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Abstract: The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe—22Mn—0.6C twinning induced plasticity
steel have been investigated by slow strain rate tests and fractographic analysis. The steel showed high susceptibility to hydrogen embrittle-
ment, which led to 62.9% and 74.2% reduction in engineering strain with 3.1 and 14.4 ppm diffusive hydrogen, respectively. The fracture sur-
faces revealed a transition from ductile to brittle dominated fracture modes with the rising hydrogen contents. The underlying deformation and
fracture mechanisms were further exploited by examining the hydrogen effects on the dislocation substructure, stacking fault probability, and
twinning behaviour in pre-strained slow strain rate test specimens and notched tensile specimens using coupled electron channelling contrast
imaging and electron backscatter diffraction techniques. The results reveal that the addition of hydrogen promotes planar dislocation structures,
earlier nucleation of stacking faults, and deformation twinning within those grains which have tensile axis orientations close to <111>//rolling
direction and <112>//rolling direction. The developed twin lamellae result in strain localization and micro-voids at grain boundaries and even-
tually lead to grain boundary decohesion.
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1. Introduction

High manganese austenitic steels achieve an excellent
combination of strength and ductility thanks to the twinning
induced plasticity (TWIP) effect. The formation of deforma-
tion twins as a mechanism of dynamic strain hardening
provides substantial obstacles for dislocation gliding, thus
achieving high strain hardening capacity [1-2]. Despite ex-
cellent uniform elongation, TWIP steels usually show an ab-
rupt fracture behaviour without undergoing obvious necking.
This limited necking is particularly attributed to the sudden
multiplication of voids introduced by twin—twin or
twin—grain boundary interactions [3]. This material group is
also reported vulnerable to hydrogen embrittlement (HE),
which leads to catastrophic failure under static or cyclic
forces [4-6].

HE mechanisms in structure steels have been intensively
investigated from various perspectives [7—15]. Several mech-
anisms have been proposed according to microscopic obser-
vation [7,9,13] or quantum mechanical based calculations on
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hydrogen-dislocation interactions [16—17]. The hydrogen-en-
hanced decohesion (HEDE) theory demonstrates that the dis-
solved hydrogen reduces the cohesive strength of the inter-
metallic bonds, which was supported by the frequently ob-
served brittle fracture mode [11] and large attraction of hy-
drogen to grain boundaries and particle-matrix interfaces
[18-19]. Beachem [7] observed that hydrogen facilitates dis-
location movement in environmental transmission electron
microscope (TEM) chamber and proposed it as the hydrogen-
enhanced localised plasticity (HELP) theory. Lynch [8] inter-
preted the theory as the enhanced dislocation emission from
crack tip, where hydrogen, as an impurity element, weakened
the interatomic bonds. Birnbaum and Sofronis [9] explained
that hydrogen atmosphere shields the dislocation interactions
and enhances dislocation mobility by performing stress re-
laxation test and theoretical calculations. The HELP theory
has been further developed by elasticity theory [9,14], atom-
istic [16-17] and thermodynamic calculations [20], in-situ
TEM observations [12], and nano-mechanical tests [21-22].
Although the hydrogen enhanced dislocation mobility may
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cause material softening, the raise of yield strength and flow
stress by hydrogen were also reported in austenitic stainless
steels [23] and other metals [24], which states hydrogen or
hydrogen clusters may act as solute hardeners for moving
dislocations [23], induce slip localization [9], or facilitate dis-
location nucleation at surfaces [25]. The adsorption-induced
dislocation emission (AIDE) theory described both the dislo-
cation emission due to adsorbed hydrogen and the sub-
sequent movement of hydrogen away from the crack tip un-
der applied stress [13]. The theory supports the frequently
observed ductile fracture with the presence of hydrogen and
the voids nucleation near the crack tip region. The hydrogen
enhanced strain induced vacancy (HESIV) theory was first
presented by Nagumo and his team [15,26]. The formation of
strain-induced vacancies and their further agglomeration
were observed with the presence of hydrogen. Since strain-
induced vacancies preferably occur in high dislocation dens-
ity regions, voids at grain boundaries or within slip bands
were observed. The resulting microvoids reduce the ductile
crack growth resistance. Due to the complexity of micro-
structure features, loading stress status, and hydrogen con-
centrations, the fracture may occur by the synergistic action
of a combination of the aforementioned mechanisms
[13,18,27]. It is very important to understand the major oper-
ating mechanism and related critical influencing factors, in
order to develop material with good mechanical properties as
well as improved HE resistance.

TWIP steels achieve outstanding dynamic strain harden-
ing through continuous twin nucleation and associated high
dislocation density [28]. Gutierrez-Urrutia and Raabe [29]
described the sequence of deformation-induced microstruc-
tural evolution in Fe-22Mn—0.6C TWIP steel, starting with
developing equiaxed dislocation cells (DCs), highly dense
dislocation walls (HDDWs), followed by stacking faults
(SFs) formation, and eventually the nucleation and saturation
of deformation twins. The stacking fault energy (SFE), which
defines the energy for the dislocation dissociation, is very de-
cisive for the nucleation of deformation twins [30]. The
TWIP steels with low SFE showed high HE sensitivity due to
the early twinning nucleation [4,31] or strain induced &/’
transformation [32—33]. The Al addition was reported effect-
ively suppressing deformation twinning formation [4,31,34],
reducing hydrogen mobility [35-36] and permeability due to
the formation of AL,O; surface layer [33]. Cu has the similar
effects as Al in preventing HE [37]. However, the elements
promoting e-martensite formation, e.g., Si, deteriorate HE
resistance [32]. The grain refinement suppressed twin nucle-
ation, and therefore reduces the twin-related boundaries and
junctions, which enhance the HE resistance [38]. A recent re-
search work also pointed out that the HE resistance was im-
proved by raising the fraction of grain boundaries with rota-
tion angle 2 < 29 over the random boundaries with X' > 29
[39]. These investigations demonstrated the important role of
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twinning nucleation and their interactions with grain bound-
aries as weak microstructure defects for high HE susceptibil-
ity. So far, research work on hydrogen contribution to the
dislocation substructure and twin nucleation sequences at dif-
ferent straining stage in TWIP steels, especially based on mi-
crostructure observations, is very limited. Understanding the
roles of hydrogen on the microstructure substructure and the
associated fracture morphology and macroscopic mechanic-
al properties are crucial for understanding the damaged pro-
cess.

The present work characterized the macroscopic mechan-
ical response of a Fe-22Mn-0.6C TWIP steel with different
amounts of pre-charged hydrogen. The intrinsic features of
the dislocation substructures, stacking fault probability, and
deformation twinning nucleation with and without the pres-
ence of hydrogen have been further studied in notched tensile
specimens and 0.10 pre-strained slow strain tensile speci-
mens. The coupled electron backscattering diffraction
(EBSD) and electron channelling contrast imaging (ECCI)
techniques were applied for characterising microstructure at
large regions with considering different grain orientations
[40]. The mechanisms for the hydrogen assisted crack nucle-
ation process were explained based on the direction observa-
tions at crack tip regions.

2. Experimental
2.1. Materials

A cold-rolled and annealed high manganese steel with the
chemical composition Fe-22wt%Mn—0.6wt%C (abbrevi-
ated as 22Mn) and thickness of 1.0 mm was investigated in
this study. The material had fully recrystallized austenite mi-
crostructure (including annealing twins) with an average
grain size of 10.2 pm. According to thermodynamic calcula-
tion [30] and literature [41], the investigated material has a
SFE in the range of 2028 mJ/m’.

2.2. Hydrogen charging and measurement

To introduce diffusive hydrogen into the specimens, elec-
trochemical pre-charging in 0.05 M H,SO, + 1.4 g/LL CH,;N,S
aqueous solution was performed at a constant potential of
—800 mV vs. SCE at room temperature (RT). The pre-char-
ging was applied for two different durations, namely 24 h and
166 h, respectively. Before charging, the specimen surface
was mechanically grinded and finally polished with 6 pm
diamond paste on canvas. After charging, the specimens
were ultrasonically cleaned and stored in liquid N, for fur-
ther hydrogen measurement or mechanical testing. Hydro-
gen contents were measured by thermal desorption spectro-
metry (TDS) using a quadrupole mass spectrometer at a heat-
ing rate of 6°C/min. Since hydrogen is very mobile at room
temperature, to avoid unnecessary measurement deviation
due to time control, the TDS measurements were carried out
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strictly after 3 or 24 h dwelling at room temperature. The hy-
drogen content after 3 h dwelling at room temperature is
equivalent to the hydrogen amount when the tensile tests with
notched tensile specimens start. The hydrogen content after
24 h dwelling at room temperature corresponds to the hydro-
gen amount in 0.10 pre-strained slow strain rate test (SSRT)
specimens.

2.3. Mechanical testing

Tensile specimens with gauge length, width, and thick-
ness of 25 mm, 5 mm, and 1 mm, respectively, were pre-
pared by waterjet cutting. The tensile axis (TA) was parallel
to the rolling direction (RD). The quasi-static mechanical
properties were characterized using a ZWICK100 instru-
ment, supplied with an extensometer, at a strain rate of 10~
s”'. To measure the material sensitivity to HE, as-delivered
and hydrogen pre-charged specimens were characterized by
SSRT using a FRITZ constant extension machine at a strain
rate of 10 ° s™'. In addition, interrupted SSRT was carried out
by terminating the test at the deformation strain of 0.10, in or-
der to investigate hydrogen effects on the deformed micro-
structural features using combined EBSD and ECCI charac-
terization.

Notched tensile specimens with 12.5 mm width and a
notch radius of 0.25 mm were prepared with the TA parallel
to the RD. The specimens were pre-charged with hydrogen
for 166 h and dwelled at RT for 3 h before testing. Tensile
deformation with digital image correlation (DIC) measure-
ment was then applied where the strain distribution in the vi-
cinity of the notches was measured using a GOM-ARAMIS
optical system. The direct current potential drop method was
also applied in order to interrupt the tensile deformation upon
primary crack nucleation, indicated by a sudden increase of
electrical potential (indicating electrical resistance) [42]. The
tests were performed at the strain rate of 107 s™\. More de-
tails about the tests were described in a previous work [34].

2.4. Microstructure characterization

The fracture surfaces of failed SSRT specimens were ex-
amined by a Zeiss Sigma Field emission scanning electron
microscope (SEM) to study the fracture mode with respect to
different amounts of pre-charged hydrogen. For microstruc-
tural investigation, the interrupted SSRT and notched tensile
specimens were mechanically grinded to remove ~100 pm
sub-surface, polished with diamond paste (0.25 pm) and sub-
sequently colloidal silica (0.05 pm) for 3 min. Two types of
scanning electron microscopy techniques-EBSD and ECCI
analysis were applied for microstructure characterization. A
Zeiss Crossbeam instrument (XB 1540, Carl Zeiss SMT AG,
Germany) equipped with a TSL OIM EBSD system and a
solid-state four-quadrant back-scatter electron detector was
used. The EBSD images revealed the local crystallographic
orientation, while ECCI gave detailed information of dislo-

cation substructure and the characteristics of SFs and de-
formation twins.

3. Results
3.1. Mechanical properties

Fig. 1 shows the true stress—strain curve and strain harden-
ing curve of the investigated 22Mn steel. The material exhib-
its excellent mechanical properties with an ultimate tensile
strength of 1087 MPa and a total elongation of 64%. The on-
set of serrated flow was observed at the true strain of 0.06.
This behaviour is commonly caused by the deformation
twins and Mn—C short range ordering, which act as obstacles
for dislocation gliding [1]. The strain hardening curve also
revealed the high strain hardening capacity compared to oth-
er structural steels, which show monotonic drop of the strain
hardening rate [43]. The strain hardening rate from the in-
vestigated 22Mn steel remained close to 3000 MPa for a
wide strain range from the true strain of 0.07 to 0.42. The
turning point of the high strain hardening rate coincides with
the onset of the serrated flow. The plateau of the high strain
hardening rate is associated with high dislocation density and
the subsequent microstructure refinement by deformation
twinning.
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Fig. 1. Mechanical properties of the investigated 22Mn steel.

3.2. Hydrogen diffusion and trapping

Fig. 2 describes the hydrogen desorption curves at the
constant heating rate of 6°C/min starting at RT up to 800°C.
The first peak at low temperature is associated with hydro-
gen desorption from lattice defects where the hydrogen trap-
ping energy is relatively low. These defects include intersti-
tial sites, vacancies, dislocations, and twin and grain bound-
aries [44]. The high temperature peak is associated with the
high-energy hydrogen traps, such as segregation interfaces
and inclusions [45]. The hydrogen contents were presented
by weight parts per million (ppm). The material contains 0
ppm diffusive and 0.5 ppm trapped hydrogen in the as de-
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livered condition. After charging, the material displayed two
prominent desorption peaks. The amounts of hydrogen under
each desorption peak were fitted by the peak-fitting tool in
the software Origin™, as indicated by the dashed fitting
curves. The amounts of diffusive hydrogen (Hyg) were de-
termined as 3.1 and 14.4 ppm in the 24 h and 166 h charged
and 24 h RT homogenized specimens, respectively. In com-
parison to the diffusive hydrogen, the amounts of trapped hy-
drogen (H,,,) were also raised to 4.9 and 9.4 ppm. The
trapped hydrogen is assumed to be associated with inclu-
sions and Mn segregations, which were frequently observed
in the investigated material and discussed in a previous work
[45]. The diffusive hydrogen content in a 166 h pre-charged
and 3 h RT homogenized specimen reached 26.0 ppm [34].
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Fig. 2. Hydrogen desorption curves in as delivered and 24 h
and 166 h hydrogen pre-charged and subsequently 24 h RT
dwelled specimens (homo.—Homogenized). The amount of hy-
drogen under each desorption peak was fitted according to the
Lorenz method with the peak-fitting tool in the software Ori-
gin™,

1200
i 106 -1 — 22Mn
(a) Strainrate: 106 s — 2)Mn 24hH
1000 - — 22Mn_166 h H
¥
800 /ﬂo ppm
i E]iSD - ‘

600 -
14.4 ppm =—
400 g

Engineering stress / MPa

200

0 1 1

1
0 0.2 0.4 0.6
Engineering strain

Int. J. Miner. Metall. Mater., Vol. 28, No. 5, May 2021

3.3. Hydrogen effect on tensile properties and fracture
mode

Fig. 3(a) shows the SSRT engineering stress—strain curves
of the 22Mn steel with different amounts of pre-charged hy-
drogen. Significant reduction of the engineering fracture
strains was observed in hydrogen pre-charged specimens
compared to the uncharged ones. The strain reduction
reached 62.9% and 74.2% in the 24 h and 166 h pre-charged
specimens, respectively. The amounts of diffusive hydrogen
were measured with pre-charged and 24 h homogenized spe-
cimens, which corresponded to the amount of hydrogen
when the specimens were strained close to 0.10. Compared to
other high manganese TWIP steels with Al alloying evalu-
ated by the same method [31,34,37], the investigated materi-
al showed high susceptibility to hydrogen embrittlement.

Fig. 3(b) displays EBSD image quality maps of the un-
charged SSRT specimens, which were pre-strained by 0,
0.10, 0.20 and 0.62, respectively. The annealing twins and
deformation twins are highlighted by yellow grain boundar-
ies. In the as-delivered specimen, only annealing twins are
observed. The 0.10 pre-strained specimen reveals deforma-
tion induced twins. Note that the deformation twins are not
fully indexed due to the limited resolution of EBSD. The 0.20
pre-strained specimen shows more than one twin systems. In
the fracture tip region with 0.62 tensile strain, high twinning
density and multiple twin systems have been revealed. Ex-
cept for the deformation twins, no secondary phase, such as €
or o’ martensite was detected in the deformed microstructure.

The uncharged SSRT specimen displays a fully ductile
fracture mode with a well-developed dimple structure all
over the fracture surface, as displayed in Figs. 4(a)4(a2). In
comparison, the hydrogen charged specimens exhibit mixed
ductile and brittle fracture modes. Fig. 4(b) reveals the frac-
ture surface from the specimen with 3.1 ppm diffusive hy-

S Strain = 0.10

Fig. 3. (a) Engineering stress—strain curves in 22Mn steel with different amounts of diffusive hydrogen from slow strain test at the
strain rate of 10 s™'; (b) image quality maps from EBSD characterization of microstructure for the uncharged SSRT specimens at
different deformation strains. Yellow lines depict the £3 twin boundaries. The used scanning step sizes are 200 nm for specimens with
the stain of 0, 0.10, 0.62 and 25 nm for the specimen with the strain of 0.20.
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Fig. 4. Fracture surfaces of the SSRT specimens with different amounts of pre-charged hydrogen: (a—a2) 0 ppm diffusive H, failed
at the strain of 0.62; (b—b2) 3.1 ppm diffusive H, failed at the strain of 0.23; (c—2) 14.4 ppm diffusive H, failed at the strain of 0.16.

drogen. The central region from the fracture surface, in Fig.
4(b1), demonstrates ductile dominant fracture mode however
with expanded dimple size compared to the uncharged condi-
tion. Inside the dimples, brittle facets with tearing traces can
be observed, which indicate the occurrence of cleavage dur-
ing void nucleation. The edge and surface regions in Fig.
4(b2) show a fully inter-granular (IG) fracture mode with the
depth of ~40 um. Fig. 4(c) reveals the fracture surface from
specimen with 14.4 ppm pre-charged hydrogen. In the cent-
ral region as shown in Fig. 4(c1), although ductile traces can
be observed, the trans-granular (TG) and IG fracture mode
become dominant. In the surface region, in Fig. 4(c2), a fully
IG with the depth of ~100 pum were observed. Afterwards, a
transition to mixed TG and IG fracture mode with decorated
ductile dimples were observed, similar as the fracture mode
in the central region from the same specimens. In addition,
micro-cracks were found on the fracture surface from hydro-
gen pre-charged specimens, which were along with the Mn
segregation lines.

3.4. Hydrogen effects on dislocation and twin substruc-
ture in pre-strained SSRT specimens

To understand the underlying mechanisms of reduced
ductility, the effects of hydrogen on dislocation substructure,
stacking fault probability, and twinning behaviour were fur-

ther investigated by combined EBSD and ECCI characteriz-
ation. Uncharged and 166 h hydrogen pre-charged speci-
mens were tensile deformed at the strain rate of 10° s and
interrupted at the engineering strain of 0.10. The test dura-
tion to achieve 0.10 pre-strain in the SSRT amounts to 23 h
40 min. The diffusive hydrogen content in it is close to 14.4
ppm, which was measured on specimen with the same char-
ging condition but with 24 h dwelling in air. Fig. 5(a) exhib-
its the engineering stress—strain curves from the interrupted
SSRT. The hydrogen pre-charged specimen reveals lower
strength than the uncharged one. The difference increases
with the strain values. For both uncharged and pre-charged
specimens, four EBSD maps were taken to give the grain ori-
entation information. Fig. 5(b) shows one TA//RD-inverse
pole figure (IPF) map. The grains oriented closer to the crys-
tallographic directions <111>//RD and <112>//RD have the
higher Schmid factors for twinning compared to <001>//RD
orientation, which indicate high tendency for twin nucleation
[2,4]. Therefore, the grains in these two orientations were fo-
cused. For statistical reason, 6-9 grains from each grain ori-
entation were investigated.

Fig. 6 displays the electron channelling contrast (ECC)
images of the grains oriented with <111>//RD in the 0.10
pre-strained SSRT specimens without (Figs. 6(a)-6(c)) and
with ((Figs. 6(d)-6(f)) hydrogen charging. The uncharged
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Fig. 5. (a) Engineering stress—strain curves from the as delivered and hydrogen pre-charged 22Mn steels interrupted at the strain of
0.10 during SSRT; (b) an example of a RD-IPF map with the marked grains (1-8) investigated by ECCI (ND—Normal direction;

TD—Transverse direction).

specimen reveals a dislocation pattern consisting of equiaxed
DCs [22-23], as shown in Figs. 6(a) and 6(b). The DCs are
the typical feature in material with cross slip upon deforma-
tion [4,22]. In addition, a few deformation twins, distributed
along one active twin system (the primary twin system) and
not fully penetrated the grains, have been observed. In the
14.4 ppm hydrogen pre-charged specimen, in Figs. 6(d)-6(f),
substantial amounts of SFs and HDDWs were frequently ob-
served, which indicated the increased slip planarity and en-
hanced dislocation dissociation [4]. Compared with the aver-
age size of DCs, which are mostly with the size of ~200 nm,
the distance between HDDWs is larger. The formed SFs
align with the HDDWs, where abundant dislocations also im-
pinge. The twinning densities are higher in the hydrogen
charged specimen than in the uncharged one, averaged from
the investigated 17 grains aligned in the <111>//RD direc-
tion. Furthermore, the secondary twin system was activated
in the hydrogen pre-charged specimen as shown in Figs. 6(d)
and 6(f).
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Fig. 7 presents the ECC images of the grains oriented
along <112>//RD in the 0.10 pre-strained SSRT specimens
without (Figs. 7(a)-7(c)) and with (Figs. 7(d)-7(f)) hydrogen
charging. More planar dislocations were observed in
<112>//RD oriented grains, in Figs. 7(a) and 7(b), compared
to the <111>//RD oriented grains, in Figs. 6(a) and 6(b).
Higher densities of planar dislocations and SFs were also ob-
served in the hydrogen pre-charged specimen in Fig. 7(d). In
addition, hydrogen was found promoting multiple twin sys-
tems. In the uncharged and pre-strained specimen, one active
twin system was usually observed, in Figs. 6(a)-6(c) and
Figs. 7(a)-7(c). However, in the hydrogen pre-charged speci-
men at the pre-strain of 0.1, the secondary twin system was
more frequently observed, as shown in Figs. 6(d), 6(f) and
Figs. 7(d)-7(f). The twin boundaries are considered as the
“strongest” obstacles for dislocation movement [46]. The
thickness of twin lamellae, the volume fraction of twins, and
the twin spacing are important characteristics of deformation
twins [47]. The thickness of twin lamellae is defined by the

Fig. 6. ECC images of the <111>//RD oriented grains in (a—) uncharged and (d—f) 14.4 ppm hydrogen pre-charged SSRT speci-

mens with the pre-strain (¢) of 0.10.
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width between two boundaries of a single twin or twin stacks.
As shown in Fig. 7(e), the hydrogen pre-charged specimen
showed twin lamellae with the thickness of, for example,
~70 nm, ~100 nm or even higher, which are wider compared
to the uncharged condition, in Fig. 7(b), which are ~23 nm,
50 nm or lower.

3.5. Hydrogen effects on dislocation and twin substruc-
ture in notched tensile specimens

Fig. 8 shows the ECC images and IPF maps at the notch

tip region of the pre-cracked notch tensile specimens without
(Figs. 8(a)-8(b)) and with (Figs. 8(c)-8(d)) hydrogen pre-
charging. In Fig. 8(a), the uncharged specimen reveals step-
wise crack propagation starting from the notch tip. The IPF
map of the highlighted square in Fig. 8(a) is shown in Fig.
8(b). It reveals that the crack propagated following a TG
dominated routine. In comparison, the crack in the hydrogen
pre-charged specimen propagated straight along the strain
gradient and remained perpendicular to the TA, as shown in
Fig. 8(c). As revealed by its IPF map in Fig. 8(d), it demon-

101

Fig. 8. ECC images and IPF maps at the notch tip region of pre-cracked notch tensile specimens (a, b) without and (c, d) with 26.0

ppm diffusive hydrogen.
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strates an IG dominated propagation path, indicating strong
hydrogen degradation of the grain boundaries.

Fig. 9 reveals the ECC images of the indexed grains
(G1-G4) and the crack tip regions in Figs. 8(b) and 8(d). Ac-
cording to DIC measurement [34], the von-Mises strains (&,)
are at the range of 0.50—0.53 for the uncharged specimen and
0.16-0.18 for the pre-charged specimen at the crack tip re-
gions, which are indicated on the right corner of each image.
The main crack nucleated at the notch root initiated at the
equivalent strain &, of 0.38 in hydrogen pre-charged speci-
men and 0.58 in the uncharged one. Figs. 9(a) and 9(b) dis-
play that very dense deformation twins formed in grains G1
and G2, which had high deformation strain in the uncharged
notch tensile specimen. The second active twin system inter-
sected with the primary twin system and caused the ladder

Gl,5,=0.53

Hi: 0 ppm

Hgi: 26.0 ppm
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like shearing at the intersection points. The cracks propag-
ated perpendicular to or along the interfaces of twin lamellae,
linking the sheared intersections. The crack propagated pre-
dominately trans-granularly. Figs. 9(d) and 9(e) showed the
grains G3 and G4 in the hydrogen pre-charged specimen,
multiple (secondary and tertiary) twin systems were ob-
served, although they have low local deformation strain of
0.18. Many voids were observed at the grain boundaries, as
indicated by the arrows in Figs. 9(e) and 9(f). At the crack tip,
in Fig. 9(f), voids and micro-cracks were observed at the
grain boundaries (GBs) or triple junction of GBs. Fig. 10
presents the secondary electron imaging (SEI) image of the
crack tip shown in Fig. 9(f). It clearly revealed that crack
propagated through linking with the voids and micro-cracks
ahead.

G2, ,-0.53 Crack tip, £, = 0.50

Crack tip, ¢, = 0.16
— Micro-crack

3

oid at tripple
pundaries

Fig. 9. ECC images of the grains at the notch tip regions in (a—c) uncharged and (d—f) 26.0 ppm hydrogen pre-charged notch tensile

specimens from 22Mn steel.

Micro-cracks at GBs
or GB triple junctions

[

|

|

W
=

Fig. 10. SEI image of the crack tip region in hydrogen pre-
charged notch tensile specimen.

4. Discussion
4.1. The role of hydrogen on microstructure evolution

The ECC images in Figs. 6 and 7 reveal that hydrogen

promoted planar slip of dislocations and their dissociation in-
to SFs in both <111>//RD and <112>//RD orientated grains
from the 0.1 pre-strained specimens. Dislocation planarity
was clearly observed in Figs. 6(d)-6(e) and Figs. 7(d)-7(e),
which is different from the homogenously distributed tangled
dislocations and DCs in the Figs. 6(a)-6(b). Wen ef al. [48]
studied hydrogen effects on cross-slip process by atomistic
simulations and concluded that hydrogen was bounded to the
cores of the partial dislocations and moved with the disloca-
tions, which led to an increase of the activation energy for
cross slip. Tang and El-Awady [49] confirmed that the high
trapping energy of hydrogen at partial dislocation cores and
edge dislocation cores by performing molecular statics simu-
lations of nickel-hydrogen system. Hydrogen in Shockley
partial core regions raised the width of SFs, meaning redu-
cing the SFE. Hydrogen near the centre of an edge disloca-
tion had the adverse effect. Gu and El-Awady [16] further
quantified the hydrogen-dislocation interactions by discrete
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dislocation dynamics simulation. They stated that in material
with large hydrogen diffusion coefficient, hydrogen would
play the role of shielding effect on dislocation interactions;
however, in material with low hydrogen diffusion coefficient,
hydrogen tends to pin the dislocations. For the studied TWIP
steel, hydrogen diffusivity in the bulk is very low [50], it is
assumed that hydrogen tends to pin the dislocations. With the
continuous dislocation emission from GBs with the raised
deformation strain, the diffusive hydrogen will confine dislo-
cation slip in narrow slip bands [10]. During the planar slip,
hydrogen can be further transported in slip bands due to the
high affinity of hydrogen to partial dislocations. Con-
sequently, hydrogen will gradually become enriched at the
dislocation pile-ups during the continuous plastic deforma-
tion at the low deformation rate of 10°s™".

In this study, the hydrogen pre-charged specimen also re-
vealed a high tendency to form SFs. Pontini and Hermida
[51] had measured 37% reduction in SFE in an AISI 304 aus-
tenitic stainless steel with the presence of 274 ppm hydrogen
by X-ray diffraction, and Hermida and Roviglione [52] ex-
plained that this was due to the formation of H-H pairs.
Quantum mechanics calculations in different studies further
confirmed the energetic stability of H atoms as well as H-H
pairs at the SFs [53-54]. Although Tang and El-Awady [49]
found that hydrogen effect on SFE was dependent on the
crystallographic location of hydrogen, the current work
demonstrated that SFs were promoted in hydrogen charged
specimens. High amounts of SFs were found along the slip
bands, which have both high dislocation density and en-
riched hydrogen. The local hydrogen concentration will be
much higher than the average value of 14.4 ppm, not only
due to hydrogen affinity to dislocation, but also due to the
charging induced hydrogen enrichment in the sub-surface re-
gion.

It is well established that mechanical twinning is the result
of the collaborative glide of intrinsic a/6 <112> Shockley
partial dislocations on successive parallel {111} planes. The
crystallographic structure between the faulted boundaries has
a X3 orientation compared to the matrix [28]. In the investig-
ated material, the grains oriented close to <111>//RD, and
<112>//RD are favourable orientations for twin nucleation.
With pre-charged hydrogen, narrow twin spacing and more
active twin systems had been observed in the investigated
22Mn steel. It is assumed that the resolved shear stress for
twin nucleation declines due to the reduced SFE [55], which
is also in consistence with a recent research about hydrogen
effect on twin spacing [56]. In addition, with charged hydro-
gen, the secondary twin system became active in the 0.1 pre-
strained SSRT specimen, and tertiary twin system was ob-
served in the notch tip region with high triaxiality.

Another observed feature is that the thickening of twin
lamellae was found in the hydrogen charged specimen, as ob-
served in Fig. 7(e) compared to Fig. 7(b). The thickness (e) of

deformation twin lamellae is proportional to the applied shear
stress (Tapplied) [47]-
e 2d1

S = l_) = W(Tapplied —Tloop) (N

where S is the shape factor of a twin, e represents twin thick-
ness, D represents the twin radius, dy;; represents the dis-
tance between the (111) planes, b represents the Burgers’
vector of Shockley partials, and T, represents the critical
stress to expand a dislocation loop. With the presence of hy-
drogen, the critical stress to expand a dislocation loop is re-
duced [57]. Although the T,pi.a Seems declined in the hydro-
gen charged specimen as shown in Fig. 5, it does not con-
sider the hydrogen induced surface cracks during the strain-
ing process. A recent research on revealing the surface cracks
evolution during in-situ tensile testing under SEM showed
that the T,ppiieq is usually underestimated [58]. Because the
cross section to calculate T,ypiiea Should exclude the surface
cracks, which has the similar size as the measured brittle areca
on the fracture head. When considering the width of the
brittle area is ~100 pm (estimated from Fig. 4(c2)) for the
166 h charged specimen, which failed at the strain of 0.16.
For Fig. 5(a), by assuming the width of brittle area has linear
dependence on the tensile strain, the calibrated T,ppicq at the
strain of 0.1 would be raised from 545 to 620 MPa, which is
above the stress value from uncharged specimen (590 MPa).
According to Eq. (1), the twin thickening would be promoted
by hydrogen, which is in consistence with the observations in
Fig. 7. Miillner [59] described in a twin intersection model
that the twin intersection stress decreases with increasing
twin thickness, indicating less hardening effect than thinner
twins. In the other aspect, the thicker twins usually contain-
ing higher density of dislocations [54], which are effective
hydrogen carriers [60]. Therefore, the damage initiation at
twin—twin intersections will be resulted from the local stress
condition coupled with local hydrogen -concentration.
However, when the thick twin bundles impede with the
“harder” obstacles, such as grain boundaries, higher tend-
ency for crack formation will be promoted due to the larger
exerted stress.

4.2. Hydrogen embrittlement mechanisms in the invest-
igated material

According to the ECCI observations, hydrogen effects on
promoting dislocation planarity, SFs formation, multiple twin
systems, and twin thickening gave information about its in-
fluences on microstructure. The associated substructure fea-
tures led to material strengthening at the early stage [2,29],
and slip localization occurs consequently [3,13]. The increas-
ing in slip planarity and the slip activation on additional
planes are consistent with the proposed HELP mechanism
[9,12,14]. A recent investigation on the nano-mechanical re-
sponse to hydrogen by in-situ nano-indentation on coarse-
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grained material with the same chemistry also supported the
operating of HELP mechanism inside single grains [60].
Both dislocation formation energy and the size of plastic
zone beneath the indents were reduced by hydrogen. The
nano-hardness inside of single grains was raised, meaning the
material hardening inside grains. Because no matter hydro-
gen facilitates dislocation movement [9] or pins dislocation
movement [16], the promoted dislocation planarity leads to
the pile-up of dislocations [23]. Either higher applied stress is
needed to concur the back stress of dislocation pile-ups or the
pile-ups are released by local decohesion. As a result, the
macroscopic decohesion at the grain boundaries is associated
with the activation of HELP mechanism inside the grains.
More specifically to say, the intra-granularly HELP assisted
grain boundary decohesion.

As observed in the fracture surfaces from SSRT speci-
mens in Fig. 4, there is a clear embrittlement zone at the sub-
surface in the hydrogen charged specimens. A sketch of the
fracture modes across specimen cross section is described in
Fig.11. The fully IG fracture mode at the sub-surface demon-
strated the HEDE dominated mechanism in this region (dark
grey). This near surface region contained higher amount of
hydrogen, as indicated by the hydrogen distribution profile
(red line). The transition zone from fully IG to mixed facture
modes is exactly where the ECCI observation were per-
formed. In this region, hydrogen promoted dislocation
planarity, SFs, multiple twin systems, and their interaction
with grain boundaries coexisted. The mixed fracture mode
revealed intergranular facets, quasi-cleavage as well as de-
formation dimples. The interplay of HELP, HESIV and
HEDE mechanisms should take place in this region. Toward
the bulk centre, the growing surface cracks would lead to a
stress filed ahead their crack tips (blue line). The operating
mechanisms are similar as the triaxial stress field ahead of
notched specimens [61], leading to significant twin forma-
tion and the associated micro-voids nucleation. Without
charged hydrogen, the cracks could propagate in the ductile
dominated mode, depending on the instability of the micro-
voids upon straining. With charged hydrogen, on the one
side, the SFs and twinning are promoted which lead to
abundant voids nucleation at low strains; on the other side,
hydrogen atoms are more easily transported by dislocations

g T Surface
g 2NN NG dominated (HEDE)
EGHI IG + TG > Ductile
(HEDE+HELP-+HESIV)
Ductile > IG + TG
High Bulk cc.:nter .

<———> Tensile direction
Fig. 11. Fracture modes and operating HE mechanisms from
specimen surface to center. Red curve describes H distribution
profile; blue curve describes stress (o) distribution profile.
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gliding to these voids, since the low strain rate facilitates the
transportation of hydrogen by moving dislocations [62]. The
incoherent GBs would be the preferential hydrogen trapping
sites to accommodate larger amount of hydrogen atoms. As a
result, the accumulated hydrogen at GBs would cause deco-
hesion and lead to micro-cracks, especially at twin—-GB inter-
sections or GB triple junctions, as revealed in the crack tip re-
gion in Fig. 10.

5. Conclusions

The present work revealed hydrogen effects on the mech-
anical properties, fracture modes, and microstructural fea-
tures in a high manganese Fe—22Mn—0.6C TWIP steel. The
coupled EBSD and ECCI analysis gave detailed information
about the dislocation substructure, stacking fault probability,
and deformation twinning behaviour at different strain levels,
as affected by diffusive hydrogen. The main results are sum-
marized as follows.

(1) The investigated steel showed high HE susceptibility
with the reduction of 62.9% and 74.2% in engineering strain
with 3.1 ppm and 14.4 ppm diffusive hydrogen. The fracture
surfaces revealed a transition from ductile to brittle domin-
ated fracture mode with the rising hydrogen contents.

(2) Hydrogen promoted dislocation planarity, earlier nuc-
leation of SFs and deformation twinning as well as multiple
twin systems in the grains oriented close to <111>//RD and
<112>//RD as revealed by ECCI at the subsurface. Sub-
sequently, the promoted microstructural defects hardened the
material intra-granularly. However, they led to strain localiz-
ation and micro-voids at grain boundaries or intersections of
the multiple twin systems. Diffusive hydrogen accumulated
easier at these strain localized sites through dislocation trans-
portation or grain boundary diffusion. Eventually, HEDE
mechanism was found to be the prevailing failure mechan-
ism in the hydrogen enriched subsurface region. Multiple HE
mechanisms interplay toward the specimen bulk.

Acknowledgements

This work was supported by German Research Founda-
tion (DFG) in the framework of the Collaborative Research
Center SFB 761 “Steel ab initio”. The authors also acknow-
ledge Dr. Sergiy Merzlikin and Ms. Monika Nellessen from
Max-Planck Institute fiir Eisenforschung for their help in car-
rying out the TDS and ECCI measurements.

Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and



X.F. Guo et al., Hydrogen effect on the mechanical behaviour and microstructural features of a Fe-Mn—C ... 845

the source, provide a link to the Creative Commons licence, and in-
dicate if changes were made. The images or other third party materi-
al in this article are included in the article’s Creative Commons li-
cence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or ex-
ceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

References

[1] B.C. De Cooman, K.-G. Chin, and J. Kim, High Mn TWIP
steels for automotive applications, [in] M. Chiaberge, ed., New
Trends and Developments in Automotive System Engineering,
IntechOpen, Rijeka, 2011.

[2] H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J.
Jacques, On the mechanism of twin formation in Fe-Mn-C
TWIP steels, Acta Mater., 58(2010), No. 7, p. 2464.

[3] C.L.Yang, Z.J. Zhang, P. Zhang, and Z.F. Zhang, The prema-
ture necking of twinning-induced plasticity steels, Acta Mater.,
136(2017), p. 1.

[4] J.S.Kim, Y.H. Lee, D.L. Lee, K.-T. Park, and C.S. Lee, Micro-
structural influences on hydrogen delayed fracture of high
strength steels, Mater. Sci. Eng. A, 505(2009), No. 1-2, p. 105.

[5] M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe, Hydrogen-
assisted failure in a twinning-induced plasticity steel studied un-
der in situ hydrogen charging by electron channeling contrast
imaging, Acta Mater., 61(2013), No. 12, p. 4607.

[6] M. Koyama, E. Akiyama, Y.-K. Lee, D. Raabe, and K. Tsuzaki,
Overview of hydrogen embrittlement in high-Mn steels, Int. J.
Hydrogen Energy, 42(2017), No. 17, p. 12706.

[7] C.D. Beachem, A new model for hydrogen-assisted cracking
(hydrogen “embrittlement”), Metall. Mater. Trans. B, 3(1972),
No. 2, p. 441.

[8] S.P. Lynch, Environmentally assisted cracking: Overview of
evidence for an adsorption-induced localised-slip process, Acta
Metall., 36(1988), No. 10, p. 2639.

[9] H.K. Birnbaum and P. Sofronis, Hydrogen-enhanced localized
plasticity—A mechanism for hydrogen-related fracture, Mater.
Sci. Eng. A, 176(1994), No. 1-2, p. 191.

[10] D.P. Abraham and C.J. Altstetter, Hydrogen-enhanced localiza-
tion of plasticity in an austenitic stainless steel, Metall. Mater.
Trans. A, 26(1995), No. 11, p. 2859.

[11] C.J. McMahon, Hydrogen-induced intergranular fracture of
steels, Eng. Fract. Mech., 68(2001), No. 6, p. 773.

[12] I.M. Robertson, The effect of hydrogen on dislocation dynam-
ics, Eng. Fract. Mech., 68(2001), No. 6, p. 671.

[13] S. Lynch, Hydrogen embrittlement phenomena and mechan-
isms, Corros. Rev., 30(2012), No. 3-4, p. 105.

[14] K.A. Nibur, D.F. Bahr, and B.P. Somerday, Hydrogen effects
on dislocation activity in austenitic stainless steel, Acta Mater.,
54(2006), No. 10, p. 2677.

[15] M. Nagumo and K. Takai, The predominant role of strain-in-
duced vacancies in hydrogen embrittlement of steels: Overview,
Acta Mater., 165(2019), p. 722.

[16] Y.J. Gu and J.A. El-Awady, Quantifying the effect of hydrogen
on dislocation dynamics: A three-dimensional discrete disloca-
tion dynamics framework, J. Mech. Phys. Solids, 112(2018), p.
491.

[17] J.P. Chateau, D. Delafosse, and T. Magnin, Numerical simula-
tions of hydrogen—dislocation interactions in fcc stainless steels.
Part I: Hydrogen—dislocation interactions in bulk crystals, Acta
Mater., 50(2002), No. 6, p. 1507.

[18] A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O.
Ritchie, Hydrogen-enhanced-plasticity mediated decohesion for
hydrogen-induced intergranular and “quasi-cleavage” fracture
of lath martensitic steels, J. Mech. Phys. Solids, 112(2018), p.
403.

[19] P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, and R.O.
Ritchie, A statistical, physical-based, micro-mechanical model
of hydrogen-induced intergranular fracture in steel, J. Mech.
Phys. Solids, 58(2010), No. 2, p. 206.

[20] R. Kirchheim, Reducing grain boundary, dislocation line and
vacancy formation energies by solute segregation. 1. Theoretic-
al background, Acta Mater., 55(2007), No. 15, p. 5129.

[21] A. Barnoush, M. Asgari, and R. Johnsen, Resolving the hydro-
gen effect on dislocation nucleation and mobility by electro-
chemical nanoindentation, Scripta Mater., 66(2012), No. 6, p.
414.

[22] A. Barnoush and H. Vehoff, Recent developments in the study
of hydrogen embrittlement: Hydrogen effect on dislocation nuc-
leation, Acta Mater., 58(2010), No. 16, p. 5274.

[23] D.P. Abraham and C.J. Altstetter, The effect of hydrogen on the
yield and flow stress of an austenitic stainless steel, Metall. Ma-
ter. Trans. A, 26(1995), No. 11, p. 2849.

[24] C. Verpoort, D.J. Duquette, N.S. Stoloff, and A. Neu, The influ-
ence of plastic deformation on the hydrogen embrittlement of
nickel, Mater. Sci. Eng., 64(1984), No. 1, p. 135.

[25] J.A. Clum, The role of hydrogen in dislocation generation in
iron alloys, Scripta Metall., 9(1975), No. 1, p. 51.

[26] M. Hatano, M. Fujinami, K. Arai, H. Fujii, and M. Nagumo,
Hydrogen embrittlement of austenitic stainless steels revealed
by deformation microstructures and strain-induced creation of
vacancies, Acta Mater., 67(2014), p. 342.

[27] Z.D. Harris, S.K. Lawrence, D.L. Medlin, G. Guetard, J.T.
Burns, and B.P. Somerday, Elucidating the contribution of mo-
bile hydrogen-deformation interactions to hydrogen-induced in-
tergranular cracking in polycrystalline nickel, Acta Mater.,
158(2018), p. 180.

[28] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High
manganese austenitic twinning induced plasticity steels: A re-
view of the microstructure properties relationships, Curr. Opin.
Solid State Mater. Sci., 15(2011), No. 4, p. 141.

[29] 1. Gutierrez-Urrutia and D. Raabe, Dislocation and twin sub-
structure evolution during strain hardening of an Fe-22wt.%
Mn-0.6wt.% C TWIP steel observed by electron channeling
contrast imaging, Acta Mater., 59(2011), No. 16, p. 6449.

[30] A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation
and variation in composition-dependent stacking fault energy
maps based on subregular solution model in high-manganese
steels, Metall. Mater. Trans. A, 40(2009), No. 13, p. 3076.

[31] K.G. Chin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim,
K.H. Kim, and N.J. Kim, Effects of Al addition on deformation
and fracture mechanisms in two high manganese TWIP steels,
Mater. Sci. Eng. A, 528(2011), No. 6, p. 2922.

[32] S.M. Lee, 1.J. Park, J.G. Jung, and Y.K. Lee, The effect of Si on
hydrogen embrittlement of Fe—18Mn—0.6C—xSi twinning-in-
duced plasticity steels, Acta Mater., 103(2016), p. 264.

[33] LJ. Park, K.H. Jeong, J.G. Jung, C.S. Lee, and Y .K. Lee, The
mechanism of enhanced resistance to the hydrogen delayed
fracture in Al-added Fe-18Mn—0.6C twinning-induced plasti-
city steels, Int. J. Hydrogen Energy, 37(2012), No. 12, p. 9925.


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.actamat.2009.12.032
https://doi.org/10.1016/j.actamat.2017.06.042
https://doi.org/10.1016/j.msea.2008.11.040
https://doi.org/10.1016/j.actamat.2013.04.030
https://doi.org/10.1016/j.ijhydene.2017.02.214
https://doi.org/10.1016/j.ijhydene.2017.02.214
https://doi.org/10.1007/BF02642048
https://doi.org/10.1016/0001-6160(88)90113-7
https://doi.org/10.1016/0001-6160(88)90113-7
https://doi.org/10.1016/0921-5093(94)90975-X
https://doi.org/10.1016/0921-5093(94)90975-X
https://doi.org/10.1007/BF02669644
https://doi.org/10.1007/BF02669644
https://doi.org/10.1016/S0013-7944(00)00124-7
https://doi.org/10.1016/S0013-7944(01)00011-X
https://doi.org/10.1016/j.actamat.2006.02.007
https://doi.org/10.1016/j.actamat.2018.12.013
https://doi.org/10.1016/j.jmps.2018.01.006
https://doi.org/10.1016/S1359-6454(02)00008-3
https://doi.org/10.1016/S1359-6454(02)00008-3
https://doi.org/10.1016/j.jmps.2017.12.016
https://doi.org/10.1016/j.jmps.2009.10.005
https://doi.org/10.1016/j.jmps.2009.10.005
https://doi.org/10.1016/j.actamat.2007.05.047
https://doi.org/10.1016/j.scriptamat.2011.12.004
https://doi.org/10.1016/j.actamat.2010.05.057
https://doi.org/10.1007/BF02669643
https://doi.org/10.1007/BF02669643
https://doi.org/10.1007/BF02669643
https://doi.org/10.1016/0025-5416(84)90080-6
https://doi.org/10.1016/0036-9748(75)90145-3
https://doi.org/10.1016/j.actamat.2013.12.039
https://doi.org/10.1016/j.actamat.2018.07.043
https://doi.org/10.1016/j.cossms.2011.04.002
https://doi.org/10.1016/j.cossms.2011.04.002
https://doi.org/10.1016/j.actamat.2011.07.009
https://doi.org/10.1007/s11661-009-0050-8
https://doi.org/10.1016/j.msea.2010.12.085
https://doi.org/10.1016/j.actamat.2015.10.015
https://doi.org/10.1016/j.ijhydene.2012.03.100
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.actamat.2009.12.032
https://doi.org/10.1016/j.actamat.2017.06.042
https://doi.org/10.1016/j.msea.2008.11.040
https://doi.org/10.1016/j.actamat.2013.04.030
https://doi.org/10.1016/j.ijhydene.2017.02.214
https://doi.org/10.1016/j.ijhydene.2017.02.214
https://doi.org/10.1007/BF02642048
https://doi.org/10.1016/0001-6160(88)90113-7
https://doi.org/10.1016/0001-6160(88)90113-7
https://doi.org/10.1016/0921-5093(94)90975-X
https://doi.org/10.1016/0921-5093(94)90975-X
https://doi.org/10.1007/BF02669644
https://doi.org/10.1007/BF02669644
https://doi.org/10.1016/S0013-7944(00)00124-7
https://doi.org/10.1016/S0013-7944(01)00011-X
https://doi.org/10.1016/j.actamat.2006.02.007
https://doi.org/10.1016/j.actamat.2018.12.013
https://doi.org/10.1016/j.jmps.2018.01.006
https://doi.org/10.1016/S1359-6454(02)00008-3
https://doi.org/10.1016/S1359-6454(02)00008-3
https://doi.org/10.1016/j.jmps.2017.12.016
https://doi.org/10.1016/j.jmps.2009.10.005
https://doi.org/10.1016/j.jmps.2009.10.005
https://doi.org/10.1016/j.actamat.2007.05.047
https://doi.org/10.1016/j.scriptamat.2011.12.004
https://doi.org/10.1016/j.actamat.2010.05.057
https://doi.org/10.1007/BF02669643
https://doi.org/10.1007/BF02669643
https://doi.org/10.1007/BF02669643
https://doi.org/10.1016/0025-5416(84)90080-6
https://doi.org/10.1016/0036-9748(75)90145-3
https://doi.org/10.1016/j.actamat.2013.12.039
https://doi.org/10.1016/j.actamat.2018.07.043
https://doi.org/10.1016/j.cossms.2011.04.002
https://doi.org/10.1016/j.cossms.2011.04.002
https://doi.org/10.1016/j.actamat.2011.07.009
https://doi.org/10.1007/s11661-009-0050-8
https://doi.org/10.1016/j.msea.2010.12.085
https://doi.org/10.1016/j.actamat.2015.10.015
https://doi.org/10.1016/j.ijhydene.2012.03.100

846

[34] X.F. Guo, S. Zaefferer, F. Archie, and W. Bleck, Dislocation
and twinning behaviors in high manganese steels in respect to
hydrogen and aluminium alloying, Procedia Struct. Integrity,
13(2018), p. 1453.

[35] Y.S. Chun, K.T. Park, and C.S. Lee, Delayed static failure of
twinning-induced plasticity steels, Scripta Mater., 66(2012),
No. 12, p. 960.

[36] M. Koyama, E. Akiyama, and K. Tsuzaki, Hydrogen embrittle-
ment in Al-added twinning-induced plasticity steels evaluated
by tensile tests during hydrogen charging, ISLJ Int., 52(2012),
No. 12, p. 2283.

[37] T. Dieudonné, L. Marchetti, M. Wery, J. Chéne, C. Allely, P.
Cugy, and C.P. Scott, Role of copper and aluminum additions
on the hydrogen embrittlement susceptibility of austenitic
Fe-Mn-C TWIP steels, Corros. Sci., 82(2014), p. 218.

[38] N. Zan, H. Ding, X.F. Guo, Z.Y. Tang, and W. Bleck, Effects of
grain size on hydrogen embrittlement in a Fe-22Mn-0.6C
TWIP steel, Int. J. Hydrogen Energy, 40(2015), No. 33, p.
10687.

[39] Y.J. Kwon, S.P. Jung, B.J. Lee, and C.S. Lee, Grain boundary
engineering approach to improve hydrogen embrittlement res-
istance in Fe-Mn-C TWIP steel, Int. J. Hydrogen Energy,
43(2018), No. 21, p. 10129.

[40] S. Zaefferer and N.N. Elhami, Theory and application of elec-
tron channelling contrast imaging under controlled diffraction
conditions, Acta Mater., 75(2014), p. 20.

[41] A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz,
Influence of addition elements on the stacking-fault energy and
mechanical properties of an austenitic Fe-Mn-C steel, Mater.
Sci. Eng. A, 483-484(2008), p. 184.

[42] J. Lian, M. Sharaf, F. Archie, and S. Miinstermann, A hybrid
approach for modelling of plasticity and failure behaviour of
advanced high-strength steel sheets, Int. J. Damage Mech.,
22(2013), No. 2, p. 188.

[43] F. Ozturk, A. Polat, S. Toros, and R.C. Picu, Strain hardening
and strain rate sensitivity behaviors of advanced high strength
steels, J. Iron Steel Res. Int., 20(2013), No. 6, p. 68.

[44] D.P. Escobar, T. Depover, L. Duprez, K. Verbeken, and M.
Verhaege, Combined thermal desorption spectroscopy, differen-
tial scanning calorimetry, scanning electron microscopy and X-
ray diffraction study of hydrogen trapping in cold deformed
TRIP steel, Acta Mater., 60(2012), No. 6-7, p. 2593.

[45] X.F. Guo, Influences of Microstructure, Alloying Elements and
Forming Parameters on Delayed Fracture in TRIP/TWIP-Aided
Austenitic Steels [Dissertation], RWTH Aachen University,
Aachen, 2012, p. 88.

[46] D. Kuhlmann-Wilsdorf, Theory of plastic deformation — Prop-
erties of low energy dislocation structures, Mater. Sci. Eng. A,
113(1989), p. 1.

[47] S. Allain, J.-P. Chateau, D. Dahmoun, and O. Bouaziz, Model-
ling of mechanical twinning in a high manganese content aus-

Int. J. Miner. Metall. Mater., Vol. 28, No. 5, May 2021

tenitic steel, Mater. Sci. Eng. A, 387-389(2004), p. 272.

[48] M. Wen, S. Fukuyama, and K. Yokogawa, Hydrogen-affected
cross-slip process in fcc nickel, Phys. Rev. B, 69(2004), No. 17,
art. No. 174108.

[49] Y.Z. Tang and J.A. El-Awady, Atomistic simulations of the in-
teractions of hydrogen with dislocations in fcc metals, Phys.
Rev. B, 86(2012), No. 17, art. No. 174102.

[50] D.K. Han, S.K. Lee, S.J. Noh, S.-K. Kim, and D.-W. Suh, Ef-
fect of aluminium on hydrogen permeation of high-manganese
twinning-induced plasticity steel, Scripta Mater., 99(2015), p.
45.

[51] A.E. Pontini and J.D. Hermida, X-Ray diffraction measurement
of the stacking fault energy reduction induced by hydrogen in
an AISI 304 steel, Scripta Mater., 37(1997), No. 11, p. 1831.

[52] J.D. Hermida and A. Roviglione, Stacking fault energy de-
crease in austenitic stainless steels induced by hydrogen pairs
formation, Scripta Mater., 39(1998), No. 8, p. 1145.

[53] J. von Appen, R. Dronskowski, A. Chakrabarty, T. Hickel, R.
Spatschek, and J. Neugebauer, Impact of Mn on the solution en-
thalpy of hydrogen in austenitic Fe-Mn alloys: A first-prin-
ciples study, J. Comput. Chem., 35(2014), No. 31, p. 2239.

[54] J.B. Cohen and J. Weertman, A dislocation model for twinning
in f.c.c. metals, Acta Metall., 11(1963), No. 8, p. 996.

[55] D. Steinmetz, 4 Constitutive Model of Twin Nucleation and De-
formation Twinning in High-Manganese Austenitic TWIP Steels
[Dissertation], RWTH Aachen University, Aachen, 2013.

[56] B. Bal, M. Koyama, G. Gerstein, H.J. Maier, and K. Tsuzaki,
Effect of strain rate on hydrogen embrittlement susceptibility of
twinning-induced plasticity steel pre-charged with high-pres-
sure hydrogen gas, Int. J. Hydrogen Energy, 41(2016), No. 34,
p. 15362.

[57] S. Evers and M. Rohwerder, The hydrogen electrode in the
“dry”: A Kelvin probe approach to measuring hydrogen in
metals, Electrochem. Commun., 24(2012), p. 85.

[58] D. Wang, X. Lu, D. Wan, X.F. Guo, R. Johnsen, Effect of hy-
drogen on the embrittlement susceptibility of Fe—22Mn—-0.6C
TWIP steel revealed by in-situ tensile tests, Mater. Sci. Eng. A,
802(2021), art. No. 140638.

[59] P. Miillner, Disclination models for deformation twinning, Sol-
id State Phenom., 87(2002), p. 227.

[60] D. Wang, X. Lu, Y. Deng, X.F. Guo, and A. Barnoush, Effect
of hydrogen on nanomechanical properties in Fe-22Mn—0.6C
TWIP steel revealed by in-situ electrochemical nanoindentation,
Acta Mater., 166(2019), p. 618.

[61] M. Faccoli, G. Cornacchia, M. Gelfi, A. Panvini, and R.
Roberti, Notch ductility of steels for automotive components,
Eng. Fract. Mech., 127(2014), p. 181.

[62] J. Rehrl, K. Mraczek, A. Pichler, and E. Werner, Mechanical
properties and fracture behavior of hydrogen charged
AHSS/UHSS grades at high- and low strain rate tests, Mater.
Sci. Eng. 4, 590(2014), p. 360.


https://doi.org/10.1016/j.prostr.2018.12.301
https://doi.org/10.1016/j.scriptamat.2012.02.038
https://doi.org/10.2355/isijinternational.52.2283
https://doi.org/10.1016/j.corsci.2014.01.022
https://doi.org/10.1016/j.ijhydene.2015.06.112
https://doi.org/10.1016/j.ijhydene.2018.04.048
https://doi.org/10.1016/j.actamat.2014.04.018
https://doi.org/10.1016/j.msea.2006.12.170
https://doi.org/10.1016/j.msea.2006.12.170
https://doi.org/10.1177/1056789512439319
https://doi.org/10.1016/S1006-706X(13)60114-4
https://doi.org/10.1016/j.actamat.2012.01.026
https://doi.org/10.1016/0921-5093(89)90290-6
https://doi.org/10.1016/j.msea.2004.05.038
https://doi.org/10.1103/PhysRevB.69.174108
https://doi.org/10.1103/PhysRevB.86.174102
https://doi.org/10.1103/PhysRevB.86.174102
https://doi.org/10.1016/j.scriptamat.2014.11.023
https://doi.org/10.1016/S1359-6462(97)00332-1
https://doi.org/10.1016/S1359-6462(98)00285-1
https://doi.org/10.1002/jcc.23742
https://doi.org/10.1016/0001-6160(63)90074-9
https://doi.org/10.1016/j.ijhydene.2016.06.259
https://doi.org/10.1016/j.elecom.2012.08.019
https://doi.org/10.1016/j.msea.2020.140638
https://doi.org/10.4028/www.scientific.net/SSP.87.227
https://doi.org/10.4028/www.scientific.net/SSP.87.227
https://doi.org/10.1016/j.actamat.2018.12.055
https://doi.org/10.1016/j.engfracmech.2014.06.007
https://doi.org/10.1016/j.msea.2013.10.044
https://doi.org/10.1016/j.msea.2013.10.044
https://doi.org/10.1016/j.prostr.2018.12.301
https://doi.org/10.1016/j.scriptamat.2012.02.038
https://doi.org/10.2355/isijinternational.52.2283
https://doi.org/10.1016/j.corsci.2014.01.022
https://doi.org/10.1016/j.ijhydene.2015.06.112
https://doi.org/10.1016/j.ijhydene.2018.04.048
https://doi.org/10.1016/j.actamat.2014.04.018
https://doi.org/10.1016/j.msea.2006.12.170
https://doi.org/10.1016/j.msea.2006.12.170
https://doi.org/10.1177/1056789512439319
https://doi.org/10.1016/S1006-706X(13)60114-4
https://doi.org/10.1016/j.actamat.2012.01.026
https://doi.org/10.1016/0921-5093(89)90290-6
https://doi.org/10.1016/j.msea.2004.05.038
https://doi.org/10.1103/PhysRevB.69.174108
https://doi.org/10.1103/PhysRevB.86.174102
https://doi.org/10.1103/PhysRevB.86.174102
https://doi.org/10.1016/j.scriptamat.2014.11.023
https://doi.org/10.1016/S1359-6462(97)00332-1
https://doi.org/10.1016/S1359-6462(98)00285-1
https://doi.org/10.1002/jcc.23742
https://doi.org/10.1016/0001-6160(63)90074-9
https://doi.org/10.1016/j.ijhydene.2016.06.259
https://doi.org/10.1016/j.elecom.2012.08.019
https://doi.org/10.1016/j.msea.2020.140638
https://doi.org/10.4028/www.scientific.net/SSP.87.227
https://doi.org/10.4028/www.scientific.net/SSP.87.227
https://doi.org/10.1016/j.actamat.2018.12.055
https://doi.org/10.1016/j.engfracmech.2014.06.007
https://doi.org/10.1016/j.msea.2013.10.044
https://doi.org/10.1016/j.msea.2013.10.044
https://doi.org/10.1016/j.prostr.2018.12.301
https://doi.org/10.1016/j.scriptamat.2012.02.038
https://doi.org/10.2355/isijinternational.52.2283
https://doi.org/10.1016/j.corsci.2014.01.022
https://doi.org/10.1016/j.ijhydene.2015.06.112
https://doi.org/10.1016/j.ijhydene.2018.04.048
https://doi.org/10.1016/j.actamat.2014.04.018
https://doi.org/10.1016/j.msea.2006.12.170
https://doi.org/10.1016/j.msea.2006.12.170
https://doi.org/10.1177/1056789512439319
https://doi.org/10.1016/S1006-706X(13)60114-4
https://doi.org/10.1016/j.actamat.2012.01.026
https://doi.org/10.1016/0921-5093(89)90290-6
https://doi.org/10.1016/j.msea.2004.05.038
https://doi.org/10.1103/PhysRevB.69.174108
https://doi.org/10.1103/PhysRevB.86.174102
https://doi.org/10.1103/PhysRevB.86.174102
https://doi.org/10.1016/j.scriptamat.2014.11.023
https://doi.org/10.1016/S1359-6462(97)00332-1
https://doi.org/10.1016/S1359-6462(98)00285-1
https://doi.org/10.1002/jcc.23742
https://doi.org/10.1016/0001-6160(63)90074-9
https://doi.org/10.1016/j.ijhydene.2016.06.259
https://doi.org/10.1016/j.elecom.2012.08.019
https://doi.org/10.1016/j.msea.2020.140638
https://doi.org/10.4028/www.scientific.net/SSP.87.227
https://doi.org/10.4028/www.scientific.net/SSP.87.227
https://doi.org/10.1016/j.actamat.2018.12.055
https://doi.org/10.1016/j.engfracmech.2014.06.007
https://doi.org/10.1016/j.msea.2013.10.044
https://doi.org/10.1016/j.msea.2013.10.044

	1 Introduction
	2 Experimental
	2.1 Materials
	2.2 Hydrogen charging and measurement
	2.3 Mechanical testing
	2.4 Microstructure characterization

	3 Results
	3.1 Mechanical properties
	3.2 Hydrogen diffusion and trapping
	3.3 Hydrogen effect on tensile properties and fracture mode
	3.4 Hydrogen effects on dislocation and twin substructure in pre-strained SSRT specimens
	3.5 Hydrogen effects on dislocation and twin substructure in notched tensile specimens

	4 Discussion
	4.1 The role of hydrogen on microstructure evolution
	4.2 Hydrogen embrittlement mechanisms in the investigated material

	5 Conclusions
	Acknowledgements

