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Abstract: Flower-like ZnO microstructures were successfully produced using a hydrothermal method employing ZnSO,/(NH,4),SO, as a raw
material. The effect of the operating parameters of the hydrothermal temperature, OH /Zn*" molar ratio, time, and amount of dispersant on the
phase structure and micromorphology of the ZnO particles were investigated. The synthesis conditions of the flower-like ZnO microstructures
were: hydrothermal temperature of 160°C, OH /Zn*" molar ratio of 5:1, reaction time of 4 h, and 4 mL of dispersant. The flower-like ZnO mi-
crostructures were comprised of hexagon-shaped ZnO rods arranged in a radiatively. Degradation experiments of Rhodamine B with the
flower-like ZnO microstructures demonstrated a degradation efficiency of 97.6% after 4 h of exposure to sunshine, indicating excellent pho-

tocatalytic capacity. The growth mechanism of the flower-like ZnO microstructures was presented.
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1. Introduction

Microscale and nanoscale materials are of great interest
because of their optical, catalyzing, and thermotic character-
istics that are different from their bulk form [1-2]. ZnO is a
promising material and widely applied in the fields of ceram-
ics, pigments, rubbers, photocatalysis, and semiconductors
[3-4]. To date, many methods have been employed to syn-
thesize ultrafine ZnO, among which the hydrothermal meth-
od is an effective and simple technology for synthesizing
ZnO with good crystallinity, controllable morphology, and
narrow size distribution [5-8]. In a hydrothermal environ-
ment, ultrafine ZnO is self-assembles to produce a homogen-
ous structure [9-10]. In addition, hydrothermal synthesis is a
valuable method for the preparation of CuO and ZnFe,0O,
nanostructures because of the control within the method and
ability to produce a well-defined size [11-12]. Furthermore,
the formation of three dimensional ZnO structures with ex-
cellent performance and a large specific surface area is the
key to improvement [7].

In the most recent decade, dye waste pollution character-
ized by its high toxicity, and difficult degradation even at low
concentration has become a serious problem worldwide be-
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cause of rapid urbanization and development of the textile in-
dustry [13—14]. Various efforts, such as flocculation, mem-
brane separation, absorption, and biodegradation, have been
attempted to resolve and alleviate this pollution [15-16].
However, none completely eliminated the pollutants without
additional limitations [16—17]. For example, membrane sep-
aration has high efficiency, but the operating cost is high
[16-18]. Absorption is a low-cost and effective method, but
the difficulty in recycling and the absorption capacity of the
absorbents limit its application [16—18]. Photocatalysis is a
promising solution because it can effectively oxidize a large
amount of organic contaminants into relatively harmless in-
organics [17,19-20]. Various metal and multi-metal oxides,
such as TiO,, Fe, 05, CuO, SnO,, ZnO, WO;, BiVO,, and
Bi,WO,, have been used in photocatalytic degradation
[21-27]. Among them, ZnO is a crucial semiconductor with a
band gap width of 3.37 eV and a high exciton binding energy
of 60 meV [28]. Additionally, ZnO as a photocatalyst has ad-
vantages of high photosensitivity, controllable morphology,
low-cost, and environmental friendliness [29-30]. Thus, ZnO
receives considerable attention and it is universally accepted
that ZnO particles with a three-dimensional structure exhibit
better photocatalytic activity [31-32]. Polymeric and ceram-
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ic membranes filled with ZnO nanostructures and pure ZnO
membranes prepared using ZnO nanowires and nanotubes
have been created and used in water treatments to eliminate
organic pollutants, even heavy metal ions [7]. Additionally,
ZnO nanostructures have potential in the fields of optoelec-
tronic devices and dye-sensitized solar cells [8].

Although there are many efforts to enhance the photocata-
lytic properties of ZnO, including morphology control, non-
metallic and metallic elements/oxides doping/ coupling, and
surface modification. However, there are two inevitable
problems, the corrosion resistance of the ZnO photocatalyst
and difficult recovery. Furthermore, the commonly used raw
materials are Zn(Ac), and Zn(NOs), with polyethylene glycol
(PEG) as the dispersant. ZnSO, and zinc oxidized ore are
rarely used. In order to address these drawbacks and realize
the comprehensive utilization of zinc oxidized ore, a system-
atic investigation was conducted including zinc extraction,
ZnO particle preparation, preparation of a corrosion-resistant
film coating, and formation of magnetic core-shell compos-
ites. The objective of this work was to synthesize flower-like
ZnO microstructures, evaluate the photocatalytic degrada-
tion capability by degrading Rhodamine B (RhB) in sun-
shine, and to provide reference data for the evaluation of the
photocatalytic performance and potential of the composites.

2. Experimental
2.1. Materials

The ZnSO,/(NH,),SO, solution used as a raw material was
obtained from zinc oxidized ore after multiple processing se-
quences of mixing with (NH,4),SO,, roasting, water leaching,
and removal of Fe and Al. The main components in the zinc
oxidized ore (from Lanping) are ZnO (smithsonite and wille-
mite), SiO, (quartz and Zn,SiO,), Fe,0O; (hematite), PbO
(cerusite and anglesite), and CaO (limestone and gypsum) in
contents of 25.36wt%, 21.05wt%, 18.12wt%, 4.70wt%, and
3.39wt%, respectively. The solution was adjusted to a spe-
cified Zn*" concentration of 1 mol-L™". Analytic grade sodi-
um hydroxide and sodium dodecyl benzene sulfonate
(SDBS) were used as the precipitant and dispersant, respect-
ively. The distilled water was homemade.

2.2. Procedure

An equal volume of 70 mL of 1 mol-L™" ZnSO,/
(NH,4),SO, and pre-made 3, 5, and 7 mol-L!' NaOH solu-
tions were poured into a 200 mL Teflon reactor, respectively.
Next, 2, 4, 6, or 8 mL of the SDBS solution with a mass frac-
tion of 5% were added under magnetic stirring. The closed
autoclave filled with a homogeneous mixed solution was
placed in a pre-heated oven ranging from 140 to 180°C hold-
ing for a certain time (2 to 6 h). After the reaction, the auto-
clave was cooled and the slurry was filtered. The product was
washed with distilled water repeatedly and twice with
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ethyl alcohol, dried at 100°C for 10 h to produce the ZnO
powder.

Photocatalytic degradation experiments were performed
under similar conditions on a sunny day from 10:00 to 15:00
on a windowsill. The intensity of the sunshine illumination
was approximately (175-180) x10° Ix. To determine the
amount of ZnO, a 50 mL beaker was used as the reaction ves-
sel. Flower-like ZnO (100 to 400 mg) was mixed with 20 mL
of 10 to 25 mg-L™" RhB solution, magnetically stirred for 20
min under darkness prior to testing, and then exposed to sun-
shine within 4.5 h. For the exposure time study, 50 mL solu-
tions with appropriate ZnO powder were consumed in each
test. Samples of 3—5 mL were collected and centrifuged at
preset time intervals of 0.5 h. The absorbency of the diluted
filtrates was measured three times and the average value was
obtained.

3. Results and discussion
3.1. Influence of the hydrothermal temperature

The influence of the hydrothermal temperature on the
phase structure and micromorphology of the ZnO powder
under conditions of a OH /Zn** ratio of 5:1, a time of 4 h, and
4 mL of SDBS solution was studied, as shown in Fig. 1. The
X-ray diffraction (XRD) results in Fig. 1(a) show that the po-
sition and intensity of the diffraction peaks were consistent
with a hexagonal wurtzite structure (JCPDS files No.
361451) with good crystallinity. The influence of the temper-
ature on the ZnO phase structure was negligible, but the ef-
fect on the morphology was significant. Flower-like ZnO ob-
served by scanning electron microscopy (SEM) was recor-
ded in Figs. 1(b) and 1(c), but that ZnO in Fig. 1(c) was more
regular with an average particle size of 3 um that was com-
prised of ZnO rods 2 um in length oriented radiatively. The
ZnO particles obtained at 180°C were hexagonal prisms and
no flower-like structure was observed. The increased temper-
ature promotes more regular flower-like ZnO structures.
However, the excessive temperature enhances the excessive
growth of ZnO rods, resulting in the destruction of the
flower-like structures. To this end, a temperature of 160°C
was used for further study.

3.2. Influence of the OH /Zn?" ratio

The effect of the OH /Zn*" molar ratio on the phase struc-
ture and micromorphology of the ZnO particles was studied
under conditions of 160°C, a time of 4 h, and 4 mL of SDBS
solution. As shown in Fig. 2, flower-like ZnO with a
hexagonal wurtzite structure was prepared. Flower-like ZnO
structures prepared at a OH /Zn*" ratio of 3 (Fig. 2(b)) were
composed of inhomogeneous flake and rod-like particles.
The flower-like structures prepared at a OH /Zn*" molar ratio
of 5:1 (Fig. 2(c)) were more regular and uniform than that at a
ratio of 3 (Fig. 2(b)). The ZnO rods grew radiatively to pro-
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Fig. 2. XRD patterns (a) and SEM images of ZnO powders prepared at OH /Zn*' ratio of (b) 3, (c) 5, and (d) 7.

duce a flower-like structure. The ZnO rods grew larger with
increasing OH /Zn*>" ratio. At a OH/Zn*" ratio of 7:1, the
ZnO rods grew too large such that the flower-like morpho-
logy was destructed, leaving residual (Fig. 2(d)). The
OH /Zn* molar ratio had a significant effect on the ZnO

morphology. The strong polarity of the NaOH solution in-
creases with an increase in the OH /Zn*" molar ratio and the
self-organizing growth ability of the ZnO particles was en-
hanced [1]. As a result, a OH /Zn*" molar ratio of 5:1 was
chosen.
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3.3. Influence of the hydrothermal time

The experiments to evaluate the influence of the hydro-
thermal time on the phase structure and micromorphology of
ZnO were performed at 160°C, a OH /Zn*" ratio of 5:1, and 4
mL of SDBS solution, as shown in Fig. 3. All of the ZnO
particles had a hexagonal wurtzite structure. Flower-like ZnO
microstructures were observed in Figs. 3(b) and 3(c). Though
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3.4. Influence of the amount of dispersant

The effect of the amount of dispersant on the phase struc-
ture and micromorphology of the ZnO powder evaluated at
160°C, a OH /Zn*" ratio of 5:1, and a time of 4 h is shown in
Fig. 4. The ZnO powders are a hexagonal wurtzite structure.
ZnO particles obtained with 2 mL of SDBS solution were ag-
glomerated flake particles (Fig. 4(b)). The ZnO particles in
Fig. 4(c) exhibited irregular cluster-like structures with un-
even rod sizes. Regular flower-like ZnO microstructures
were observed in Fig. 4(d), but the ZnO rod length varied
from 1 to 5 um. As an anionic surface active agent, SDBS
(C,5H,0S0sNa) can form bundles of micelles and release Na*
in solution. Negatively-charged bundles of micelles are at-
tracted to the positively-charged Zn*" in solution, which may
affect the dehydration of Zn(OH)?~ and promote ZnO rod
growth agglomeration, leading to uniform growth of ZnO
crystals. Excessive dispersant promotes ZnO rod growth so
that the uniform flower-like structures are destructed. As a
result, 4 mL of the SDBS solution was chosen.

Opverall, the parameters for preparing flower-like ZnO mi-
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the ZnO particles in Fig. 3(b) were flower-like and com-
posed of short rod-like particles, the ZnO was still growing.
The flower-like ZnO in Fig. 3(c) was regular. A long hydro-
thermal time produced adequate growth of ZnO rods. The

micro-rods growing for 6 h were too long, overgrowing the
flower-like structures and producing crossed rods (Fig. 2(d)).
As a result, a time of 4 h was chosen.

crostructures were a hydrothermal temperature of 160°C, a
OH /Zn* molar ratio of 5:1, a time of 4 h, and 4 mL of a 5%
mass fraction SDBS solution.

3.5. Photocatalytic capacity of ZnO

The photocatalytic capacity of flower-like ZnO was ex-
amined by altering the ZnO amount and adjusting the RhB
concentration. Fig. 5(a) displays the relationship between the
degradation efficiency of RhB and exposure time by degrad-
ing 20 mL of the 10 mg-L™" RhB solution with different
amounts of ZnO. The unchanged RhB in darkness without
ZnO shows that the self-degradation of RhB is inappreciable.
Prolonged exposure time promotes the degradation effi-
ciency of RhB. The degradation efficiency of RhB increases
within the first 300 mg of ZnO and then decreases with more
ZnO. The degradation efficiency of RhB reached a maxim-
um value of 97.2% when the ZnO additive amount was
300 mg.

Under sunlight, the oxidizing reaction mainly occurs on
the interface between ZnO active sites and RhB molecules
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Fig. 4. XRD patterns (a) and SEM images of ZnO powders prepared at SDBS amount of (b) 2 mL, (¢) 6 mL, and (d) 8 mL.

100

100} @
X
> 80F
Q
5
Q
= 60+
z —=— 0mg
2 —o— 100 mg
5 40 —— 200 mg
s —v— 250 mg
& —— 300 mg
/20 — 350mg
—— 400 mg
0 » » » - . » - . ]
0 1 2 3 4 5

Time / h

(b)

o 90+

=

2 80t

8

2}

k= 70l —=— 10.0 mg-L™"!
£ —— 125 mg-L"!
g —4— 15.0 mg:L™!
T 60r —v— 17.5mgL"
ob —— 20.0 mg:L"!
A st — 25.0mgL"

40 1 1 1 1
0 1 2 3 4 5

Time / h

Fig. 5. Relationships between the degradation efficiency of RhB and time at different (a) ZnO amounts and (b) RhB concentrations.

because of the close contact [2,13]. Excessive addition of
ZnO reduces the light transmittance and decreases the pho-
tocatalytic efficiency. Fig. 5(b) presents the relationship
between the degradation efficiency of RhB and exposure
time within 4.5 h by adding 300 mg of ZnO powder to 20 mL
of the RhB solution with different concentrations. By in-
creasing the concentration of RhB, the degradation ratio first
increases slightly and then decreases. The degradation effi-
ciency of the RhB solution with a concentration of 15 mg-L™
is remarkable and up to 97.6% with the addition of 300 mg of
ZnO to 20 mL of a 15 mg-L™' RhB solution. Under the same
conditions, the degradation efficiencies of 10 and 12.5
mg-L™' RhB were nearly the same, reaching 97.2%. An ex-
cess of RhB reduces the light transmittance and even covers
the active sites on the ZnO particle surface such that the pho-

tocatalytic efficiency of RhB is less. When the concentration
of RhB is 25 mg-L"', the degradation efficiency is only
85.4%. Flower-like ZnO demonstrates the available pho-
tocatalytic activity in sunshine.

UV-Vis absorption spectra and photoluminescence (PL)
spectra of the flower-like ZnO microstructures were recor-
ded at room temperature, as shown in Fig. 6.

As shown in Fig. 6, all of the flower-like ZnO structures
show exciton absorption at a wavelength of 288 nm. In Fig.
6(a), a conspicuous mutation in the absorption curve of
flower-like ZnO at 382 nm is observed, which may be attrib-
uted to the intrinsic band gap absorption because of electron
transitions from the valence to conduction band [33-34].
However, it is relatively weak for flower-like ZnO structures
growing and destructed structures at 380 and 377 nm, re-
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Fig. 6. UV-Vis adsorption spectra (a) and PL spectra (b) of the flower-like ZnO microstructures (al in a is the estimated band gap;

a is adsorption coefficient, v is photon energy).

spectively. The estimated band gap energies were approxim-
ately 3.04, 3.14, and 3.20 eV for the flower-like ZnO struc-
tures, flower-like ZnO structures growing and destructed, re-
spectively. All of the calculated band gap energies were less
than the theoretical band gap value of 3.37 eV, which may be
because of impurity doping from the ZnSO,/(NH,),SO, solu-
tion used in the synthesis [34]. In the PL spectra obtained
with an excitation wavelength of 325 nm, there is a strong
UV emission at 395 nm for all of the flower-like ZnO struc-
tures because of the near band edge emission [34]. The emis-
sion peaks at 419 and 487 nm in the visible region may be as-
signed to deep level emission because of the oxygen and zinc
vacancies [34]. The flower-like ZnO microstructures may
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serve as UV light-emitting materials; however, the emission
peak at 487 nm is not clear for growing flower-like ZnO
structures.

The stability of the flower-like ZnO was tested over four
cycles and within 60 d of preserved time. As shown in Fig.
7(a), the photocatalytic activity is relatively stable and a
slight decrease of 3.5% in the photocatalytic efficiency was
observed after four cycles. There was no significant differ-
ence in the RhB photocatalytic efficiency of ZnO powder
preserved within 30 or 60 d (Fig. 7(b)). However, a decrease
of 3.3% was observed with the ZnO powder preserved for
60 d, which may be attributed to the agglomeration caused by
absorbing moisture.
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Fig.7. Relationships between the degradation efficiency of (a) RhB and cycle number and (b) RhB and exposure time by ZnO pre-

served for up to 60 d.

3.6. Growth mechanism and photocatalytic mechanism

Fig. 8 shows the SEM image and Energy dispersive X-ray
spectroscopy (EDS) pattern of the tips of the ZnO rods. The
polar growth of the ZnO rods was obvious as observed by the
stepped surface. The EDS pattern confirms Zn and O are the
main elements. The Au is from the gold coating applied for
imaging. No other elements were detected.

Nucleation and crystal growth are the two stages of crys-
tal formation [1,4]. For flower-like ZnO, the formed ZnO

nuclei grew to granulum crystals driven by surface energy.
Granulum crystals in a supersaturated solution dynamically
grow to larger particles. The (001) plane is the close packed
plane in the hexagonal system, where growth along the c-ax-
is is energy efficient [4,9]. Furthermore, the positive polar
plane of the polar crystal ZnO is Zn** dominant and the neg-
ative plane is O dominant [1,4]. The top surfaces were Zn
terminated and active, resulting in ZnO rods growing radiat-
ively [1]. Furthermore, the negatively-charged bundles of mi-
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Fig. 8. SEM image (a) and EDS (b) pattern of the ZnO rod.

celles released by SDBS were attracted with the positively-
charged Zn™, affecting the dehydration of Zn(OH);~ and
promoting ZnO rod growth in bunches to form flower-like

ZnO crystals. The growth of ZnO powder can be simply de-
scribed by Egs. (1)~(4) [1,4]. The growth process of flower-
like ZnO crystals is schematically described in Fig. 9.
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Fig.9. Schematic of the growth of flower-like ZnO crystals.

Zn(CH;C0O0), — Zn** + 2CH;CO0" (1)
Zn** +20H™ — Zn(OH), )
Zn(OH), + 20H™ — Zn(OH)?" 3)
Zn(OH)2™ — ZnO +H,0 + 20H" )

The most energetically active surfaces with terminated
Zn*" have many active sites, which are beneficial to pho-
tocatalysis. Moreover, the flower-like morphology with a
large specific surface area can effectively prevent particle ag-
glomeration, which also contributes to photocatalysis [2].
The major active species of *OH radicals have strong oxidat-
ive ability and can oxidize RhB into CO, and H,O [16-17].
Chang et al. [35] evidenced the characteristics of *OH radic-
als by electron paramagnetic resonance (EPR) spectroscopy
employing  5,5-dimethylpyrroline-V- oxide (DMPO).
Moreover, the *OH radicals generated on various photocata-
lysts were quantitatively investigated by Xiang et al. [36].
Under irradiation, excited electrons (¢”) and holes (h") in the
valence band were obtained by absorbing photons with en-
ergy greater than the band gap. The combination of the holes

with H,O and —OH generate *OH radicals, which enhances
the photocatalytic reaction, leading to high photocatalytic

activity [17,37-38]. The photocatalytic equations are
[10,15,37-38]:

ZnO +hv(UV) - ZnO(h* +e7) %)
h* +H,0 — ¢OH +H* (6)
OH +h" — «OH (7
h*/eOH +Rhb — CO, + H,0 ®)

4. Conclusions

(1) All of the conditions of hydrothermal temperatures,
OH /Zn*" molar ratios, time, and amount of dispersant had
obvious effects on the micromorphology of the ZnO
particles. Flower-like structures were destructed when the
hydrothermal temperature, OH /Zn*" molar ratio, and hydro-
thermal time were too high. The parameters for synthesizing
flower-like ZnO microstructures were a hydrothermal tem-
perature of 160°C, a OH /Zn*" ratio of 5:1, a time of 4 h, and
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micelle action with 4 mL of a 5% mass fraction SDBS solu-
tion.

(2) The synthesized flower-like ZnO had a hexagon
wurtzite structure and showed photolytic activity to degrade
RhB with an efficiency of 97.6% under sunshine exposure
for 4 h. The formation of flower-like ZnO structures involves
the formation and dehydration of Zn(OH);~, nucleation, and
growth of ZnO crystals. The energetically active surfaces of
ZnO rods provide active sites benefiting photocatalysis.
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