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Abstract: Mineral processing plants generally have narrow tolerances for the grades of their input raw materials, so stockpiles are often 
maintained to reduce material variance and ensure consistency. However, designing stockpiles has often proven difficult when the input ma-
terial consists of multiple sub-materials that have different levels of variances in their grades. In this paper, we address this issue by applying 
principal component analysis (PCA) to reduce the dimensions of the input data. The study was conducted in three steps. First, we applied 
PCA to the input data to transform them into a lower-dimension space while retaining 80% of the original variance. Next, we simulated a 
stockpile operation with various geometric stockpile configurations using a stockpile simulator in MATLAB. We used the variance reduction 
ratio as the primary criterion for evaluating the efficiency of the stockpiles. Finally, we used multiple regression to identify the relationships 
between stockpile efficiency and various design parameters and analyzed the regression results based on the original input variables and 
principal components. The results showed that PCA is indeed useful in solving a stockpile design problem that involves multiple correlated 
input-material grades. 
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1. Introduction 

Bed-blending operations are applied in a variety of indus-
tries, including the mining industry, which uses stockpiles to 
homogenize and reduce the variability of raw materials before 
their delivery to mineral processing plants. The reason being 
that unfavorable residual variations inevitably persist even in 
materials from the same source, due to the discontinuous, cyc-
lic, random, and autocorrelated nature of ore [1]. The optimi-
zation of processing efficiency relies heavily on homogeniz-
ing the input materials [2]. A bed-blending system has two 
phases. In the first phase, a stacker traverses the ground at a 
constant velocity along the stockpile, during which process 
materials are laid down on the same level as the stacker. As 
the stacker gradually reaches the end of the stockpile, it dece-
lerates until it finally stops, before starting again to travel back 
in the opposite direction. In the reclaiming phase, a reclaimer 
(either a bucket-wheel or a harrow-type scraper) cuts slices of 
the stockpile perpendicular to the direction of stacking [3]. In 
the past, many researchers have worked towards optimizing 
the design of blending operations and have proposed various 

theories and methods [4−6]. In 1992, Gy introduced the idea 
of using the variance reduction ratio (VRR) to evaluate the ef-
fectiveness of blending [7]. Dowd [8] suggested the use of 
geostatistical approaches to improve stockpile design by pre-
dicting the output characteristics of given stockpile parameters. 
Kumral [9] incorporated multiple regression and genetic algo-
rithms into the optimization of stockpile design. Recently, 
there has been an increasing number of statistical methods and 
mathematical models applied in the optimization of metallur-
gical and minerals engineering operations [10−13]. Designing 
a bed-blending operation would be relatively straightforward 
if just one mineral grade was of concern to the processing 
plant. However, this is rarely the case as raw material grades 
are multivariate in nature. For instance, certain types of iron 
ores can have more than six different chemical compositions 
that must be homogenized [14−15]. Therefore, challenges 
arise in situations where there are different levels of variations 
in the material grades that comprise the stockpile input.  

In this research, we propose the utilization of principal 
component analysis (PCA), which is a dimension-reduction 
technique that is widely applied in many fields including image 



1486 Int. J. Miner. Metall. Mater., Vol. 26, No. 12, Dec. 2019 

 

and signal processing, statistical mechanics, and multivariate 
quality control. By introducing PCA to this problem, it is possi-
ble to greatly reduce the number of varying materials, while 
preserving most of the information from the original data, and 
thereby facilitate the design of stockpiles with minimal loss of 
information. We conducted this research in three main steps: 

(1) We performed principal component analysis on the in-
put data, projecting it to a lower-dimension space while re-
taining most of the original information. The input data used 
in this study is a serially correlated dataset with realistic statis-
tical properties that could well occur in a real-world problem. 

(2) We built a computer algorithm to simulate the process 
of bed-blending, which mimics stacking and reclaiming 
processes by laying down blocks of discrete unit weight and 
volume to form a cuboid and then slicing it across its length. 
The stockpile simulator computes the input and output va-
riances of all the material grades, including those of the 
principal components. 

(3) We used multiple regression to identify the relation-
ships between the response and predictors, with the response 
being the VRR, and the predictors being the stockpile design 
parameters. We repeated this step for all the input materials 
including the principal components. 

2. Methodology 

2.1. Principle component analysis  

PCA is a multivariate statistical tool that reduces 
p-dimensional correlated variables to a set of ordered and un-
correlated k-dimensional linear projections. Mathematically, 
this process is related to finding the spectral/Eigen decomposi-
tion of the positive-semidefinite variance–covariance matrix 
of the singular-value decomposition (SVD) of a rectangular 
data matrix. 
2.1.1. Spectral decomposition of the variance–covariance ma-
trix 

Let n p×∈RX  be a data matrix where n represents the 
number of observations and p is the number of variables with 
n > p. Xc is the mean-centered data matrix with T

c 1n= −X X μ , 
with 1n being an n × 1 column vector of 1 s and Tμ  being the 
1 × p row vector denoting the variable means. Let xc be the row 
vector representing the variables xc = [x1, x2, ···, xp]. The va-
riance–covariance matrix can then be found by the following: 
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The variance–covariance matrix is symmetric and positive 

semidefinite with the diagonal entries being the variances of 
each variable and the rest being the covariances between va-
riables. The variance–covariance matrix can then be used to 
solve for its eigenvectors (v) and their corresponding eigenva-
lues (λ) by finding its spectral decomposition, i.e. 

T=S VEV  (2) 

By the definition of spectral decomposition, the columns 
of the orthogonal matrix V are the eigenvalues of S and E is 
a diagonal matrix with its diagonal entries being the corres-
ponding eigenvalues in descending order. This is realized by 
multiplying V on the right in Eq. (2), which results in 

T= =SV VEV V VE , and by looking at the columns of V 
and diagonal entries of E, i i iv vλ=S . The p eigenvectors 
resulting from the spectral decomposition are orthogonal 
and thereby linearly independent and form a p-dimensional 
space. Let the reduced k linear projections be ξ , with 

1 2[ , , , ]kξ ξ ξ= ξ .  
T

1 1 2 2k k c k k kp pv x v x v x= = + + +v xξ  (3) 

The variance (var)–covariance matrix of the transformed 
data ξ  is the diagonal eigenvalue matrix. 
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c cvar( ) var( ) v ( )ar= = = =V x V x V V VEV V Eξ  (4) 

Therefore, it is evident that the k components of ξ  are 
uncorrelated, and their variances are the eigenvalues. The pro-
portion of variance explained by the reduced k-dimensional  

principal components is given by expVar

k
ii

n
ii

λ

λ
= 


. 

2.1.2. Singular-value decomposition  
A unique SVD exists for any real matrix n p×∈RX : 

T=X UDV  (5) 

where n n×∈RU  and p p×∈RV  are orthogonal matrices. 
The columns of U are called the left singular vectors and those 
of V the right singular vectors. n p×∈RD  has positive sin-
gular values only for its diagonal entries, and the number of 
diagonal entries is equal to rank (X). It is generally assumed in 
this paper that n > p holds for the data matrix X. The SVD of 
X is associated with the spectral decompositions of the ma-
trices X T X and XX T. 

The right singular vectors V are the eigenvectors of the ma-
trix X T X, as shown in Eq. (6). 
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The left singular vectors U are the eigenvectors of the ma-
trix XXT as shown in Eq. (7). 
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Eq. (8) shows the SVD of the data matrix X when it has a 
full column rank with n > p, where ui, {1,2, , }i n∈   is the 
ith column of the matrix of the left singular vectors U and  

T , {1,2, , }jv and j p∈   is the jth row of the matrix of right  

singular vectors V. The upper partition of matrix D is a p by 
p diagonal matrix of singular values in descending order and 
the lower partition is a (n − p) by p matrix of zeros. 
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 (8) 
The resulting p rank-1 matrices have linearly dependent 

rows and columns, which represent the principal compo-
nents in descending order of importance. 

Computationally, SVD and spectral decomposition are 
similar. SVD can be computed using the QR-SVD algo-
rithm whereas spectral decomposition can be performed us-
ing the symmetric QR algorithm. Both algorithms are based 
on orthogonal similarity transformations that preserve the 
eigenvalues. The algorithms are iterative for eigenvalue 
problems with p greater or equal to five, and no general 
formula exists for the roots of the characteristic polynomial. 
In this case, the symmetric QR algorithm converges faster. 
However, SVD is more numerically stable as the explicit 
formation of the variance–covariance matrix unnecessarily 
enlarges the condition number of the problem.  

2.2. Stockpile simulator 

In this paper, we examine the effects of the chevron and 
windrow stacking methods for a variety of stockpile configu-
rations. Simply put, the chevron stacking method is performed 
by stacking materials horizontally in one direction followed 
by stacking another layer of material on top in the opposite 
direction. In the windrow stacking method, materials are 
stacked in parallel rows with triangular cross-sections and 
then more rows are stacked on top between the gaps on the 
multiple peaks. Chevron stacking tends to lead to particle 
segregation, whereas the windrow method does not; it re-
duces fluctuations in the particle size distribution by tra-
versing the stacker much more frequently [9]. Due to the 
complexity of actual blending operations, it is very difficult, if 

not impossible, to build a model that perfectly replicates their 
effects. Hence, we built relatively simple linear block models 
in MATLAB to simulate the effects of the chevron and win-
drow blending methods. Like the simulator developed by 
Marques and Costa in 2013, the stockpile simulator we used 
in this study is essentially a homogenization simulator for li-
near cuboid stockpiles [16]. 

The input to this simulator is a series of predefined mining 
sequences, and the output is the blocks re-arranged by the al-
gorithm. The simulated stockpiles are defined by three parame-
ters, namely the stockpile height (h), length (l) and width (w). The 
stockpile capacity can be expressed as Capacity h l w= × × . 
We simulated chevron stockpiles by laying down blocks along 
the direction of the stockpile length until reaching the prede-
fined stockpile length (l), then laying more blocks on the next 
level up in the opposite direction. We set the widths of the si-
mulated chevron stockpiles to 1. In the case of the windrow 
stockpiles, blocks are laid down in the direction of the stock-
pile length and when the row is filled (stockpile length is 
reached) another row is added in the stockpile width direction, 
but the blocks in the row are laid down in a direction opposite 
to the previous row. This process is repeated until the stock-
pile width is reached, after which more rows of blocks are 
stacked on top but with the rows and blocks in the row laid 
down in opposite directions. In other words, the direction in 
which the blocks are laid down reverses with each increment 
of stockpile width, and direction in which rows of blocks are 
put down reverse with each increment of stockpile height. This 
process is repeated until the desired stockpile height is reached. 
The reclaiming process is simulated by taking the average grades 
of all the blocks in the same reclaiming slice, i.e., all blocks with 
the same stockpile length (l) value. In other terms, each rec-
laiming slice has h × w number of blocks, and the stockpile 
has a total of h layers with each layer having l × w blocks. 

We evaluated the effect of the blending process primarily 
using the VRR, which is given by the following [7]: 

2
out
2
in

VRR
σ
σ

=  (9) 

where 2
outσ  and 2

inσ  are, respectively, the output and input 
variances. It is of paramount importance that the VRR is cal-
culated based on the same weight or volume, and in the case 
of this paper, the number of blocks of material. Since the out-
put of the simulation takes the average grade of all blocks 
within the same reclaiming slice, the mean of the same num-
ber of blocks is calculated while finding the input variance.  

We tested multiple different stockpile configurations for 
the two stacking methods and calculated the VRR for each va-
riable in each configuration scenario. Figs. 1 and 2 show illu-
strations of the chevron and windrow stockpiles, respectively. 
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Fig. 1.  VRR calculation of a Chevron stockpile. 

 
Fig. 2.  VRR calculation of a Windrow stockpile. 

3. Case study 

3.1. Input data and PCA  

In this case study, the data input totaled 15000 blocks con-
taining grade information for iron, silica, alumina, and lime. 
We briefly analyzed the input data and ran them through the 
PCA algorithm. 

Fig. 3 shows a scatterplot matrix of the input data, with 
the lower-left panels being scatterplots, the diagonal panels 
being histograms of each variable, and the upper-right pa-

nels being the correlations between variables. In this matrix, 
we can see that the input variables, i.e. the mineral grades, 
have very complex relationships with each other and are 
highly correlated, except for lime.  

Using the SVD method, we conducted PCA of the data-
set using the prcomp() function in R software, with the data 
matrix centered and scaled. Table 1 shows the proportion of 
variance explained by each of the principal components. 
Since PC1 (Principal component 1) alone accounts for just 
54.3% of the original variation in the dataset, we used the 
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first two principal components to preserve approximately 
80% of the variation. 

 

Fig. 3.  Scatterplot matrix of case-study input data.  

Table 1.  Importance of principal components 

Principal 
component 

Standard 
deviation 

Proportion of 
variance 

Cumulative 
proportion 

1 1.474 0.543 0.543 

2 0.990 0.245 0.788 

3 0.807 0.163 0.951 

4 0.443 0.049 1.000 
 

Table 2 shows the principal component loadings, which 
are essentially eigenvectors sorted with respect to their cor-
responding eigenvalues in descending order. The principal 
components are linear combinations of the original variables 
and the loadings represent their relative coefficients. In other 
words, variables that have large loadings contribute more to 
a certain principal component. In the case of this dataset, 
iron and alumina are the primary contributors to PC1, whe-
reas lime contributes overwhelmingly to PC2. 

Fundamentally, Table 2 reveals that the two principal 
components used to reconstruct the data have forms as 
shown in Eqs. (10) and (11), where the name of the minerals 
represent the normalized percentage grade.  
PC1 0.576 Iron 0.631 Alumina 0.496

Silica 0.158 Lime
= × − × − ×

− ×  (10) 

PC2 0.2 Iron 0.09 Alumina
0.036 Silica 0.975 Lime

= × − × +
× + ×  (11) 

Table 2.  Principal component loadings 

Principal component Iron Alumina Silica Lime

1 0.576 −0.631 −0.496 −0.158

2 0.200 −0.090 0.036 0.975

3 0.506 −0.156 0.835 −0.149

4 0.610 0.755 −0.237 −0.046
 

Fig. 4 shows a biplot of the principal component scores, 
i.e. the transformed/reduced data. The x- and y-axes represent 

standardized PC1 and PC2 scores, and as shown on the axis 
labels, they account for 54.3% and 24.5% of variation in the 
data respectively. The four vectors are the transformed va-
riables, which are essentially original variables rebuilt using 
the chosen principal components. The quality of the repre-
sentation of each vector by the two chosen PCs is indicated 
in different colors based on their respective squared cosine 
values. For any given variable, the sum of the squared co-
sines from all the PCs should be equal to one. Since the re-
duced data consist of just two PCs, the better a variable is 
represented by these two PCs, the closer it is to the circum-
ference of the circle [17]. For this dataset, the first two prin-
cipal components represent lime, alumina, and iron fairly 
well, but some of the information from silica is lost in the 
transformation, as the reconstructed vector has a relatively 
low cos2 value, which is the 2-norm of the corresponding 
loading vector. The correlations between variables are largely 
preserved, as indicated by the angles between vectors. 

 

Fig. 4.  Principal component biplot. 

3.2. Output analysis 

We generated 45 stockpile scenarios in total, 15 of which 
were chevron and the rest windrow, and we created half of 
the windrow scenarios by switching the values of the stockpile 
height and width. For all scenarios, we kept the stockpile capac-
ity constant at 15000 blocks. After running the input data and 
the principal components through the stockpile simulator, we 
obtained the VRR values shown in Tables 3 and 4. 

In the windrow scenarios, we can see that simply switching 
the width and height values does not change the VRR values 
at all. Moreover, for both windrow and chevron stacking, the 
VRR is generally minimized by reducing the stockpile length, 
which is equivalent to increasing the number of blocks in each 
reclaiming slice.  
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Table 3.  Chevron stockpile output 

Height Length Width VRRIron VRRSilica VRRAlumina VRRLime VRRPC1 VRRPC2 

5 3000 1 0.0575 0.0574 0.1134 0.1517 0.0719 0.1403 

6 2500 1 0.1480 0.1565 0.0425 0.2959 0.1126 0.3209 

8 1875 1 0.1960 0.0813 0.0970 0.0555 0.1486 0.0580 

10 1500 1 0.0192 0.0231 0.0098 0.0874 0.0152 0.0858 

12 1250 1 0.0636 0.1281 0.0189 0.0239 0.0759 0.0263 

15 1000 1 0.0200 0.0205 0.0091 0.0080 0.0122 0.0079 

20 750 1 0.0060 0.0090 0.0037 0.0085 0.0049 0.0098 

24 625 1 0.0169 0.0142 0.0088 0.0183 0.0088 0.0216 

25 600 1 0.0101 0.0074 0.0127 0.0230 0.0072 0.0228 

30 500 1 0.0047 0.0073 0.0015 0.0037 0.0049 0.0020 

40 375 1 0.0018 0.0010 0.0014 0.0041 0.0009 0.0048 

50 300 1 0.0074 0.0054 0.0015 0.0045 0.0048 0.0073 

60 250 1 0.0008 0.0008 0.0003 0.0005 0.0008 0.0004 

75 200 1 0.0011 0.0013 0.0006 0.0006 0.0012 0.0005 

100 150 1 0.0020 0.0018 0.0010 0.0003 0.0020 0.0006 

Table 4.  Windrow stockpile output 

Height Length Width VRRIron VRRSilica VRRAlumina VRRLime VRRPC1 VRRPC2 

1 3000 5 0.0575 0.0574 0.1134 0.1517 0.0719 0.1403 

5 3000 1 0.0575 0.0574 0.1134 0.1517 0.0719 0.1403 

2 2500 3 0.1480 0.1565 0.0425 0.2959 0.1126 0.3209 

3 2500 2 0.1480 0.1565 0.0425 0.2959 0.1126 0.3209 

2 1875 4 0.1960 0.0813 0.0970 0.0555 0.1486 0.0580 

4 1875 2 0.1960 0.0813 0.0970 0.0555 0.1486 0.0580 

2 1500 5 0.0192 0.0231 0.0098 0.0874 0.0152 0.0858 

5 1500 2 0.0192 0.0231 0.0098 0.0874 0.0152 0.0858 

2 1250 6 0.0636 0.1281 0.0189 0.0239 0.0759 0.0263 

6 1250 2 0.0636 0.1281 0.0189 0.0239 0.0759 0.0263 

3 1000 5 0.0200 0.0205 0.0091 0.0080 0.0122 0.0079 

5 1000 3 0.0200 0.0205 0.0091 0.0080 0.0122 0.0079 

4 750 5 0.0060 0.0090 0.0037 0.0085 0.0049 0.0098 

5 750 4 0.0060 0.0090 0.0037 0.0085 0.0049 0.0098 

3 625 8 0.0169 0.0142 0.0088 0.0183 0.0088 0.0216 

8 625 3 0.0169 0.0142 0.0088 0.0183 0.0088 0.0216 

5 600 5 0.0101 0.0074 0.0127 0.0230 0.0072 0.0228 

5 600 5 0.0101 0.0074 0.0127 0.0230 0.0072 0.0228 

3 500 10 0.0047 0.0073 0.0015 0.0037 0.0049 0.0020 

10 500 3 0.0047 0.0073 0.0015 0.0037 0.0049 0.0020 

4 375 10 0.0018 0.0010 0.0014 0.0041 0.0009 0.0048 

10 375 4 0.0018 0.0010 0.0014 0.0041 0.0009 0.0048 

2 300 25 0.0074 0.0054 0.0015 0.0045 0.0048 0.0073 

25 300 2 0.0074 0.0054 0.0015 0.0045 0.0048 0.0073 

3 250 20 0.0008 0.0008 0.0003 0.0005 0.0008 0.0004 

20 250 3 0.0008 0.0008 0.0003 0.0005 0.0008 0.0004 

3 200 25 0.0011 0.0013 0.0006 0.0006 0.0012 0.0005 

25 200 3 0.0011 0.0013 0.0006 0.0006 0.0012 0.0005 

5 150 20 0.0020 0.0018 0.0010 0.0003 0.0020 0.0006 

20 150 5 0.0020 0.0018 0.0010 0.0003 0.0020 0.0006 
 
 
 
 



S.Y. Li et al., Dimensioning a stockpile operation using principal component analysis 1491 

 

 

3.3. Autocorrelation and effectiveness of blending  

The effectiveness of blending operations for this particular 
dataset is very high with generally low VRR values, as the 
data is strongly autocorrelated, as shown in Fig. 5. For the 
number of lags, we chose one tenth the size of the dataset, 
which is 1500. In the figure, we can see that there is a signifi-
cant autocorrelation for all four variables, far exceeding the 
95% quantile for noise. 

 

Fig. 5.  Autocorrelation plot for original dataset. 

Next, we generated an alternative simulated dataset using 
the Monte Carlo method in R, removing autocorrelation while 
preserving the correlation between variables. Fig. 6 shows a 
scatterplot matrix of the simulated data, and Fig. 7 shows the 
autocorrelation of the variables in the simulated data.  

The variables of the simulated data exhibit no autocorre-
lation as the plot follows no obvious pattern and lies almost 
entirely within the 95% noise region. We ran the simulated 
data through the same stockpile simulator with identical 

stockpile configurations, the results of which are shown in 
Tables 5 and 6. 

As shown in the tables, the VRR values for the simulated 
scenarios all approximate 1, which means that for a dataset 
without autocorrelation, the effects of blending operations 
are insignificant. 

 

Fig. 6.  Scatterplot matrix of simulated data.  

 

Fig. 7.  Autocorrelation plot of simulated data. 

Table 5.  Chevron stockpile output—simulated data 

Height Length Width VRRIron VRRAlumina VRRSilica VRRLime VRRPC1 VRRPC2 

5 3000 1 1.015 1.028 1.093 0.965 1.052 0.970 

6 2500 1 0.995 1.013 1.052 0.950 1.020 0.961 

8 1875 1 1.028 1.014 1.052 0.913 1.011 0.931 

10 1500 1 0.982 0.979 1.121 0.909 1.020 0.914 

12 1250 1 0.996 1.034 1.086 0.924 1.032 0.923 

15 1000 1 1.067 0.986 1.140 0.907 1.058 0.913 

20 750 1 1.026 0.972 1.103 0.851 1.017 0.877 

24 625 1 1.071 1.120 1.169 0.915 1.110 0.953 

25 600 1 1.265 1.115 1.148 0.849 1.186 0.847 

30 500 1 1.076 0.956 1.130 0.813 1.013 0.836 

40 375 1 1.176 1.003 1.144 0.865 1.088 0.919 

50 300 1 1.225 1.123 0.962 0.818 1.103 0.841 

60 250 1 1.216 1.004 0.994 0.851 1.016 0.932 

75 200 1 1.679 1.188 1.092 0.864 1.317 0.871 

100 150 1 1.561 1.443 1.003 0.741 1.375 0.809 
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Table 6.  Windrow stockpile output—simulated data 

Height Length Width VRRIron VRRAlumina VRRSilica VRRLime VRRPC1 VRRPC2 

1 3000 5 1.015 1.028 1.093 0.965 1.052 0.970 

5 3000 1 1.015 1.028 1.093 0.965 1.052 0.970 

2 2500 3 0.995 1.013 1.052 0.950 1.020 0.961 

3 2500 2 0.995 1.013 1.052 0.950 1.020 0.961 

2 1875 4 1.028 1.014 1.052 0.913 1.011 0.931 

4 1875 2 1.028 1.014 1.052 0.913 1.011 0.931 

2 1500 5 0.982 0.979 1.121 0.909 1.020 0.914 

5 1500 2 0.982 0.979 1.121 0.909 1.020 0.914 

2 1250 6 0.996 1.034 1.086 0.924 1.032 0.923 

6 1250 2 0.996 1.034 1.086 0.924 1.032 0.923 

3 1000 5 1.067 0.986 1.140 0.907 1.058 0.913 

5 1000 3 1.067 0.986 1.140 0.907 1.058 0.913 

4 750 5 1.026 0.972 1.103 0.851 1.017 0.877 

5 750 4 1.026 0.972 1.103 0.851 1.017 0.877 

3 625 8 1.071 1.120 1.169 0.915 1.110 0.953 

8 625 3 1.071 1.120 1.169 0.915 1.110 0.953 

5 600 5 1.265 1.115 1.148 0.849 1.186 0.847 

5 600 5 1.265 1.115 1.148 0.849 1.186 0.847 

3 500 10 1.076 0.956 1.130 0.813 1.013 0.836 

10 500 3 1.076 0.956 1.130 0.813 1.013 0.836 

4 375 10 1.176 1.003 1.144 0.865 1.088 0.919 

10 375 4 1.176 1.003 1.144 0.865 1.088 0.919 

2 300 25 1.225 1.123 0.962 0.818 1.103 0.841 

25 300 2 1.225 1.123 0.962 0.818 1.103 0.841 

3 250 20 1.216 1.004 0.994 0.851 1.016 0.932 

20 250 3 1.216 1.004 0.994 0.851 1.016 0.932 

3 200 25 1.679 1.188 1.092 0.864 1.317 0.871 

25 200 3 1.679 1.188 1.092 0.864 1.317 0.871 

5 150 20 1.561 1.443 1.003 0.741 1.375 0.809 

20 150 5 1.561 1.443 1.003 0.741 1.375 0.809 

 

3.4. Regression analysis 

We used multiple regression to identify the relationships 
between the VRRs of the input materials and the design pa-
rameters of the stockpile and used stepwise regression to 
choose regressors that best describe the models. The possible 
predictor variables are the stockpile length, width, height, and 
iswindrow (a binary factor variable that equals 0 if the che-
vron stockpile is used, 1 otherwise), as well as all their 
first-order interactions and the second-order terms of stockpile 
length, width and height. For each response variable, we for-
wardly selected a model from an initial model with intercepts 
only, backwardly eliminated another model from an initial  

model with all possible predictors, and selected a third and fi-
nal model stepwise that initially consists of only the four main 
effects. The variable selection criterion is based on Akaike's in-
formation criterion (AIC), which measures the closeness be-
tween the sample fit and true model fit, where the relative close-
ness is defined as the Kullback–Leibler divergence from the true 
model [18]. The AIC can be calculated as follows: AIC =  

2(Maximum loglikelihood Number of parameters)− − , and 
models with lower AIC values are generally preferred. We 
performed this process using R software with the stepAIC() 
function. Table 7 shows an illustration of the process of find-
ing the best model for VRRIron. Table 8 shows the final results 
for all the response variables.  
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Table 7.  Stepwise VRRIron model selection—forward selection only 

Step Step action Degrees of freedom Deviance Residual degrees of freedom Residual deviance AIC 

1 — — — 44 0.145221 −256.13

2 + length 1 0.07402 43 0.071201 −286.20

3 + length2 1 0.008424 42 0.062777 −289.87

Note: Initial model: vrr_iron ~ 1; Final model: vrr_iron ~ length + length2. 

Table 8.  Stepwise VRRIron model selection—forward and backward selection 

Step Step action Degrees of freedom Deviance Residual degrees of freedom Residual deviance AIC 

1 — — — 40 0.071188 −280.21 

2 + length2 1 0.012905 39 0.058283 −287.21 

3 + height: width 1 0.006292 38 0.051991 −290.35 

4 – iswindrow 1 1.03 × 10–5 39 0.052002 −292.34 

Note: Initial model: vrr_iron ~ height + length + width + iswindrow; Final model: vrr_iron ~ height + length + width + length2 + height × width. 

Table 9.  Stepwise VRRIron model selection—backward selection only 

Step Step action Degrees of freedom Deviance Residual degrees of freedom Residual deviance AIC 

1 — — — 32 0.039573 −290.63

2 – width × iswindrow 0 0 32 0.039573 −290.63

3 – width2 1 0.000717 33 0.040291 −291.82

4 – height × width 1 0.001334 34 0.041625 −292.36

5 – height2 1 0.001859 35 0.043484 −292.39

Note: Initial model: vrr_iron ~ (height + length + width + iswindrow)2; Final model: vrr_iron ~ height + length + width + iswindrow + length2 + 
height × length + height × iswindrow + length × width + length × iswindrow. 

Table 10.  Regression results 

Model Adjusted R-squared AIC 
–3 4

IronVRR 1.294 10 height 2.384 10 length−= × × + × × +  
3 15.875 10 width 3.319 10 iswindrow− −× × − × × −  

( )8 2 54.835 10 length 1.913 10 height length− −× × − × × × +  

( ) ( )3 54.681 10 height iswindrow 6.723 10 length iswindrow− −× × × + × × × −  

( )5 11.913 10 length width 1.412 10− −× × × + ×  

0.623 −292.4 

4 5
AluminaVRR 1.651 10 height 9.612 10 length− −= × × + × × − 8 2 21.811 10 length 3.269 10− −× × − ×  0.57 −357.0 

8 2 3
SilicaVRR 1.171 10 length 1.571 10− −= × × − ×  0.75 −361.4 

4 4
LimeVRR 6.454 10 height 1.187 10 length− −= − × × + × × +  

3 14.283 10 width 3.319 10 iswindrow− −× × − × × −  
( ) ( )5 32.693 10 height length 3.638 10 height iswindrow− −× × × + × × × +  

( ) ( )5 5 19.391 10 length iswindrow 2.693 10 length width 3.338 10− − −× × × − × × × + ×  

0.73 −287.1 

4 4
PC1VRR 1.166 10 height 1.585 10 length− −= × × + × × +  

4 8 24.187 10 width 3.229 10 length− −× × − × × 4 18.414 10 (height width) 1.015 10− −+ × × × − ×  
0.67 −321.5 

4 4 3
PC2VRR 6.338 10 height 1.240 10 length 4.601 10 width− − −= − × × + × × + × × −  

( )1 53.840 10 iswindrow 3.122 10 height length− −× × − × × × +  

( ) ( )3 43.967 10 height iswindrow 1.090 10 length iswindrow− −× × × + × × × −  

( )–5 13.122 10 length width 3.986 10−× × × + ×  

0.69 −277.1 

 
 

The resulting model for the principal components is similar 
to but differs from those for the rest of the variables. Optimiz-

ing the principal components rather than the original variables 
will lead to different stockpile design parameters. However, as 
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PCA retains as much information as possible during the 
transformation, the design that minimizes the VRR of the PCs 
is clearly the mathematically optimal design that aims to mi-
nimize the variances for all input variables. This effectively 
addresses the issue of having to assign a weight or importance 
to each variable. 

We note that the interaction term for the stockpile height 
and width is unique for the VRRPC1 model but otherwise, mi-
nimizing VRRPC1 and VRRPC2 is equivalent to minimizing  

VRRi ii
w , where wi refers to the weight of each variable  

and should be set to equal to the sum of the factor loadings of 
the principal components.  

4. Conclusions 

Principal component analysis (PCA) can be used in con-
junction with multiple regression to design and optimize 
stockpiles when there are multiple types of materials whose 
output grades must be controlled. The performance and 
benefit of applying PCA may potentially increase with the 
number of material-grade variables studied. Input data that 
are autocorrelated have a significant impact on the perfor-
mance of the stockpiles, with reduced variance reduction ra-
tios (VRRs) for increased levels of autocorrelation. The 
multiple regression results of Table 8 have relatively low 
adjusted R-squared values, which may be due to some of the 
variance being uniquely determined by the degree of auto-
correlation in the block input. Nevertheless, we found that 
the VRR is generally reduced with an increasing number of 
reclamation slices (length) and that the performances of the 
windrow and chevron methods do not differ significantly. 
However, additional scenarios and data input are needed to 
better determine the effects of the design parameters on the 
VRR. 
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