metal
B/nonmetal C, as shown in Fig. 2. The coexistence of elec-
tronic and phononic thermal conduction pathways, however,

makes  the  thermal  conduction  behave  in  a  relatively  com-
plicated manner.

RiepCu/Cr =

1/
(

1
RepCu+RpCupCr+RepCr

+
1

ReCueCr

)

We struggle  to  interpret  all  kinds  of  thermal  conduction
pathways and evaluate the impact of interlayer on interfacial
thermal  conductance in  the Cu/Cr/diamond system. For  the
combined  DMM  and  TTM  models,  the  interfacial  thermal
conduction  pathways  include  phonon–phonon  coupling,
electron–electron coupling, and electron–phonon coupling in
the metal near the interface. In this way, the prediction can be
closer  to  realistic  thermal  conduction  events  in  heterojunc-
tions with the metal/nonmetal interface. Based on the above
analysis, we draw a simple diagram to describe the thermal
conduction  mechanisms  at  Cu/diamond  interface  with  a  Cr
interlayer, as shown in Fig. 2. We therefore obtain the inter-
facial  thermal  resistance  between  Cu  and  Cr  as 

,  where RepCu is  the  res-

 

T

x

Pump 

beam

RepCu RepCr

ReCueCr

RpCupCr

RCr

Cu Cr D

Electron

Phonon

RpCrpDRepCr

Air

Fig.  2.      Thermal  conduction  mechanisms  at  Cu/diamond  in-
terface with Cr interlayer. The red and blue solid lines repres-
ent the electronic and phononic thermal conduction pathways,
respectively. D is diamond, T is temperature, and x is distance.

Table 1.    Material parameters for calculations of h using DMM

Material ρ / (kg·m−3) λ / (W·m−1·K−1) c / (J·kg−1·K−1) ν / (m·s−1)
Cu 8900 [61] 401 [34] 386 [61] 2881 [11,61–62]
Cr 7190 [61–62] 90 [61] 446 [61] 4637 [9,61–62]

Diamond 3512 [55,62] 1647 [11] 512 [61] 12775 [11]
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istance to heat  transfer  between electron and phonon in the
Cu layer just before the heat flows into/from phonons on the
other  side, RpCupCr is  the  phononic  interfacial  thermal  resist-
ance between Cu and Cr, RepCr is the resistance to heat trans-
fer between electron and phonon in the Cr interlayer just be-
fore the heat flows into/from phonons on the other side, and
ReCueCr is the electronic interfacial thermal resistance between
Cu  and  Cr.  Then,  the  overall  interfacial  thermal  resistance
between Cu and diamond is written as:
R = RiepCu/Cr+RCr+RepCr+RpCrpD (10)

 3. Results and discussion
 3.1. Surface  morphology  and  interface  structure  of
Cu/Cr/diamond samples

The  microstructural  evolution  of  the  Cu/Cr/diamond
samples  was  investigated  by  scanning  electron  microscope

(SEM) and AFM. The SEM image of the top surface of the
Cu layer is  shown in Fig.  3(a).  After magnetron sputtering,
uniform  and  spherical  Cu  particles  were  obtained.  To  de-
termine the surface roughness, AFM was employed to scan
the top surface of the Cu layer. The 3D surface morphology
of the Cu/Cr/diamond sample is shown in Fig. 3(b). The line
profile in Fig. 3(c) shows that the depth of surface steps var-
ies from about +5 nm to −5 nm. The RMS roughness of the
Cu surface is around 2.56 nm. To minimize TDTR test errors,
the surface roughness of the samples should be less than 15
nm [78]. All the sample surfaces are smooth enough to satis-
fy the TDTR test requirements.

The phase structure was characterized by XRD, as repres-
ented in Fig. 4. For the Cu film on diamond substrate, only
Cu (111), (200), and (220) peaks are observed at 43.3°, 50.5°,
and 74.2°, respectively. Besides Cu peaks, Cr (110) peak is
also observed at 44.4° for the Cu/Cr bilayer film on diamond
substrate.
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The depth profile and chemical state for the Cu/diamond
and  Cu/Cr/diamond  samples  were  measured  by  AES,  as
shown in Figs. 5 and 6. In Fig. 5(b) or Fig. 6(b), Cu LMM
spectrum for pure Cu consists of one kinetic energy peak at
919 eV [79]. As the depth is increased, the kinetic energies
and line shapes remain unchanged. It can be concluded that
metallic  Cu  exists  in  the  Cu  layer.  A  similar  result  is  ob-
tained from Cr LMM spectrum in Fig. 6(c). At depths C and
D,  the  kinetic  energies  of  Cr  LMM are  528  eV,  consistent

with pure Cr [80]. It is confirmed that metallic Cr exists at the
Cu/diamond interface. The line shapes of C KLL at depths C
and D in Figs. 5(c) and 6(d) show one characteristic peak at
267 eV, consistent with diamond [14,79,81]. It indicates that
C  exists  as  diamond.  The  oxygen  adsorption  in  the  Cu/Cr
bilayer  film is  also  detected;  however,  the  concentration  of
oxygen  in  the  metal  layers  is  very  low.  Interface  diffusion
takes place at Cr/diamond interface and sometimes Cr3C2 is
formed during deposition of Cr layer at room temperature, as
reported in references [82–83]. The bombarding energy of Cr
atoms during sputtering deposition results in the interface dif-
fusion and chemical reaction [83]. Nevertheless, we did not
observe the formation of Cr3C2 in this article.

The h of Cu/diamond is greatly affected by the interfacial
structure and interfacial adhesion between the Cu layer and
the  diamond  substrate  [78].  Further  study  by  TEM  gives
more  information  about  the  microstructure  at  the  Cu/dia-
mond interface. Fig. 7(a) presents the cross-sectional view of
the Cu/Cr/diamond sandwich structure. The columnar grains
in the Cu layer and the ultrafine nanocrystals in the Cr inter-
layer are observed. The thicknesses of the Cu layer and Cr in-
terlayer  are  estimated  at  around  200  and  100  nm,  respect-
ively.  The HRTEM images in Fig.  7(b)  and (c)  display the
Cu/Cr  and  Cr/diamond  interfaces,  respectively.  Cu  (200)
plane is prepared on Cr (110) plane, and Cr (110) plane is de-
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posited on diamond (220) substrate. The HRTEM images of
the Cu film in Fig. 7(b) and (d) show that Cu (111) and (200)
planes  have  interplanar  spacings  of  0.209  and  0.181  nm,
which are analogous to the standard values of d(111) = 0.2086
nm and d(200) = 0.1806 nm (PDF#70-3039), respectively. As
shown in Fig. 7(e), Cr (110) plane is measured with an inter-
planar spacing of 0.204 nm, which is aligned with the refer-
ence value of d(110) = 0.2039 nm (PDF#06-0694). The TEM
results are in good agreement with the XRD patterns in Fig. 4.
Since the Cr film is sputtered at room temperature, no carbide
is observed at the Cr/diamond interface [11].

In  order  to  investigate  the  crystallite  size  distribution  of
the Cr interlayer,  the Cr film was observed by SEM before
sputtering  Cu  film. Fig.  8(a)  shows  that  polycrystalline  Cr
film grows on diamond substrate, and the oval-shaped grains
are observed. The length distribution of the Cr grains was ob-
tained  using  an  average  diameter  analysis  software  (Nano
Measurer).  For  the  100 nm-thick  Cr  film,  the  length  of  the

oval-shaped Cr grains is in the range of 40–65 nm, as shown
in Fig. 8(b).

 3.2. Interfacial  thermal  conductance  between  Cu  and
diamond

The h values  of  the  Cu/diamond  and  Cu/Cr/diamond
samples  were  measured  by  TDTR  at  ambient  temperature
(around  26°C).  The  measurement  sensitivities  of  the  amp-
litude signal fittings for the samples are shown in Fig. 9. The
best fitting curves, as well as the simulated lines with ±10%
disturbance of the best fitting h, are presented. The results in-
dicate that the fitting has a relatively high sensitivity to h.

Fig. 10 shows the variation of the h value with Cr interlay-
er thickness for the Cu/Cr/diamond samples. The predicted h
values were calculated by Eq. (3). Table 3 lists the measure-
ment and calculation of h values for clarity. The experiment-
al  data  differ  significantly  with  the  Cr  interlayer  thickness.
The h value of the Cu/diamond interface without Cr interlay-
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er is measured to be 57 (+1.8, −1.9) MW·m−2·K−1. After in-
serting  a  Cr  interlayer,  the h value  firstly  increases  to  270
(+31.1, −33.7) MW·m−2·K−1 at 5 nm Cr interlayer, and then
gradually decreases to 63 (+2.4, −2.8) MW·m−2·K−1 when the
Cr interlayer thickness increases to 150 nm. On one hand, the
increase is mainly because the interfacial bonding at Cu/dia-
mond interface is enhanced and the acoustic impedance mis-
match between Cu and diamond is relieved by introducing a
Cr interlayer. The thermal resistance associated with phonon
transmission across  the  metal/nonmetal  interface  is  thus  re-
duced. The interfacial bonding strength is much higher than
100 mJ·m−2 as the sputtering metal target particles with high
energy of 15–50 eV bombard the diamond substrate and de-
posit on the surface during magnetron sputtering [12,84]. In
this regard, we argue that the acoustic impedance mismatch
relief makes larger contribution to the increase of the h value

than  the  interfacial  bonding  enhancement  [12,84].  On  the
other hand, the intrinsic thermal resistance of the Cr interlay-
er changes with its thickness. The decrease in h value with in-
creasing  Cr  interlayer  thickness  is  conceptually  intuitive
since  a  thicker  Cr  interlayer  would  have  greater  intrinsic
thermal  resistance.  Jeong et  al.  [23]  and  Blank  and  Weber
[27] indicated that the h value for Au/Cu/sapphire interface
with a thin Cu interlayer (1.5–30 nm) increases with increas-
ing interlayer thickness and then tends to be steady once the
interlayer  thickness  exceeds  5  or  10  nm.  In  this  study,  we
show that the h value of Cu/Cr/diamond decreases continu-
ally  with  increasing  the  interlayer  thickness  from  5  to  150
nm. We note that the relatively thin interlayers are used in the
literature,  i.e.,  7 nm Cu interlayer in Jeong et al.’s  research
[23] and 30 nm Cu interlayer in Blank et al.’s research [27].
Furthermore, they do not consider the scattering effect in the
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metal interlayer, which will be discussed later.
As shown in Fig. 10, a large deviation appears as the Cr

interlayer is thicker than 20 nm. To understand the physical
mechanism behind the phenomenon, the thermal conduction

Rp = l/λp

across the Cr interlayer  is  discussed in more detail.  We as-
sume in the Cr interlayer that the phononic thermal conduc-
tion  pathway  experiences  a  thermal  resistance ,
which is  in  parallel  with  the  thermal  resistance of  the  elec-
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Re = 2
(
λe

λe+λp

) 3
2
(

1
Gepλp

) 1
2
+

l
λe

ltrans

tronic  pathway ,  with l be-

ing film thickness, as shown in Fig. 11(a). The variations of
thermal resistance associated with phonons and electrons in
the Cr interlayer with thickness are plotted in Fig. 11(b). A
critical  interlayer  thickness  ( )  is  deduced  for  the  trans-
ition of heat carrier from electron to phonon [85]:

ltrans =
2λeλp(

Gλp

)1/2 (
λe−λp

) ( λe

λe+λp

) 3
2

(11)

λe = LTσ

λp = λ−λe

where  the λe can  be  estimated  based  on  the  Wiedemann-
Franz law of , in which L is the Lorenz number and
σ is the electrical conductivity of the metal [33,40]. The λp is
estimated by  [86]. As shown in Fig. 11(b), we ob-
tain a critical interlayer thickness of 21 nm.

The Cr interlayer thickness considerably influences which
heat carrier plays a dominant role in the thermal conduction
process. The phonon mean free path Λp of Cr is obtained to
be 35.8 nm from the formula of λp = CpνpΛp [33,37,87–88],
where Cp and νp are the phonon volumetric heat capacity and
phonon velocity, respectively. When the Cr interlayer thick-
ness is less than the critical thickness of 21 nm, the Cr inter-

layer thickness is also less than the phonon mean free path of
35.8 nm. The phononic thermal conduction pathway domin-
ates, as shown in Fig. 11(b). Besides that, literature suggests
that  ballistic  transport  becomes  increasingly  important  at
length scales smaller than the mean free path for the energy
carriers in a material [89]. The ballistic phonon motion in the
Cr interlayer can enhance the nanoscale thermal conduction
because  the  scattering  between interfaces  and  phonons  will
be minimized. The electron mean free path Λe of Cr is 15.2
nm. When the Cr interlayer thickness is  larger than 21 nm,
the electronic thermal conduction pathway starts to dominate,
as shown in Fig. 11(b). However, the Cr interlayer thickness
is larger than the electron mean free path at this moment. The
emitted electrons suffer from the scattering of interfaces and
the  nanoscale  thermal  conduction  is  lowered.  In  addition,
when the interlayer thickness is larger than both electron and
phonon mean free paths, the grain boundary effect may need
to be taken into account. Take 100 nm-thick Cr interlayer for
example, both electrons and phonons suffer from the scatter-
ing of interfaces and grain boundaries. Phonon and electron
scattering  with  these  structural  defects  results  in  reduced
mean free paths and decreased thermal conductivity of Cr in-
terlayer  accordingly,  but  the  electron  scattering  is  more  re-
markable [90]. This explains why the three data points from 5
to 20 nm are close to and the other three data points from 50
to 150 nm are far from the theoretical predictions.

We  observe  in Fig.  10,  however,  that  the  experimental
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Table  3.      Interfacial  thermal  conductance  calculated  by
DMM and measured by TDTR

Sample lCr / nm
h / (MW·m−2·K−1)

Calculated Measured
Cu/diamond — 120 57 (+1.8, −1.9)

Cu/Cr/diamond

5 263 270 (+31.1, −33.7)
10 259 255 (+27.9, −29.4)
20 252 225 (+27.7, −28.9)
50 232 97 (+7.9, −8.0)
100 206 76 (+5.1, −5.4)
150 185 63 (+2.4, −2.8)
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value for the Cu/5 nm Cr/diamond sample exceeds the DMM
prediction.  This suggests  that  it  is  inadequate just  consider-
ing  phononic  thermal  conduction  pathway  and  neglecting
electronic thermal conduction pathway. Here we employ the
TTM and extended DMM to include the electronic thermal
conduction  pathway.  The  overall  interfacial  thermal  resist-
ance between Cu and diamond is obtained by Eq. (10). The
calculation shows that the thermal resistance related to elec-
tronic  thermal  conduction  pathway  makes  up  16.5% of  the
overall  thermal  resistance  for  the  Cu/5  nm  Cr/diamond
sample.  It  suggests  that  the  electronic  thermal  conduction
pathway could not be ignored as the Cr interlayer is thinner
than the electron mean free path. The experimental value for
the Cu/diamond interface without Cr interlayer deviates from
the prediction. The discrepancy could result from the differ-
ence  between  the  atomic  perfect  interface  in  the  prediction
and the actual interface in the measurement.

 4. Conclusions

The  impact  of  Cr  interlayer  thickness  on h of  the
Cu/Cr/diamond  nanostructure  was  studied  by  the  TDTR
method.  The  influence  of  Cr  interlayer  thickness  on h was
further  evaluated  by  comparing  the  experimental  data  with
the  DMM predictions.  The  study  is  very  important  to  effi-
cient interface engineering by tuning the Cr interlayer thick-
ness between Cu and diamond.

(1) A valid approach to enhance h across the Cu/diamond
interface is the introduction of a Cr interlayer that enhances
the  interfacial  bonding and relieves  the  acoustic  impedance
mismatch between Cu and diamond. By gradually changing
the  Cr  interlayer  thickness  from  150  to  5  nm,  the h is  im-
proved  by  11%–374%  compared  with  the  unmodified
Cu/diamond interface. With a 5 nm-thick Cr interlayer, the h
value is dramatically increased to 270 MW·m−2·K−1.

(2) The Cr interlayer can significantly affect the h as the
dominant heat carrier shifts from electron to phonon with de-
creasing  the  Cr  interlayer  thickness.  Efficient  heat  dissipa-
tion  between  metallic  Cu  and  nonmetallic  diamond  can  be
achieved by phononic thermal conduction by decreasing the
Cr interlayer thickness below a critical thickness of 21 nm.

(3)  While  the  phononic  thermal  conduction  pathway  is
crucial to the heat dissipation across the Cu/Cr/diamond in-
terface, the electronic thermal conduction pathway could not
be ignored as the Cr interlayer thickness is less than the elec-
tron mean free path.
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