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Abstract: Natural magnetite formed by the isomorphism substitutions of transition metals, including Fe, Ti, Co, etc., was activated by mechan-
ical grinding followed by H2 reduction. The temperature-programmed reduction of hydrogen (H2-TPR) and temperature-programmed surface
reaction of carbon dioxide (CO2-TPSR) were carried out to investigate the processes of oxygen loss and CO2 reduction. The samples were
characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy
(EDS). The results showed that the stability of spinel phases and oxygen-deficient degree significantly increased after natural magnetite was
mechanically milled and reduced in H2 atmosphere. Meanwhile, the activity and selectivity of CO2 reduction into carbon were enhanced. The
deposited carbon on the activated natural magnetite was confirmed as amorphous. The amount of carbon after CO2 reduction at 300°C for 90
min over the activated natural magnetite was 2.87wt% higher than that over the natural magnetite.

Keywords: carbon  dioxide  reduction;  natural  magnetite;  isomorphism  substitutions;  grind  activation;  oxygen-deficient  degree;  amorphous
carbon

 

1. Introduction

To some extent, CO2 emission reduction can efficiently al-
leviate the global temperature rise and enable the use of non-
renewable fuels [1]. The approaches for reducing CO2 emis-
sion  mainly  include  reduction  and  capture.  Moreover,  CO2

can  be  reduced  to  various  chemical  high-added-value  fuels
via electrocatalysis, photocatalysis, and thermal catalysis [2].
For the  electrocatalytic  or  photocatalytic  method,  the  reac-
tion can only be carried out under a certain overpotential be-
cause  CO2 molecule  is  extremely  stable.  The  products  are
generally a mixture of gas and liquid containing 1–4 carbons
due to the product selectivity, leading to difficulty in separa-
tion and transport [3−4]. While CO2 capture requires a medi-
um (certain beneficial geographical conditions), it cannot be
widely  adopted,  and  government  support  is  needed  [2].
Therefore, studying CO2 reduction by thermal catalysis with
cheap raw materials is necessary.

Since  the  last  decades,  natural  magnetite  has  attracted
much attention because of its extensive use. It can be used for
drug delivery [5],  degradation of organic pollutants [6], de-
composition of H2O2 [7], and decomposition of CO2 [8−12].
In  the  early  1990s,  Tamaura  and  Tahata  [13]  reported  that

CO2 could  be  completely  decomposed  to  carbon  over  the
oxygen-deficient magnetite Fe3O4−δ (0 < δ < 1) at a low tem-
perature near 300°C. This opened up a new study area of CO2

decomposition  as  an  expected  route  to  address  the  “green-
house effect” resulting from CO2 emission. In a subsequent
work, cation-deficient magnetite (Fe3−δO4,  0.2 > δ > 0) syn-
thesized  by  the  air  oxidation  of  Fe(OH)2 suspensions fol-
lowed  by  H2 reduction,  oxygen-deficient  magnetite,  and
wustite  (Fe1−xO) prepared  by  high-temperature  thermal  de-
composition of iron oxalate (FeC2O4) were used for the reac-
tion of CO2 decomposition [14−15]. The study result showed
that  CO2 could  be  decomposed  to  C  by  nearly  100%  over
these  activated  iron  oxides  at  certain  conditions.  Álvarez-
Torrellas et al. [16] enhanced the catalytic activity of natural
magnetite by thermal treatments. In 2007, CO2 was decom-
posed by mechanically milled wustite or ultrafine magnetite
powders, and the decomposition products were confirmed to
be  graphite,  amorphous  carbon,  and  cementite  (Fe3C)
[17−18],  in  which  granularity  and  phase  composition  were
regulated by tailoring the time and atmosphere of the high-
power  milling  process.  Compared  with  simple  iron  oxides
such as  magnetite  or  wustite,  multi-metallic  ferrites  formed
by isomorphism replacements are expected to produce more 
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crystal defects and therefore provide more activated sites on
their surfaces. Enhancing the ability and recycling stability of
these  iron  oxides  for  CO2 decomposition  is  advantageous.
Thus, multi-metallic ferrites with oxygen deficiency have at-
tracted increasing attention. They are represented by the gen-
eral formula MxFe3−xO4−δ and can be fabricated via H2 reduc-
tion for MxFe3−xO4 compounds, where M is a transition metal,
such as Cu, Co, Ni, Mn, Cr, and Zn, and δ is the reduction de-
gree.  For  instance,  in  previous  studies,  a  series  of  ferrites
MFe2O4 (M = Mn, Zn, Co, Ni, Cr) was prepared and used in
the decomposition of CO2 to C. The result demonstrated that
Ni0.49Cu0.24Zn0.24Fe2O4 possessed a higher activity and stabil-
ity  compared  with  binary  compounds  (Ni,Cu,Zn)Fe2O4

[8−12].  In  addition,  Kim et  al. [19−20]  prepared  ultrafine
(Ni,Zn)Fe2O4 powders using  co-precipitation  and  hydro-
thermal  methods  and  found  that  the  activity  of  the  powder
prepared  by  the  hydrothermal  method  was  higher  than  that
prepared  by  co-precipitation,  which  agrees  with  the  results
reported  by  other  researchers  [21–26].  The  aforementioned
results  show that  the  activity  and  recycling  stability  can  be
significantly improved by mono- or multi-element doping of
the ferrite. Among the dopants, Zn2+, Ni2+, and Cr3+ are pre-
ferred  candidates.  Certainly,  these  oxygen-deficient  ferrites
can  be  synthesized  using  different  chemical  routes.  Only
considering our country the substantive emissions of CO2 are
more  than  2  ×  1010 t  before  in  2000  [27–28],  conventional
preparation methods cannot meet the tremendous demands of
the catalysts used for CO2 decomposition, and they also bring
new pollutants originated from their preparation processes.

Natural magnetite possesses a counter spinel structure, in
which half of Fe3+ and all Fe2+ are located at the octahedral
lattices, with the other half of Fe3+ at the tetrahedral positions.
They  are  formed  by  the  isomorphism substitutions  of  Al3+,
Ti4+, Cr3+, and V3+ for Fe3+ and also the substitutions of Mg2+,
Mn2+, Zn2+, Ni2+, Co2+, and Cu2+ for Fe2+. Natural magnetite is
greatly expected to serve as a catalyst for CO2 decomposition
considering its special structure that is similar to the ferrites
synthesized artificially via a series of complicated chemical
processes.  However,  CO2 decomposition over  natural  mag-
netite has not been sufficiently researched so far.  Hence, in
this study, natural magnetite was mechanically milled and re-
duced in  H2 atmosphere  for  CO2 decomposition.  The study
aims at presenting a facile and “green” approach to fabricate
multi-metallic  ferrites  for  the  reduction  of  CO2 into  carbon
with high selectivity.

2. Experimental
2.1. Materials and process route

Natural magnetite concentrates served as the raw material,
with  the  main  chemical  compositions  (wt%)  of  Fe  51.56,
TiO2 12.73, V2O5 0.564, Co 0.02, Ni 0.013, S 0.53, P 0.004,
SiO2 4.69,  Al2O3 4.69,  CaO  1.57,  and  MgO  3.91.  Prior  to

mechanical milling, the concentrates were dried at 120°C for
12 h. The mechanical milling was performed under air with a
ball-to-sample  mass  ratio  of  15:1  and  a  rotation  speed  of
580 r/min for 6 h. Afterward, the sample was reduced in H2

with a flux of 30 mL/min at 450°C for 90 min. Subsequently,
the sample was cooled to 300°C using N2. Then CO2 reduc-
tion  reaction  on  this  sample  was  carried  out  at  300°C  for
90 min (in situ), with a CO2 flux of 30 mL/min. The mass of
the sample treated by H2 or CO2 was 100 mg. As the control
experiment,  natural  magnetite  without  mechanical  milling
was subjected to H2 reduction and CO2 reduction under the
same conditions.

2.2. Characterization techniques

The  morphologies  of  the  samples  were  observed  using
field emission  scanning  electron  microscopy  (FE-SEM;  In-
spect F, FEI Corporation, Japan). The chemical composition
was analyzed by energy-dispersive X-ray spectroscopy (Inca
350, Oxford Corporation,  UK) coupled with scanning elec-
tron microscopy. The crystal structure was characterized us-
ing a Philips X’Pert PRO diffractometer (Netherlands) with
Cu Kα radiation, employing a step size of 0.03°. The acceler-
ating voltage was set  at  40 kV with  40 mA flux.  The soft-
ware JADE 5.0 was used to index diffraction peaks. The Ra-
man  spectra  were  recorded  with  Lab  Raman  HR-800
(France), excited using 514.532 nm radiation argon ion laser
with a power of 3.9 mW. The infrared radiation (IR, Amer-
ica) spectra were taken on a NEXUS470 spectrophotometer,
using KBr disc and working in the absorption mode. The ex-
perimental conditions in the temperature-programmed reduc-
tion of hydrogen (H2-TPR) process were as follows: 100 mg
sample was embedded in a quartz tube with ϕ6 mm; the redu-
cing atmosphere was pure H2, the flow rate was 50 mL/min,
and  the  heating  rate  was  10°C/min.  The  temperature-pro-
grammed surface reaction of carbon dioxide (CO2-TPSR) ex-
periments  were  conducted  using  the  same  apparatus  as  the
TPR.  The  sample  (100  mg)  was  heated  from  the  ambient
temperature to 850°C with a ramp-up of 10°C/min and CO2

flow rate of 25 mL/min after the natural magnetite (hereafter
denoted as  NM)  and  the  mechanically  milled  natural  mag-
netite  (hereafter  denoted  as  MNM)  were  reduced  in  H2 at
450°C for 90 min with a flow rate of 30 mL/min.

3. Results and discussion
3.1. H2-TPR

The H2-TPR spectra of the natural magnetite without and
with mechanical milling are shown in Fig. 1. For this mag-
netite  without  mechanical  milling,  there  are  two  reduction
peaks, which are located at 466°C and 813°C, respectively.
The peak at 466°C is very weak and corresponds to the re-
duction of iron oxides from a higher valence to a lower one,
while the peak at 813°C is very strong and is ascribed to the
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formation of metallic iron. Correspondingly, for the mechan-
ically milled natural magnetite, the peaks shift to lower tem-
peratures. One obvious peak at 450°C is observed, with the
other peak at 751°C. The initial reduction peak attributed to
oxygen loss is at 373°C for the MNM but at 591°C for the
NM. There  is  a  markedly negative  shift  of  218°C,  as  com-
pared with the NM. Accordingly, to enhance the oxygen-de-
ficient degree as much as possible,  while keeping its spinel
structure  from  destruction,  the  temperature  of  H2 reduction
should be selected as 450°C.
 
 

100 200 300 400 500 600 700 800

591°C
373°C

(b)

(a)

751°C

450°C

813°C

466°C

In
te

n
si

ty
 /

 a
.u

.

Temperature / °C

Fig. 1.    H2-TPR profiles of (a) NM and (b) MNM.
 

3.2. CO2-TPSR

Fig.  2 shows  the  CO2-TPSR spectra  of  the  NM and  the
MNM. The samples were reduced in H2 atmosphere at 450°C
for 90 min and then cooled to  the  ambient  temperature  be-
fore  CO2-TPSR  measurements.  The  intensities  of  CO2 and
CO are  presented  as  black  and  red  lines,  respectively.  It  is
clear that from 150 to 750°C, the CO2 intensity for the MNM
was  significantly  lower  than  that  for  the  NM,  the  gap
between the two samples was the largest at about 300°C and
then slightly decreased with increasing temperature, suggest-
ing that the MNM possesses a higher activity of CO2 reduc-
tion. At 400°C, the CO signals for both specimens were ob-
served.  When  the  temperature  was  further  increased  to
450°C, the signal became more obvious. As a rule, CO2 de-
composition  into  carbon  on  the  oxygen-deficient  magnetite
(Fe3O4−δ, 0 < δ < 1) goes through an intermediate process that
produces CO [22,29–31]. The reaction course can be depic-
ted as follows:
CO2+2e→ CO+O2− (1)

CO+2e→ C+O2− (2)
Moreover, the lower the reduction degree δ, the greater the

amounts  of  CO  [32−33].  As  shown  in Fig.  2,  for  the  two
samples, the CO signal was much lower than the CO2 signal
from 150 to 500°C. Furthermore, from 150 to 687°C, the CO
intensity  of  the  MNM  was  always  weaker  than  that  of  the
NM. By contrary, when using (NixCu1−x)Fe2O4 or M ferrites

(M = Ni and Cu) as the catalyst for CO2 decomposition, the
marked CO intensity, which is close to CO2, is detected with-
in a wider temperature region, and the lower the temperature
the stronger the CO signal [30,34]. Accordingly, it can be in-
ferred  that  for  the  mechanically  milled  and freshly  reduced
natural magnetite, their higher selectivities of CO2 reduction
should be  ascribed to  their  higher  oxygen-deficient  degrees
and isomorphism substitutions of Fe, Ti, V, Co, Ni, and Al.

3.3. Transformation of phase composition

The X-ray diffraction (XRD) patterns of the NM and the
MNM at various stages are illustrated in Figs. 3 and 4. For
the NM, diffraction peaks from Fe3O4, FeTiO3, Mg1.55Fe1.6O4,
and MgFe2O4 are observed, of which Fe3O4 and FeTiO3 are
the  main  crystalline  phases,  and  only  one  compound  of
AB2O4 type (i.e., MgFe2O4) exists besides Fe3O4. After H2 re-
duction,  the  diffraction  peak  of  Mg1.55Fe1.6O4 (JCPDS-80-
0073)  disappears  while  (Co0.2Fe0.8)Co1.2Fe1.2O4 (JCPDS-77-
0426)  phase  appears.  This  increases  the  number  of  spinel
phases, which is beneficial to CO2 decomposition. After CO2

decomposition,  all  diffraction peaks,  which appeared in  the
former  stages,  become  very  weak,  with  disappearances  of
MgFe2O4 and (Co0.2Fe0.8)Co0.8Fe1.2O4 of spinel structure. Sur-
prisingly, a new phase [Fe,Ni] exhibits the strongest signal as
shown in curve (c) in Fig. 3. This suggests that for the NM,
the spinel structure is destroyed greatly after CO2 reduction
reaction. As for the MNM, the phase evolvements at corres-
ponding  stages  are  distinctly  different.  Apart  from  Fe3O4,
MgFe2O4 and  (Co0.2Fe0.8)Co0.8Fe1.2O4 with  AB2O4 spinel
structures occur just after H2 reduction. Note that the metallic
phases of  [Fe,Ni]  and Fe were detected,  while  for  the NM,
the metal  phases were observed only after CO2 decomposi-
tion. Also, the stability of the crystalline structure, especially
for  the  spinel  phases  Fe3O4,  (Co0.2Fe0.8)Co0.8Fe1.2O4,  and
MgFe2O4, was evidently enhanced, while the diffraction peak
of  Fe3O4 phase  for  the  NM  has  become  very  weak  and
markedly  widened,  with  the  latter  two  phases  disappearing
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Fig.  2.      CO2-TPSR profiles  of  the samples reduced at  450°C:
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after CO2 decomposition. Based on the above results, for the
MNM  after  H2 reduction,  its  isomorphism  substitutions  of
multi-metals effectively promote adsorption and decomposi-
tion of CO2 due to the oxygen flooding effect formed on the
surface [29]. Furthermore, the appearance of metallic phases
of [Fe,Ni] and Fe indicates that there is a higher oxygen-defi-
cient degree,  which  conduces  to  heighten  the  reaction  se-
lectivity  of  CO2 decomposition  to  C.  Then,  the  formed  C
could reduce the oxides of Fe or FeNi to metal phase Fe or
[Fe,Ni]. These results are in good agreement with the results
of the H2-TPR and the CO2-TPSR.

3.4. Amounts and phase forms of deposited carbon

The FE-SEM images of the samples reduced in H2 atmo-

sphere at 450°C for 90 min and subsequently oxidized in CO2

atmosphere at 300°C for 90 min (in situ) are shown in Fig. 5.
As shown in Fig.  5(a),  the size distribution of the NM was
very  uneven  and  ranged  from 10  to  180 µm with  irregular
shapes, whereas the MNM (Fig. 5(b)) took a spherical shape
with  an  even  distribution,  whose  particle  diameter  is  about
0.5 µm. Although there are some larger agglomerates, their
particle sizes are lower than 2.0 µm. Table 1 presents the en-
ergy-dispersive  X-ray  spectroscopy  (EDS)  results  of  the
samples after CO2 reduction. The increase in carbon content
and decrease in oxygen content indicate that the MNM pos-
sessed a higher oxygen-deficient degree and the CO2 reduc-
tion  reaction  occurs.  The  carbon  content  obtained  over  the
MNM was 2.87wt% higher than that of NM.

 
 

100 μm 5 μm

(a) (b)

Fig. 5.    FE-SEM images of the samples treated in H2 at 450°C and CO2 atmosphere: (a) NM; (b) MNM.
 

Table 1.    EDS results of the samples reduced at 450°C and then oxidized at 300°C wt%

Sample C O Mg Al Si Ti V Fe
NM 3.73 30.22 2.59 2.54 0.79 7.55 0.34 52.69

MNM 6.60 25.47 1.97 2.45 2.01 7.21 0.58 54.73
 

To  investigate  the  nature  of  carbon-containing  phases
(graphite,  amorphous  carbon,  or  cementite),  the  powder
samples that were reduced in H2 atmosphere at 450°C for 90
min and subsequently oxidized in CO2 atmosphere at 300°C
for 90 min (in situ) were dissolved using adequate aqueous

hydrochloric acid. The XRD analysis was conducted on the
undissolved substance [17−18]. No phase containing carbon
was discovered, as shown in Fig. 6. Detecting the deposited
carbon by XRD is difficult; thus, the Raman spectra and IR
spectra were employed to further investigate the phase form

 

20 25 30 35 40 45 50 55 60 65 70 75 80

In
te

n
si

ty
 /

 a
.u

.

1
,2

1
,21
−3

1
−3

1
−3

4444 4 4

1
−3

1−3

1
,2 1
−3

(a)

1
−3 1
,3

,5

1
,3

,5

1
,3

,5

1
,3

,5

4 41
,3

,5
1

44
4 (b)

1 11 1 ★

★

4 4

1,3−5

(c)

1—Fe3O4; 2—Mg1.55Fe1.6O4; 3—MgFe2O4; 4—FeTiO3;

5—(Co0.2Fe0.8)Co0.8Fe1.2O4; ★—[Fe,Ni]

2θ / (°)
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of  the  deposited  carbon  [9–12]. Fig.  7 shows  the  Raman
spectrum profiles of the NM and the MNM after treatment in
H2 and CO2 atmosphere. Two characteristic peaks were ob-
served for both specimens, which is well consistent with the
fact that amorphous carbon shows two broad peaks, between
1340 and 1600 cm−1. The mode at about 1600 cm−1, often re-
ferred to  as  the  G  mode,  is  assigned  to  the  “in-plane”  dis-
placement of the carbons strongly coupled in the hexagonal
sheets,  while the mode at around 1340 cm−1 corresponds to
the  D  mode  induced  disorder  carbon  [9–12,35–36]. Com-
pared with the MNM, the bandwidths of both D and G modes
for the NM are greater, and the intensity rates of D band to G
band (ID/IG) are higher, indicating that deposited carbons over
the NM possessed a higher defect density or a smaller crystal
granule  size  [35−36].  As  shown in Fig.  8, the  species  con-
taining carbon was further confirmed by bands at about 985,
1070, and 1625 cm−1 in the IR profiles, which are attributed
to  the  in-plane  bending  vibration  of  C−H,  the  asymmetric
stretching  mode  of  C–O–C,  and  the  flexing  oscillation  of
conjugated  C=C,  respectively  [37−38].  The  formation  of
C–H and C−O−C suggests that the deposited carbon and the
magnetite  substrate  interacted.  Accordingly,  it  is  believed
that deposited carbon is only in the amorphous form, neither
graphite  nor  cementite  form.  This  is  significantly  different
from  the  products  when  unitary,  binary,  or  ternary  ferrite
serves  as  catalyst  for  CO2 reduction  reaction
[8–14,17–21,24,30–31].  This  gives  the  important  meaning
for the ferrite recycle because the formation of graphite or ce-
mentite will lead to deactivation of the ferrite for CO2 decom-
position [11−12,23,39]. For the MNM, its high selectivity of
CO2 reduction reaction can be principally ascribed to its iso-
morphism substitutions of Fe, Ti, V, Co, Ni, and Al, and the
high  activity  of  MNM,  ascribed  to  higher  oxygen-deficient
degree, smaller granule size, and a more stable spinel struc-
ture [9–12,19–22,24–25].
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4. Conclusion

Natural magnetite formed by isomorphism substitutions of
Fe, Ti, V, Co, Ni, and Al was used as raw materials and was
activated by mechanical  milling and then reduced in H2 at-
mosphere.  Afterward,  H2-TPR and CO2-TPSR were carried
out  to  investigate  the  oxygen  loss  and  CO2 decomposition
processes. The evolvement of the crystalline structure was in-
vestigated from mechanical milling to H2 reduction and then
to CO2 decomposition processes. Both the NM and the MNM
exhibited high selectivity of decomposing CO2 to amorphous
C.  The  amount  of  carbon  deposited  over  the  mechanically
milled  natural  magnetite  freshly  reduced  in  H2 gas  was
2.87wt% higher  than  that  deposited  over  the  natural  mag-
netite.  Moreover,  the high selectivity and enhanced activity
of the MNM should be due to the isomorphism substitutions
of Fe, Ti, V, Co, Ni, and Al; smaller granule size; higher oxy-
gen-deficient  degree;  and  a  more  stable  spinel  structure.
Herein,  a  facile  and “green” path is  easily  available  for  the
catalyst to selectively decompose CO2 to amorphous C.
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