International Journal of Minerals, Metallurgy and Materials
Volume 28, Number 8, August 2021, Page 1309
https://doi.org/10.1007/s12613-020-2168-z

Prediction of the Charpy V-notch impact energy of low carbon steel using a
shallow neural network and deep learning

Si-wei Wu", Jian Yang", and Guang-ming Cao®

1) State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
(Received: 17 July 2020; revised: 6 August 2020; accepted: 10 August 2020)

Abstract: The impact energy prediction model of low carbon steel was investigated based on industrial data. A three-layer neural network, ex-
treme learning machine, and deep neural network were compared with different activation functions, structure parameters, and training func-
tions. Bayesian optimization was used to determine the optimal hyper-parameters of the deep neural network. The model with the best per-
formance was applied to investigate the importance of process parameter variables on the impact energy of low carbon steel. The results show
that the deep neural network obtains better prediction results than those of a shallow neural network because of the multiple hidden layers im-
proving the learning ability of the model. Among the models, the Bayesian optimization deep neural network achieves the highest correlation
coefficient of 0.9536, the lowest mean absolute relative error of 0.0843, and the lowest root mean square error of 17.34 J for predicting the im-
pact energy of low carbon steel. Among the variables, the main factors affecting the impact energy of low carbon steel with a final thickness of
7.5 mm are the thickness of the original slab, the thickness of intermediate slab, and the rough rolling exit temperature from the specific hot

rolling production line.
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1. Introduction

A mechanical property prediction model is beneficial to
guide the process design of steel at low cost in a short pro-
duction cycle. Establishing a mechanical property prediction
model based on a data-driven technique has attracted recent
attentions [1]. As a typical data-driven modeling method, an
artificial neural network (ANN) has advantages of excellent
fitting ability, self-adaptive ability, and is independent of ex-
pertise knowledge. ANNs have been a common tool to relate
the chemical compositions, process parameters, and mechan-
ical property of metal materials. An ANN was successfully
applied to predict the mechanical property of austenite stain-
less steel 304 [2—4]. Powar and Date [5] developed a method
to predict the mechanical property of heat-treated compon-
ents of 30CrMoNiV5-11 steel using ANN and an advanced
thermal modeling tool, FLUENT. Lalam et al. [6] predicted
the mechanical properties of galvanized steel using ANN.
Thankachan and Sooryaprakash [7] exploited an ANN to
predict the impact energy of cast duplex stainless steels,
achieving good performance. Based on rough sets theory,
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Colas-Marquez et al. [8] proposed a new framework to es-
tablish a Charpy impact energy prediction model for alloy
steels by combining a k-nearest neighbor and neural network
model. Mahfouf and Yang [9] predicted the impact energy of
steels by combining a genetic algorithm and neural network.
ANN has also been successfully applied to predict fatigue
damage of S420MC steel [10].

However, the above-mentioned research mainly focused
on the shallow ANN model, which does not fully reflect the
corresponding relationship among the chemical composi-
tions, process parameters, and mechanical property of low
carbon steel because of fewer hidden layers. Therefore, some
researchers have developed a deep neural network (DNN) to
address the complex correlation. Liu ef al. [11] established a
mechanical property prediction model of hot die steel using a
four layer back-propagation neural network to investigate the
effect of alloying elements and heat treatment parameters on
the mechanical property. Xu ef al. [12] applied a convolu-
tional neural network to predict the mechanical property of
hot rolled steel, achieving a high accuracy. A DNN has a
similar structure as a shallow neural network. However, be-

@ Springer


https://doi.org/10.1007/s12613-020-2168-z
https://doi.org/10.1007/s12613-020-2168-z
https://doi.org/10.1007/s12613-020-2168-z

1310

cause of the increase in hidden layers of the DNN, the hyper-
parameters that need to be determined increase rapidly,
which makes determination of the optimal hyper-parameters
of a multilayer neural network difficult. Therefore, it is diffi-
cult to establish the mechanical property prediction model of
low carbon steel using a DNN.

In the present work, the data-driven impact energy predic-
tion model of low carbon steel was investigated to realize a
highly precise prediction. The shallow neural network and
DNN were used to establish the prediction model. The influ-
ence of different activation functions and network structures
on the model accuracy was analyzed. To address the prob-
lem of determination of optimal hyper-parameters in a DNN,
the Bayesian optimization method was implemented to auto-
matically determine the optimal hyper-parameters of the
model. The correlation coefficient (R), mean absolute relat-
ive error (MARE), and root mean square error (RMSE) were
used to evaluate the models. The influence of the process
parameters on the impact energy of low carbon steel was ana-
lyzed based on the best performed model.

2. Materials and experiments

Data of 7211 cases were collected from hot rolling line in-
cluding the chemical compositions, process parameters, and
Charpy V-notch impact energy (Akv) of low carbon steel.
The chemical composition included carbon (C), silicon (Si),
manganese (Mn), sulfur (S), phosphorus (P), nitrogen (N),
niobium (Nb), titanium (Ti), aluminum (Al), copper (Cu),
chromium (Cr), and nickel (Ni). The process parameters in-
cluded the furnace temperature (FT), rough rolling thickness
for 1st pass to Sth pass (RRH 1-5), finish rolling thickness
for 1st pass to 6th pass (FRH 1-6), rough rolling velocity for
Ist pass to 5th pass (RRV 1-5), finish rolling velocity for 1st
pass to 6th pass (FRV 1-6), rough rolling force for 1st pass to
Sth pass (RRF 1-5), finish rolling force for 1st pass to 6th
pass (FRF 1-6), rough rolling exit temperature (RRT), finish
rolling exit temperature (FRT), coiling temperature (CT),
width (w), and finish thickness specification (Spec). The dis-
tribution of chemical composition of the low carbon steel is
listed in Fig. 1. The slabs were reheated in a furnace for 120
min, and then used for hot rolling. After laminar cooling, the
strips were coiled and cooled in air to room temperature. The
impact energy of low carbon steel was evaluated using a
Charpy impact test. Defect-free specimens for impact testing
were machined and prepared. Given the different target
thicknesses of the hot rolled strips, there were three thickness
specifications of the impact energy samples, 10 mm x 10 mm x
55mm, 10 mm X 7.5 mm X 55 mm, and 10 mm X 5 mm X 55
mm, according to the final thickness of the strips. The test
specimen geometry is shown in Fig. 2. The specimen has a
V-shaped notch with a flank angle of 45° and a depth of
2 mm. The pendulum was equipped with a notch with a tip
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radius of 0.25 mm. For each strip, three samples were tested
and the average value was calculated. The experiments were
performed at 20°C in accordance with GB/T 229-2007. The
impact energy of samples with different specifications can-
not be directly compared. In order to consider the sample
specification information with regard to the impact energy
prediction model, three impact energy samples were marked
as “—1” for a sample thickness of 5 mm, “0” for a sample
thickness of 7.5 mm, and “1” for a sample thickness of 10
mm. Based on the extremely nonlinear fitting of a neural net-
work, we attempted to build a prediction model that can pre-
dict the impact energy of three sample specifications at the
same time. All of the data with chemical compositions and
process parameters were combined with the impact energy
according to the coil number of the steel. Abnormal data and
outliners were eliminated to improve the data quality.

3. Brief descriptions of the modeling technique
3.1. A three-layer neural network

A shallow neural network is the ANN with less than two
hidden layer numbers and is usually used to correlate nonlin-
ear relationships among the dependent variable and inde-
pendent variable. Generally, a shallow neural network is
composed of an input layer, a hidden layer, and an output
layer. Each layer contains several neurons. The neurons in
the same layer connect with each other and the neurons in the
different layer are not connected with each other [13]. In each
neuron, there is an activation function for processing the data
entering the neuron. These interconnected simple neurons
form a complex network system for information processing.
The prediction process of the neural network can be ex-
pressed as Eq. (1) [14],

y=f() wxi+b) (1)

where x is the input data, y is the output data, w is the weight
used to connect neurons in two adjacent layers, b is the
threshold value for neurons, # is the number of neurons, and f
is the activation function. The process of training the net-
work is complicated and is aimed at minimizing the cost
function by adjusting the weights and thresholds of the net-
work [15]. The mean squared error (MSE) is used as a cost
function to represent the error between the predicted value
and measured value of the neural network, which is ex-
pressed as Eq. (2).

1 N »
MSE= > (0,~T) @)

where N’ is the number of data, O is the output value of neur-
al network, and T is the target value. The activation function
(“tansig,” “sigmoid,” “purelin”), training function (“trainbr,”
“trainlm,” “trainscg”), and network structure are the main
factors affecting the performance of the neural network. In
our work, the different activation functions and training func-
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Fig. 2. Geometry of the Charpy V-notch impact specimen.

tions were used to establish the impact energy prediction
models of low carbon steel with an optimal network struc-

ture.
3.2. Extreme learning machine

To improve the neural network training efficiency, an ex-
treme learning machine (ELM) algorithm was proposed by
Huang and the team [16-18]. An ELM, a revised shallow
neural network, is a fast learning algorithm. Compared with a

Distribution of the chemical compositions of low carbon steel. Min, Max, Mean, and Std represent minimum, maximum,

neural network, the input weights and hidden thresholds of
the ELM algorithm are randomly generated and do not need
to be fine-tuned [19]. The least square method is used to cal-
culate the output weights instead of the iteration calculation
in neural network training, which can help significantly re-
duce the modeling time [20]. Moreover, the ELM algorithm
has better generalization capability and a faster learning rate
than traditional gradient-based algorithms and it can avoid
the network sinking in the local minimum [21].

3.3. Deep neural network

When the number of hidden layers of ANN is greater than
two, the network is called a DNN. Compared with a shallow
neural network, increasing the number of the hidden layers
results in the phenomenon of the gradient disappearing in the
process of neural network training. Additionally, increasing
the number of the hidden layers introduces a large number of
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hyper-parameters of the model, resulting in difficulty in se-
lecting the optimal hyper-parameters [22]. The adam training
function (derived from an adaptive moment estimation),
which is a modification of the scaled conjugate gradient
function, has excellent convergence for multilayer neural net-
works [23]. Therefore, the adam training function was used
to minimize MSE. The structure of the network needs to be
designed, including the number of hidden layers of network
and the number of neurons in each hidden layer. The optimal
hyper-parameters of DNN were determined by trial and error
or a Bayesian optimization.

3.4. Bayesian optimization

Compared with trial and error methods, such as a grid
search, that take significant time and cannot guarantee optim-
ization of the network hyper-parameters, Bayesian optimiza-
tion is a method to automatically determine the optimal hy-
per-parameters of the neural network [24]. The algorithm it-
erates the following steps: (1) establish the surrogate model
for the objective function; (2) determine the hyper-paramet-
ers that perform best in the surrogate model; (3) evaluate the
performance of the objective function with the optimal hy-
per-parameters in Step (2); (4) update the surrogate model;
(5) repeat Steps (2)~4) until the stop condition is reached.
Bayesian optimization samples trial points sequentially, and
each trial point is sampled utilizing all of the information in
the history; specifically, what will be sampled next is actu-
ally determined by the previous samples [25].

The Bayesian optimization is used to find the model hy-
per-parameters that produce the best score on the measure of
validation data. The objective function can be written as Eq.
A3
X" =argming (x), x€ X 3)
where x is the hyper-parameter that can be real, integer, or
categorical, x* is the best hyper-parameter of the model, ¢ is
the objective function, and X is the search space of x. Gener-
ative models of the Gaussian process were selected as the
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surrogate.

The expected improvement was selected as acquisition

function because of its intuitive and good performance [26].
The expected improvement provides a combination that suc-
cessfully balances between local and global search, which
evaluates the expected improvement of the objective func-
tion and ignores values that may increase the objective func-
tion. The expected improvement acquisition function finds
the next hyper-parameter solutions with high variance and
high mean value. The expected improvement can be ex-
pressed as Eq. (4),
p(x) = E(max (0,¢ (x) — Ppes) “)
where x is the hyper-parameter of the model, ¢ is the cur-
rent best objective function value, E is the expected value,
and u (x) is the value of the acquisition function. The degree
of improvement is the difference between the objective func-
tion value at the sampling point value and current optimum
value. If the objective function value at the sampling point
value is less than the current optimum value, the improve-
ment function is zero [27].

4. Establishment of a prediction model for im-
pact energy

4.1. Data preparation

As the sample thickness of the low carbon steel has three
specifications, the number of data with different sample
thickness specifications distributes unbalance. Establishing a
model based on these data will make the model accurate in
some areas but inaccurate in others. For the model to learn all
of the impact energy information, the impact energy of low
carbon steel was presented as a natural logarithm to improve
its distribution. Fig. 3 compares the original and transformed
impact energy data distribution. The three peaks correspond
to the impact energy of three thicknesses. The max fre-
quency of the impact energy data is different for the samples
with different thicknesses, while after the data is transformed,
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Fig. 3. Comparison of the (a) original and (b) transformed impact energy data distribution.
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the distribution of the data improves.

Before modeling, all of the variables were normalized to
[0, 1] by Eq. (5) to eliminate the different magnitudes of the
variables and accelerate the training efficiency,

Xi - ijn
Xmax - Xmin (5)
where X7 is the normalized data, X; is the original data, and
Xuin and X, are the minimum and maximum of the original

norm __
Xpom =

data. The correlation coefficient of each variable is shown in
Fig. 4. The dataset was divided into three parts: 70% of the
data (5051) was selected as training data, 15% of the data
(1080) was selected as validation data, and the remaining
15% of data (1080) was selected as testing data. Chemical
compositions and process parameter variables were selected
as input variables, and the impact energy was selected as an
output variable.

1.0

Correlation coefficient

RIS |

4.2. Training model

The effects of the activation function, training algorithm,
and network structure parameter on the network perform-
ance were investigated to train the impact energy prediction
model of low carbon steel. For a shallow neural network, dif-
ferent activation functions were used to train the network,
such as the “tanh,” “sigmoid,” and “purelin” for the three-
layer network and “sine,” “sigmoid,” and ‘“hardlim” for
ELM. “trainbr,” “trainlm,” and “trainscg” functions were ap-
plied as the training function of the three-layer network. The
numbers of hidden layers and neurons in each hidden layer
were selected by the network performance on the validation
data. For the three-layer neural network, the number of hid-
den layer neurons ranged from 2 to 20. For ELM, the num-

ber of hidden layer neurons ranged from 2 to the number of
input variables. A trial and error method was applied to de-
termine the best performance neural network [28]. In the
three-layer neural network, to prevent the overfitting of the
network, a L2 regularizer was applied. The training epoch
was set to 2000.

For DNN, the activation functions commonly used to train
the network are “tanh,” “relu,” and “leaky relu.” The train-
ing function parameters of adam remained as the default. To
determine the structure parameters of the network, the optim-
al model selection was achieved by grid search for DNN by
combining different numbers of hidden layers and neurons in
each hidden layer. In our work, the number of hidden layers
ranged from 1 to 4 and the number of neurons in each hidden
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layer was set to 25, 50, 75, or 100. During DNN training, the
learning rate was a hyper-parameter that determined the cal-
culation efficiency, which was set to 0.001 [29]. The number
of epochs for network training was set to 2000. Considering
that the traditional grid search can only choose good hyper-
parameters rather than the best hyper-parameters for DNN,
our research applied Bayesian optimization to realize the hy-
per-parameter optimization. During the process, the real ob-
jective function was the MSE of the ANN on the validation
data. The hyper-parameters to be determined included the ac-
tivation functions, such as “tanh,” “relu,” and “leaky relu,”
and the number of neurons in each hidden layer ranged from

Shallow neural network

I Impact energy prediction of low carbon steel \,

- Deep neural network
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2 to 100. Models with the number of hidden layers ranging
from 1 to 4 were optimized. The max evolution epoch of the
Bayesian optimization was set to 250. The other hyper-para-
meters remained as default.

For all of the shallow neural networks and DNN, each
model was trained three times to avoid the effect of the initial
weights on the network performance. All of the models in-
vestigated in this research are shown in Fig. 5. There are a
total of 16 neural network models for predicting the impact
energy of low carbon steel including a shallow neural net-
work and DNN with different activation functions and train-
ing functions.

trainbr + tanh
trainbr + sigmoid
trainbr + purelin
|/ trainlm + tanh
~'The three layer neural network .; trainlm + sigmoid
=j trainlm + purelin
trainscg + tanh
trainscg + sigmoid

trainscg + purelin

least square + sine
“ Extremely learning machine ¢ least square + sigmoid

least square + hardlim

Deep neural network + Bayesian optimization
adam + leaky relu
Deep neural network <—adam + relu

adam + tanh

Fig.5. Models investigated in this research.

The validation data were used to avoid overfitting of the
neural network with training data. The prediction accuracy of
the model with validation data was compared to select the
best performance model. Here, the correlation coefficient and
MSE were applied to evaluate the performance of all of the
models, which could be written as Egs. (6) and (2) [30],

N

VI (- 1) 52 (- P
where P is the predicted Akv value of neural network, and M
is the measured Akv value; P and M represent the mean val-
ues of the predicted and measured Akv values, respectively;
N is the number of data.

Figs. 6 and 7 show the R and MSE values of all the shal-
low neural network models on the validation data. For the
models with the same structure, the prediction results of the
three-layer neural network models with training data and val-
idation data are quite different, while the differences among
the prediction results of the ELM model with training data
and validation data are not obvious. For the three-layer neur-

(6)

al network with training function of “trainbr,” with an in-
crease in the number of hidden layers, the prediction error of
the model on the training data decreases gradually, and the
prediction error in the validation data decreases first and then
increases. The increasing prediction error in the validation
data indicates the network is over fitted. When the number of
hidden layer neurons is six, the network performs best with
the highest R and lowest MSE. The optimal number of hid-
den layer neurons in other shallow neural networks can be
determined in this way.

Fig. 8 shows the change in the minimum objective values
with iterations. As the iterations increase, the mean objective
value decreases and finally reaches 0.004936. The prediction
results of the DNN models combined with different hyper-
parameters were also evaluated. The optimal structure para-
meters of each network can be determined using these pre-
diction results.

The prediction results of each best performance model are
shown in Table 1. All of the models with optimal hyper-para-
meters and performance are presented. DNN produces lower
MSE and higher R values than the shallow neural network in
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both training data and validation data. To determine the op-
timal hyper-parameter combination, a Bayesian optimization
algorithm has more advantages than a grid search to realize
hyper-parameter fine tuning. The three hidden layer network
with activation function of “leaky relu” achieves the best
performance with R of 0.9655 and MSE of 0.004936 using
the Bayesian optimization algorithm.

5. Results and analyses

For a comparative analysis of all of the models, the testing
data was used to test the performance of the model. Fig. 9
compares the predicted Akv values with the measured Akv
values of all of the models. The red diagonal line in the fig-
ure indicates that the predicted value is equal to the measured

Int. J. Miner. Metall. Mater., Vol. 28, No. 8, Aug. 2021

value, and the points on this line mean that a high accuracy is
achieved. All of the models have good accuracy.

To further quantify the model prediction error, R was used
to measure the fit performance of the model. MARE and
RMSE were applied to evaluate the model prediction accur-
acy, which can be calculated by Egs. (7) and (8) [31-32].

1 N |P;i—M;
MARE:NZi:I : ‘

M
N 2
Zi:l(’;:’]_ Mi) (8)

Fig. 10 shows the R, MARE, and RMSE values of all of
the models with testing data. The R of the three-layer neural
network is better than that of ELM. DNN performs better
than the shallow neural network. The Bayesian optimization
DNN achieves the highest R value of 0.9536, lowest MARE
0f 0.0843, and lowest RMSE of 17.34 J to predict the impact
energy of low carbon steel.

Fig. 11 shows the box plot of the prediction errors of all of
the models with testing data. As shown by the median line,
the prediction errors of Model 13 and Model 14 show a large
offset from zero, which may be derived from the rectified lin-
ear units “relu” and “leaky relu.” Among all of the models,
Model 1, Model 5, Model 7, Model 8, and Model 16 show
small offsets. When considering the interval of 10%—90%,
Model 2 and Model 16 show narrow ranges with values of 39
Jand 39.52 J, respectively. Therefore, Model 16 performs the
best.

In order to further compare the prediction error distribu-
tion of each model, the hit rates of all of the models are listed

)

RMSE =

Table 1. Prediction results of the best performance models
Train Validation
Model h m
R MSE R MSE
ANN + trainbr + tanh 0.9683 0.004519 0.9651 0.004992 1
ANN + trainbr + sigmoid 0.9666 0.004758 0.9644 0.005089 1 5
ANN + trainbr + purelin 0.9576 0.006008 0.9591 0.005813 1 18
ANN + trainlm + tanh 0.9682 0.004526 0.9646 0.005055 1 16
ANN + trainlm + sigmoid 0.9650 0.004985 0.9642 0.005106 1 20
ANN + trainlm + purelin 0.9577 0.005998 0.9594 0.005770 1 16
ANN + trainscg + tanh 0.9626 0.005311 0.9633 0.005229 1 10
ANN + trainscg + sigmoid 0.9637 0.005166 0.9631 0.005260 1 13
ANN + trainscg + purelin 0.9554 0.006316 0.9586 0.005887 1 19
ELM + sigmoid 0.9557 0.006264 0.9581 0.005948 1 48
ELM + sine 0.9484 0.007277 0.9490 0.007219 1 48
ELM + hardlim 0.9179 0.011401 0.9206 0.011066 1 51
DNN + leaky_relu 0.9744 0.003805 0.9660 0.005042 4 100, 25, 25, 100
DNN + relu 0.9738 0.003784 0.9648 0.005105 2 50,75
DNN + tanh 0.9731 0.003867 0.9654 0.004969 4 75,75,25,25
DNN + Bayesian optimization 0.9696 0.004341 0.9655 0.004936 3 33,9,33

Note: ~—Number of hidden layers; m—Number of hidden layer neurons.
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Fig. 10. R, MARE, and RMSE values for all of the models.

in Table 2. The hit rates of £10, £20, £30, +40, and +50 J
were calculated. The DNN models generally achieve a high-
er hit rate than ANN or ELM models. By using the Bayesian
optimization method to determine the optimal hyper-para-
meter combination, a good performing DNN model was es-
tablished with a hit rate of 91.20% and an absolute error of

The sensitivity analysis of variables [33] was performed to

investigate the influence of process parameters on the impact
energy prediction of low carbon steel. As the Bayesian op-

timization DNN model

was considered to be the most suc-

cessful model in predicting the impact energy of low carbon
steel, the sensitivity analysis of the process parameters was
investigated based on the optimal DNN model. The mean im-
pact value (MIV) was applied to calculate the variable sensit-
ivity. MIV is an indicator used to determine the influence of
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Fig. 11. Box plot of the prediction errors of all of the models with testing data.
Table 2. Hit rates of the models
Hit rate / %
Model
+10J +20J +301J +40J +5017]
ANN + trainbr + tanh 57.41 81.02 90.46 95.83 97.78
ANN + trainbr + sigmoid 54.07 81.20 90.19 95.74 98.33
ANN + trainbr + purelin 53.98 77.04 88.70 95.46 97.31
ANN + trainlm + tanh 56.20 79.91 91.02 95.83 98.15
ANN + trainlm + sigmoid 54.81 78.80 90.00 96.20 98.06
ANN + trainlm + purelin 52.59 76.76 89.35 94.91 97.22
ANN + trainscg + tanh 53.15 77.69 89.17 94.44 97.87
ANN + trainscg + sigmoid 55.65 80.37 90.56 95.28 98.24
ANN + trainscg + purelin 52.50 76.39 88.61 94.63 97.50
ELM + sigmoid 50.46 75.28 86.85 93.43 96.76
ELM + sine 48.89 73.33 86.30 92.78 95.83
ELM + hardlim 38.98 64.54 78.52 87.31 92.31
DNN + leaky relu 55.28 79.35 90.28 95.09 97.87
DNN + relu 56.30 79.54 91.02 96.30 98.15
DNN + tanh 55.93 79.81 91.57 95.93 97.96
DNN + Bayesian optimization 57.78 79.07 91.20 96.02 98.52

input variables on output variables. The absolute value rep-
resents the relative importance of the influence. After net-
work training, each independent variable in the training data-
set D increased or decreased 10% on the basis of its original
value to form two new training datasets D, and D,. The pre-
diction results, R, and R,, were obtained using the training
datasets D, and D,, respectively. The mean difference

0.030

between R, and R, is the importance of the independent vari-
able. In this way, MIV was calculated using Eq. (9) [34],
MIV =|R, - Ry|/N ©
The analysis results of the process parameter variable im-
portance for a sample thickness of 7.5 mm are shown in Fig. 12.
Under the current process, the main factors affecting the im-
pact energy are the thickness of the original slab (RRH2,

0.025 +

RRH2

0.020

Importance

< o
= =
= =
S w

0.005

0

Variable

Fig. 12. Analysis results of the process parameter variable importance for a sample thickness of 7.5 mm.
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RRH1), the thickness of the intermediate slab (RRHS), and
the RRT. RRH2 and RRHI1 reflect the influence of the ori-
ginal thickness of the strip on the final impact toughness. For
the same product thickness, the thicker the original thickness
of the strip, the lower the impact toughness. RRHS reflects
the thickness of the intermediate slab. For the same product
thickness, the larger the thickness of the intermediate slab,
the more serious band structure and inclusions that appear in
the center of the strip, which will reduce the impact energy.
The basic reason for the formation of the ferrite pearlite ban-
ded structure is the dendrite segregation of manganese, sul-
fur, and other elements during the solidification of steel.
Secondly, the cooling rate and size of austenite grains are
also important factors for the formation of the banded struc-
ture. The RRT directly affects the finish rolling entry temper-
ature. If the finish rolling entry temperature is greater than the
recrystallization termination temperature of the slab, part re-
crystallization will occur during finish rolling, resulting in a
mixed crystal microstructure and finally decreasing the im-
pact energy of the steel.

6. Conclusions

(1) The impact energy prediction model of low carbon
steel was investigated based on the industrial data of chemic-
al compositions, process parameters, and properties. Differ-
ent activation functions, structure parameters, and training
functions of the three-layer neural network, ELM, and DNN
were compared. The results show that all of the models pro-
duce high accuracy predictions, excluding ELM with an ac-
tivation function of “hardlim.” The DNN produces better
prediction results than the shallow neural network, poten-
tially because the multiple hidden layers improve the learn-
ing ability of the model.

(2) Bayesian optimization can be applied to optimize the
hyper-parameters in a DNN. It is helpful to determine the op-
timal hyper-parameters faster than using a trial and error
method. The Bayesian optimization DNN achieves the
highest R of 0.9536, lowest MARE of 0.0843, and lowest
RMSE of 17.34 J for predicting the impact energy of low car-
bon steel. The hit rate of the model is 91.20% with an abso-
lute error of 30 J.

(3) The model with the best performance was applied to
investigate the importance of process parameter variables on
the impact energy of low carbon steel with a final thickness
of 7.5 mm. Among all of the variables, the main factors af-
fecting the impact energy are the thickness of the original
slab, the thickness of the intermediate slab, and the RRT of
the specific hot rolling production line.
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