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Abstract: Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of 
nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be-
came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design 
plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in “Rudjinci” 
ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree 
of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface 
method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re-
gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan 
was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The 
model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation 
function. 
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1. Introduction 

As a result of the permanent increase of nickel production 
costs related to traditional pyrometallurgical methods and 
the depletion of high-grade sulfide ores, a renewed interest 
has developed concerning the production of nickel and co-
balt by high-pressure sulfuric acid leaching (HPSAL) of 
nickel laterite [1]. In early 1970s, Habashi [2-3] made some 
studies about whether pressure hydrometallurgy was the key 
to better and nonpolluting processes. In the second of the 
two-article series [3], he discussed how pressure hydro-
metallurgy was being applied in the leaching of nickel oxide, 
sulfide, and arsenide and pointed out the importance of the 
pressure reactors also known as autoclaves. Nowadays, 
laboratory autoclaves for hydrometallurgical investigation 
are available in a variety of sizes, models, and materials for 

their construction [4]. 

HPSAL is successfully applied for nickel laterite projects 
[5-10]. The behavior of the differing minerals from tropical 
and arid laterite in Western Australia during leaching is be-
ing widely examined. 

In the Tindall dissertation [5], the fundamentals of 
HPSAL of iron oxides were examined using synthetic goe-
thite as a model ore. It was found that goethite transformed 
to hematite by a dissolution-reprecipitation mechanism. The 
leaching rates were dependent on acid concentration, slurry 
oxidation potential, and cations in solution. It was also con-
firmed that nontronite reacted more readily than iron oxides. 

Because of a very expensive investigation and expensive 
corrosion-resistant materials which the autoclave is made of 
(e.g., titanium), a new challenge is to make a better design 
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of experimental investigations and the result prediction in 
order to minimize the costs. Recently, the different software 
(Minitab and FactSage) have been used for the design of 
experiments (DOE), thermochemical analysis, and evalua-
tion of the obtained results in HPSAL of nickel laterite. This 
approach gives the results that show the main effects plots 
and interaction plots, providing at the same time the infor-
mation on the reliability of empirical methods [11-12]. A 
standard method of using multiple linear regression (MLR) 
for processing experimental data has been applied. It is de-
scribed in every textbook on statistics and implemented in 
every data processing software package [13]. For example, 
to optimize nickel extraction and iron dissolution from 
nickeliferous laterite by a process of sulfation-roasting- 
leaching, Li et al. [14] used a response surface method 
(RSM), which employed a two-level and two-factor full 
factorial central composite design (CCD) experimental plan. 
The influence of roasting temperature and reaction time on 
nickel recovery was studied. The experiments were carried 
out for fitting two non-linear suitable regression models of 
nickel extraction and iron dissolution. The obtained models 
were helpful in predicting the results by performing only a 
limited set of experiments [14]. 

Recently, neural networks are included in the newest in-
vestigation in order to predict experimental results in hy-
drometallurgy. In the last decade, this modeling framework 
has been used by many authors in various fields [15-17]. 
However, to the knowledge of the authors, the application of 
this framework to determine HPSAL for nickel laterite is 
scarce. 

In this paper, a computer data-driven modeling of the 
high-pressure leaching of nickel laterite is studied. The ef-
fects of possible processing variables such as reaction tem-
perature, reaction time, mol ratios of sulfuric acid and nickel 
lateritic ore, and stirring rates are considered. Here, we focus 
on the DOE theory, MLR, RSM, and back-propagation (BP) 
neural networks, a class of feed-forward artificial neural 
network (ANN). 

2. Experimental procedure 

2.1. Material (Ore “Rudjinci”, Serbia) 

“Rudjinci” deposits, near Vrnjacka Banja, are the most 
abundant ones in Serbia. The ore has a low level of metal 
components and high level of SiO2. “Rudjinci” nickel ore 
deposits belong to a group of exogenous nickel deposits, a 
subgroup of laterite-silicate deposits. The sample of “Rud-
jinci” ore was previously homogenized with the following 

composition (wt%): 54.20 SiO2, 14.90 Fe, 4.00 Al2O3, 1.09 
Cr2O3, 1.13 Ni, 0.06 CoO, 1.40 CaO, 3.22 Mg, 0.48 MnO, 
0.05 Na2O, and 0.05 K2O. 

2.2. Experimental design (DOE) 

The plan of experiments investigated four leaching vari-
ables associated with four factors for treatment of “Rud-
jinci” ore [9] (see Table 1). The experiments were carried 
out using a batch high-pressure leaching method at the IME 
Process Metallurgy and Metal Recycling of the RWTH 
Aachen University. 

According to literature values of high-pressure leaching 
variables in industrial conditions [1, 5], the leaching vari-
ables given in Table 1 were tested. Regarding the fact that 
selective leaching is possible in a small interval of tempera-
ture, the temperature range of 230 to 250°C was chosen. A 
further increase of temperature above 250°C leads to an in-
creased pressure and a dangerous oxidation of titanium ma-
terial, creating a possibility of explosion. A decrease of tem-
peratures leads to the increased leaching of iron, which was 
not the aim of our research. At temperatures below 230°C, 
iron and aluminium (in the trivalent state) dissolve and 
precipitate forming solid products. An acid to ore ratio of 
about 0.2 was found adequate for Ni and Co leaching of a 
limonite by Chou et al. [18]. Different types of lateritic ores 
require different acid to ore ratio. Georgiou et al. [19] used 
an acid to ore ratio between 0.15 and 0.35 in a temperature 
range of 230 to 270°C. Increasing the ratio of sulfuric acid 
to ore above 0.5 can cause the formation of basic sulfate as a 
solid product in the system and thus significantly slow the 
process of diffusion of sulfuric acid in the ore. Because of a 
reported negligible effect of stirring speed between 400 and 
600 r/min, our study proposes an interval between 250 and 
1500 r/min in order to investigate the leaching process under 
the conditions of higher mass transfer and milling effect in 
the system. 

Table 1.  Investigated leaching variables of HPSAL for nickel 
laterite 

Variable Symbol Minimum Mean Maximum
Temperature T / °C 230 240 250 

Acid to ore mass ra-
tio (mH2SO4

/more) 
c 0.24 0.32 0.40 

Stirring speed 
v / 

(r·min−1) 
250 875 1500 

Leaching time t / min 30 45 60 
 
Determining the number and arrangement of measuring 

points in the experimental hyperspace is an essential part of 
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the modern experiment theory (DOE). The optimal experi-
mental design is a key advantage of this methodology in 
comparison to other methods of modeling objects, processes, 
and systems. The studies made by Fisher [20] and Box and 
Wilson [21] are the theoretical bases for this mathematical 
modeling. 

The criterion used in this paper is the criterion of regres-
sion coefficient accuracy, called “D optimality criterion”. In 
general, the design matrix denoted by X, formed on the basis 
of D optimality criterion, contains a set of boundary points 
of the input factors’ interval, which lie on the border of the 
hyper sphere, forming a hypercube. Also, the used experi-
mental plans are rotatable and composable and the points 
are chosen randomly [22-23]. 

In order to reduce the costs, an experimental design was 
directed to create linear models. The leaching variables as-
sociated with factors Xi (referred to as predictor variables in 
the context of regression) are transformed into the encoded 
domain, which is easy for analysis. 

Transformation equations have the form: 

0 , 1, 2, ,i i
i

i

X X
x i k

W
−

= =   (1) 

max min max min
0 ,

2 2
i i

i i
X X X X

X W
+ −

= =   (2) 

where k is the number of significant factors, Xi is an actual 
value of the i-th factor, X0i is the mean for factor Xi (basic 
level), and Wi is the interval of its variation. In the new scale, 
the top level of the factors corresponds to +1, the lowest 
level to −1, and the basic level to 0. 

The layout of the experimental points for k≥4 leads to a 
hypercube and cannot be shown in a 3D space but is 
mathematically easily described using the matrix. As exam-
ple, an experimental plan with three factors (k=3) in sche-
matic form is given in Fig. 1. Plans formed in this manner 
are symmetrical and orthogonal [23]. 

In order to carry out a dispersion analysis (determining 
the statistical significance of regression coefficients, the 
model adequacy, the reliability of the DOE model, etc.), 
there should be n0 replicates in the central point of the plan, 
with the assumption of dispersion equivalence 
( 2

1( )s y = 2 2
2( ) ( )ns y s y= = ) at every point of the plan. 

The plan of leaching experiments was determined by us-
ing “24 design”, generated by the authors of “Fidija” soft-
ware [24] and additionally verified by “MODeling and  

 
Fig. 1.  Experimental layout in a 2k space (k = 3). 

DEsign” (MODDE) software package [25]. According to 
the above, 23 experiments were performed, comprising 16 
cube points treatments and 7 replicates in central points. 
Coordinates of experimental points (T, c, v, t) take coded 
values −1, 0, or 1. 

Polynomial regression models require additional treat-
ment. CCD is a successful factorial DOE, which is accom-
plished by adding experimental points (superposition) along 
each coordinate axis at opposite sides of the origin and at the 
distance equal to the semi-diagonal of the hypercube of the 
factorial design. As an easy way to estimate the response 
surface, factorial design is the most useful scheme for the 
optimization of variables with a limited number of experi-
ments [14]. However, additional experiments on each of the 
coordinate axes would increase the investigation costs. 

2.3. Experimental treatment 

Under high-pressure leaching conditions, the tests were 
performed in an autoclave (volume 2 L) manufactured by 
the Autoclave Engineers, USA.  

The temperature was controlled within ±1°C by a tem-
perature control system, manipulated by both an electrical 
heating mantle and a water cooling system. Agitation was 
provided by a titanium-made impeller that was magnetically 
driven. The autoclave was equipped with an acid injection 
device and a system to withdraw the sample designed by 
IME. This allows an exact definition of the reaction starting 
point. A certain amount of laterite was mixed with a 
pre-calculated amount of deionized water and placed in an 
autoclave. The slurry was then heated up to a predetermined 
temperature in the range of 230 to 250°C (corresponding to 
pressures of 2.8 MPa and 4.0 MPa respectively) under con-
tinuous agitation. Upon temperature stabilization, a certain 
amount of concentrated sulfuric acid (96wt%) correspond-
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ing to different acid-to-ore ratios was injected into the auto-
clave under pressure using the injection device made at IME. 
Using the sampling system, 20 mL of almost clear liquid 
was periodically withdrawn through a dip tube and then 
rapidly cooled. After the end of experiments, solutions ali-
quots were filtered and analyzed, aiming at Ni, Co, Mg, Al, 
Fe, and Si by inductively coupled plasma-optical emission 
spectrometry (ICP-OES). 

2.4. Measurements: nickel extraction during leaching of 
“Rudjinci” ore 

A series of leaching experiments were performed using 
various parameter sets shown in Table 2 (actual leaching 
variable values and their coded values). The percentages of 
obtained nickel are related to the maximum content of 
1.13% in “Rudjinci” ore. 

Table 2.  DOE plan matrix: coded and actual predictor variable values and obtained results 

T / °C 
(230, 240, 250) 

c 
(0.24, 0.32, 0.40)

v / (r·min−1) 
(250, 875, 1500) 

t / min 
(30, 45, 60) 

Extraction of Ni / %
Data set No. 

c.v. a.v. c.v. a.v. c.v. a.v. c.v. a.v. a.v. 

1 1 250 1 0.40 −1 250 −1 30 87.50 

2 −1 230 −1 0.24 1 1500 1 60 86.70 

3 −1 230 −1 0.24 1 1500 0 30 75.69 

4 1 250 1 0.40 1 1500 1 60 99.94 

5 −1 230 1 0.40 −1 250 1 60 92.76 

6 1 250 1 0.40 1 1500 −1 30 96.54 

7 1 250 −1 0.24 −1 250 −1 30 54.08 

8 1 250 −1 0.24 1 1500 −1 30 56.78 

9 −1 230 1 0.40 1 1500 −1 30 92.54 

10* 0 240 0 0.32 0 875 0 45 61.65 

11 −1 230 1 0.40 1 1500 1 60 94.02 

12 1 250 −1 0.24 1 1500 1 60 72.63 

13 1 250 −1 0.24 −1 250 1 60 58.84 

14 1 250 1 0.40 −1 250 1 60 81.87 

15 −1 230 1 0.40 −1 250 −1 30 80.73 

16 −1 230 −1 0.24 −1 250 −1 30 72.82 

D
at

a s
et

 fo
r n

eu
ra

l n
et

w
or

ks
 m

od
el

in
g 

17 −1 230 −1 0.24 −1 250 1 60 79.85 

10* 0 240 0 0.32 0 875 0 45 62.00 

10* 0 240 0 0.32 0 875 0 45 63.00 

10* 0 240 0 0.32 0 875 0 45 60.00 

10* 0 240 0 0.32 0 875 0 45 60.50 

10* 0 240 0 0.32 0 875 0 45 62.00 

D
at

a s
et

 fo
r l

in
ea

r r
eg
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10* 0 240 0 0.32 0 875 0 45 62.50 

Note: c.v., coded value; a.v., actual value; * repeated experiments in the central point of the experimental plan. 

 
3. Model setup 

3.1. Process modeling 

A process model is the mathematical structure that maps 
process variables associated with factors X to the process 
multivariate output variable Y: 

( )η=Y X  (3) 

For a multivariate input, X is a vector of independent 
variables (k is a number of significant factors), 

T
1 2[ , , , ]kx x x=X  (4) 

where superscript T stands for the transposed matrix (vector).  
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For a multivariate output, Y would also be a vector. Func-
tion η is a response surface. 

In this study, the process variables were 1x T≡  (tem-
perature), 2x c≡  (sulfuric acid to ore ratio), 3x v≡  (stir-
ring speed), and 4x t≡  (time). Niext (degree of nickel ex-
traction) was the model response Y. 

Each data set consists of a pair of input values (T, c, v, t) 
and an output value (Niext). 

Data-driven modeling is very varied, ranging from MLR 
and RSM [14], cube and B-splines, fuzzy logic systems, and 
neural networks [26-28] to heuristic algorithms such as a 
genetic algorithm or a support vector machine [29]. Some of 
these models have an analytical form of a response surface η 
(MLR, B-spline, etc.), but others do not (neural networks, 
genetic algorithms, etc.). Here, we focus on MLR and ANN 
with a BP learning algorithm. 

The main goal in MLR is to determine the functional 
dependence between input and output values in analytical 
form. ANN is the generalization of the idea of regression 
models. The main advantage of ANN versus classic 
statistical regression analysis is that networks are more 
general functional forms. This is especially important in a 
multidimensional space where regression techniques often 
cannot produce adequate approximation. Also, ANN allows 
simultaneous modeling multivariate output vectors and 
minimization of errors for each individual response. Neural 
network models have the potential to also represent craggy 
response surfaces provided that enough mesh points are 
disposable [13]. However, these two methods are 
complementary in many aspects. 

3.2. Linear regression models 

MLR is a standard method to process experimental data. 
Linearity refers to the unknown parameters, not to the re-
gressors. Linear regression models can result in a non-linear 
response surface. The response surface represents a linear 
combination of regression coefficients iβ  and function 
forms T( )if X , named “basis functions”: 

T

0

( , ) ( )
d

i i
i

fη η β
=

= = ⋅∑β X X  (5) 

where d is the number of basis functions. 

In MLR regression, the unknown coefficients (i iβ =  
0,1, , )d are estimated by values ( 0,1, , )ib i d= obtained 
by using experimental results. Coefficients ib  determine 
the empirical regression model: 

1 2 1 2ˆˆ ( , , , , , , , )k dy x x x b b bη=  (6) 

In this work, we used the following models in linear 
polynomial forms. 

a) First-order MLR, 

0
1

k

i i
i

y b b x
=

= +∑  (7) 

b) First-order MLR with interaction effects, 
1 2 1

0
1 1 1 1 1 1

k k k k k k

i i ij i j ijl i j k
i i j i i j k l j

y b b x b x x b x x x
− − −

= = = + = = + = +

= + + +∑ ∑ ∑ ∑ ∑ ∑  (8) 

where k is the number of input factors (k = 4). 

Regression analysis determines parameters of empirical 
mathematical models. The essence of the method is the 
minimum of sum squared residuals. Dispersion analysis fo-
cuses on reliability. Fisher’s test was used for testing the 
adequacy of the model (F-test) [20-23]. 

Statistical data analyses in this work were performed by 
Fidija regression modeling software.  

For every model from Table 3, the best estimation of the 
regression parameters is given together with its 95% confi-
dence intervals. Also, there are values of F-tests that show 
significant differences between theoretical and calculated 
values of the F-statistics. Results in Table 3 show that none 
of the developed linear models has satisfying accuracy, i.e., 
they are not adequate. 

Second-order terms of polynomial functions are not used 
since they would require the expansion of the experimental 
plan with new experiments, according to the CCD strategy. 

3.3. Neural network model 

In order to reduce further investigation costs for HPSAL 
of nickel laterite, a neural network approach in process 
modeling (based on the same experimental plan) was used. 

The ANN is a simplified mathematical model of natural 
neural network analogous to biological neurons. Neurons 
(nodes) are interconnected to weighted links. The number of 
layers and neurons determines the network complexity (see 
Fig. 2). Weights are usually adjustable and can be trained 
through a learning process and training example. The neural 
feed-forward networks in general and neural networks with 
a BP algorithm in particular are described in detail in Refs. 
[26-28]. 

Typically, the first challenge when designing ANN is to 
determine the appropriate architecture, especially the num-
ber of hidden neurons. If this number is too small, there are 
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Table 3.  Linear regression model structures, values of the regression parameters and their 95% confidence interval, values of 
F-tests, as well as the standard deviation of residuals σres 

First-order linear regressors 

Model: y=β0+β1⋅x1+β2⋅x2+β3⋅x3+β4⋅x4 

β0 0.74541 [0.7375…0.7533] Ft(fR, fE, α)=Ft(12, 6, 0.05)=4, 
β1 −0.04183 [−0.0513…−0.0320] FrLF=79.64, 
β2 0.10532 [0.0959…0.1148] s2(y)=0.0002382, 
β3 0.04149 [0.0320…0.0509] sLF

2=0.018971, 
β4 0.03122 [0.0218…0.0407] FrLF>Ft is not adequate, 
   σres=0.1377353 

Multiple linear regressors with interaction effects (significant terms only) 
Model: y=β0+β1⋅x1+β2⋅x2+β3⋅x3+β4⋅x4+β5⋅x1⋅x2+β6⋅x1⋅x3+β7x1⋅x4+ 

β8⋅x2⋅x3+β9⋅x2⋅x4+β10⋅x3⋅x4+β11⋅x1⋅x2⋅x3+β12⋅x1⋅x2⋅x4+β13x1⋅x3⋅x4+β14⋅x2⋅x3⋅x4 

β0 0.74541 [0.7375…0.7533] Ft(fR, fE, α)=Ft(5, 6, 0.05)=4.39, 
β1 −0.04183 [−0.0513…−0.0320] FrLF=145.63, 
β2 0.10532 [0.0959…0.1148] s2(y)=0.0002382, 
β3 0.04149 [0.0320…0.0509] sLF

2=0.03459, 
β4 0.03121 [0.0218…0.0407] FrLF>Ft is not adequate, 
β5 0.04908 [0.0396…0.0585] β7, β8, β10, β11 are not significant, 
β6 0.01301 [0.0036…0.0225] σres=0.1862538 
β9 −0.01711 [−0.0266…−0.0077]  
β12 −0.01144 [−0.0209…−0.0020]  
β13 0.01668 [0.0072…0.0261]  
β14 −0.01037 [−0.0198…−0.0009]  

Linear regressors with minimum FrLF (significant terms only) 

Model: y=β0+β1⋅x1+β2⋅x2+β3⋅x3+β4⋅x4+β5⋅x1⋅x2 

β0 0.74541 [0.7375…0.7533] Ft(fR, fE, α)=Ft(11, 6, 0.05)=4.035, 
β1 −0.04183 [−0.0513… −0.032] FrLF=72.17, 
β2 0.10532 [0.0959…0.1148] s2(y)=0.0002382, 
β3 0.04149 [0.0320…0.0509] sLF

2=0.017192, 
β4 0.03121 [0.0218…0.0407] FrLF>Ft is not adequate, 
β5 0.04908 [0.0396…0.0585] σres=0.1311171 

 
not enough degrees of freedom to represent data. If it is too 
high, overfitting occurs [28]. In this study, based on Kolo-
mogorov’s theorem, a network with one hidden layer and 
nine neurons was chosen. Fig. 2 describes its structure with 
the following parameters: X is the vector matrix of predictor 
variables, Y is the response, wih is the hidden layer weight 
matrix, and who is the output layer weight matrix. 

The learning process is performed in iterative cycles. 
Each cycle consists of two stages: a step forward and a step 
backward. The step forward implies calculating the output 
value of the network (y1calc) for the given inputs. It starts 
from the first layer that does not perform any processing of 
input values (x1, x2, x3, and x4) but only links the nodes from 

the first layer to all process elements in the hidden layer. 
One process element with a value of 1 is added (bias) into 
the input and hidden layers. Weighing coefficients wij are 
initialized in a random manner from the interval [−0.5, 0.5]. 
Total input jα  in process element j (in the hidden layer) is 
a weighted sum of all inputs xi: 

i

h
0

, 1, 2, ,
N

j i ij
i

x w j Nα
=

= =∑   

(in our model, i h4, 9N N= = ) (9) 

where wij is the weight of the link between neurons i and j, 
Ni is the number of input neurons, and Nh is the number of 
hidden neurons. 
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Fig. 2.  Signal flow in BP neural networks with 4 input, 9 hid-
den, and 1 output neurons. 

The output from process element j in the hidden layer is 
obtained using the corresponding activation (transfer) func-
tion g(x). 

In this study, “bipolar sigmoid transfer function” is used 
(see Fig. 3). 

 

Fig. 3.  Bipolar sigmoid transfer function. 

Accordingly, the output of process element j in the hid-
den layer will be 

1 e( )
1 e

j

j
j jx g

α

α
α

−

−

−
= =

+
  (10) 

Finally, we have the output from process element r, 
which is the output of neural networks: 

1 e( )
1 e

r

r
r ry g

α

α
α

−

−

−
= =

+
 (in our model r=1) (11) 

Then, the mean sum squared error (MSSE) of the output 
vector with reference to measurements is calculated: 

( )2meas calc

1

1 1
2

P

r rt rt
t

E y y
P =

= −∑  (12) 

where t = 1, 2, , P, and P is the number of input/output 
pairs.  

In order to perform the weight correction, we need to de-

termine the error vector, successively for all layers and all 
nodes. According to the evidence detailed in Ref. [27], the 
error for output layer will be 

( ) ( )calc calc meas calc1r r r r ry y y yδ = ⋅ − ⋅ −   (13) 

where δ r is the error vector of output nodes, calc
ry  is the 

output value calculated by ANN, and meas
ry  is the target of 

the output layer. Derivates of the complex functions give 
error in the hidden layer (in the following equation the index 
h stands for the hidden layer): 

( ) ( ) ( )

1
(1 ) ( )

m
h h h

q q q r qr
r

x x w tδ δ
=

= ⋅ − ⋅∑  (14) 

where index q denotes any of hidden nodes, m is the number 
of output neurons, ( )h

qδ  is the error vector of hidden nodes, 
( )h
qx  is the output of each hidden node, δ r  is the error 

vector of output nodes, and ( )qrw t  is the weight vector of 
the output layer, which is taken from previous iteration, ac-
cording to Ref. [27]. 

The correction of weights is performed in the error 
propagation, back from the output to the input layer. The 
correction of the weight wij for process elements i and j, 
between two layers in iteration t+1, is done as follows: 

( ) ( )1 (1 )

( ( ) ( 1))
ij ij j i

ij ij

w t w t x

w t w t

η μ δ

η μ

+ = + ⋅ − ⋅ ⋅ +

⋅ ⋅ − −
  (15) 

where ( )ijw t  is the weight before modification, ( 1)ijw t +  
is the weight after modification, η  is the learning rate (rate 
of convergence between the current solution and the global 
minimum), δ i is the error for process element j, xi is the 
output value of process element i, μ is the momentum that 
helps the network to overcome the local minima, and 

( 1)ijw t −  is the weight of two iterations before the current 
iteration. The speed of convergence cannot be significantly 
affected by increasing the learning rate η  because it can 
lead to “skipping” the error minimum and the oscillation of 
the system. 

In this work, the learning rate η  takes the value of 0.8, 
while momentum constant μ takes the value of 0.9. All in-
puts and outputs (see Fig. 2) were normalized in the interval 
[−1, 1] using linear scaling. 

The process of weight correction is performed in a series 
of successive learning cycles. The training process can be 
terminated by any of the following criteria: total time of 
learning, total number of learning cycles, or criteria defined 
by learning error. In this article, the criterion for interrupting 
the training process is defined by the maximal number of 
learning cycles (50000 cycles). At the end of the learning 
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process, neural network knowledge is encoded in the 
weighing coefficients. 

The BP algorithm and the learning method described 
above are the basis of authors’ neural modeling software 
Neuro2010 [30]. 

Since the performance of BP can depend on initial values 

of weights and on the details of the training process, in this 
study, the modeling process is repeated more than 30 times. 
At the end of the repeated training procedure, the most suc-
cessful network (with the lowest learning error) is chosen as 
the relevant. The obtained value of MSSE is E=1.7×10−6. 
The comparison of experimental and calculated values ob-
tained for 17 experimental points is given in Table 4. 

Table 4.  Experimental and ANN model results in 17 points 

No. 1 2 3 4 5 6 7 8 9 
T/°C 250 230 230 250 230 250 250 250 230 

c 0.4 0.24 0.24 0.4 0.4 0.4 0.24 0.24 0.4 
v/(r·min-1) 250 1500 1500 1500 250 1500 250 1500 1500 

t/min 30 60 30 60 60 30 30 30 30 
ymeasured 0.875 0.867 0.7569 0.9994 0.9276 0.9654 0.5408 0.5678 0.9254 
ycalculated 0.875000 0.867001 0.756899 0.998373 0.927605 0.965414 0.541480 0.567802 0.925399

No. 10 11 12 13 14 15 16 17  
T/°C 240 230 250 250 250 230 230 230  

c 0.32 0.4 0.24 0.24 0.4 0.4 0.24 0.24  
v/(r·min-1) 875 1500 1500 250 250 250 250 250  

t/min 45 60 60 60 60 30 30 60  
ymeasured 0.6165 0.9402 0.7263 0.5884 0.8187 0.8073 0.7282 0.7985  
ycalculated 0.616490 0.940207 0.726299 0.588395 0.818699 0.807301 0.728199 0.798502  

 
Fig. 4 shows the MMSE during the learning process as a 

function of the number of cycles. Fig. 5 gives a comparison 
between calculated and measured values in several learning 
steps. 

 
Fig. 4.  MSSE during the learning process. 

4. Results and discussion 

4.1. Model analysis 

Since the objective function (Ni extraction) depends on 
four parameters, 3D representation of the response surface is  

 
Fig. 5.  Comparison of measured and ANN values after 200 
and 50000 learning cycles. 

not possible. However, there are 3D plots of the response 
surface obtained by using neural network models for some 
selected constant factor values. Some typical diagrams are 
shown in Figs. 6-8. 

As shown in Fig. 6, at a constant temperature of 250°C 
and at a constant leaching time of 60 min, increasing the c 
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Fig. 6.  Response surface of leaching experiment at T=250°C 
and t=60 min. 

 
Fig. 7.  Response surface of leaching experiment at T=230°C 
and v=1500 r⋅min−1. 

 
Fig. 8.  Response surface of leaching experiment at v=875 
r⋅min−1 and t=30 min. 

ratio and stirring speed can increases the extraction of nickel. 
At a lower c ratio up to 0.30 and a stirring speed between 
250 and 500 r/min, the extraction of nickel is insufficient. A 
further increase of c up to 0.4 and stirring speed to 1500 
r/min leads to the increasing of nickel extraction. In contrast 
to an experimental work that gives only one result, this 
computer model of HPSAL offers results for arbitrary com-
binations of reaction parameters. It helps us to understand 
the changes in the system and the influence of various ex-
perimental conditions without performing new experiments. 

At the minimum chosen temperature and maximum stir-
ring speed (see Fig. 7), the nickel extraction decreases by 
increasing the c ratio between 0.2 and 0.3. This is because of 
an expected formation of basic sulfate during leaching. 
These results should be tested in further experimental work. 
A further increase of c leads to an increase of nickel extrac-
tion. 

At a constant stirring speed of 875 r/min in 30 min (see 
Fig. 8) and a minimum c ratio of 0.24, the increase of tem-
perature between 230 and 250°C leads to the decrease of 
nickel extraction. If the c ratio is increased from 0.24 to 0.30, 
the trend of decrease of nickel extraction stays without 
changes. This behavior could be explained by insufficient 
stirring in the system. Under the same conditions and a 
highest c ratio about 0.35 to 0.4, the increase of temperature 
leads to an increasing nickel extraction. 

In order to obtain a maximum percentage of nickel re-
gardless of costs, the regimens in Fig. 6 should be used. 
However, it can be seen from Fig. 8 that the following pa-
rameters give a sufficient percentage of nickel (93%-95% 
from 1.13% available in nickel ore) with less costs (shorter 
reaction time and lower temperature): temperature of 240°C, 
sulfuric acid to ore mass ratio of 0.35 to 0.4, stirring speed 
of 875 r/min, and leaching time of 30 min,. Fig. 8 suggests 
that the further increasing of temperature and acid concen-
tration would increase the extraction of nickel additionally. 
However, as explained earlier (section 2.2), designing ex-
periments in this direction would probably lead to dangerous 
oxidation and explosion. Some researchers have worked at a 
temperature interval of 270 to 280°C, but that is the subject 
of further technical analysis in terms of work safety and 
process costs. 

4.2. Sensitivity analysis 

The software generated in this work can test different 
combinations of reaction parameters in order to investigate 
their influence on nickel extraction and propose an optimal 
experimental setup. Using ANN, sensitivity analysis was 
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carried out to determine the relative significance of each of 
the input parameters. The sensitivity analysis method is de-
scribed by Rashidi et al. [17].  

The sensitivity for each input factor was calculated using 
the following equation:  

( )

1

1 , 1,2, ,
N

i
j j

i
s s j k

N =
= =∑  (16) 

where k is the number of input factors and N is the number 
of measurements. Sensitivity ( )i

js is the absolute change of 
the percent of Ni when the j-th input factor is varied while 
other factors remain constant and equal to those in the i-th 
observation.  

Values of ( )i
js are determined by the following relation-

ship: 

( ) ( ) (max) (min)
ANN ( )

100
i i
j j j js f x x xΔ⎡ ⎤= + ⋅ −⎢ ⎥⎣ ⎦

 (17) 

where ( )i
jx is the i-th value of the input parameter xj, Δ is the 

amount of the input parameter change (in percents),  
(max) (min)
j jx x− is the range of the j-th input factor and fANN is  

the “mapping function” defined by weights of the developed 
ANN model of HPSAL for nickel laterite. 

The mean absolute changes of obtained Ni for Δ equal to 
−20%, −10%, 10% and 20% are presented in Fig. 9. 

As shown in Fig. 9, sulfuric acid to ore mass ratio and 
stirring speed have a big influence on the leaching process. 
The influence of temperature between 230 and 250°C is not 

of big importance. However, it should be noted that the in-
fluence of temperature is inverse. After 30 min of starting 
the process, the high amount of nickel is dissolved. Under 
these conditions, temperature increasing leads to forming a 
sulfated compound that probably contains nickel, which can 
be the explanation for such an inverse influence. 

 

Fig. 9.  Sensitivity analysis of HPSAL for nickel laterite. 

4.3. Comparison of regression models and neural net-
work 

It can be concluded (see Table 3) that none of linear re-
gression models with linear regressors are appropriate to 
model the process. The comparison between a standard de-
viation of residuals for the best linear regression model and 
a neural network model based on the BP algorithm is shown 
in Table 5. 

Table 5.  Comparison of σres for the best linear regression model and neural BP model 

Estimated measurement error s2(y)=0.0002382 

Linear regressors with minimum FrLF (significant terms only) 
Model: y=β0+β1⋅x1+β2⋅x2+β3⋅x3+β4⋅x4+β5⋅x1⋅x2 

σres=0.1311171, 
Ft(fR, fE, α)=Ft(11, 6, 0.05)=4.035, FrLF=72.17 

BP neural network model with 9 hidden neurons after 50000 learning cycles E = 0.0017×10−3, σres=0.000411 
 
The given residual dispersion of the applied neural net-

work model (σres-ANN=0.000411) compared with the residual 
dispersion of the regression model (σres-MLR=0.1311171) in-
dicates a significantly higher accuracy of the model based 
on ANN. 

5. Conclusion 

Based on the DOE theory, MODDE and Fidija software 
packages have been successfully used in planning experi-
ments in the improvement and development of methods 
related to the production of nickel by HSPAL. RSM and 
CCD strategies to model the process with MLR were used. 

The complexity of relations in the leaching process with 
four factors causes the proposed linear regression models 
not to be adequate. Therefore, the analysis with neural net-
works came as a subsequent step. The model is based on 
ANN with a BP learning algorithm and a bipolar sigmoid 
transfer function. Using software Neuro2010, the process 
was modeled with high accuracy (E=0.0017×10−3, σres= 
0.000411). Sensitivity analysis was carried out to determine 
the relative significance of each of the input variables. It was 
found that sulfuric acid to ore ratio and stirring speed are the 
most important variables in the system. The results also show 
an indirect influence of temperature in the chosen interval. 
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The developed software can test different combinations 
of predictor variables. The analyses lead to the following 
conclusions. (1) The maximum percentage of nickel, re-
gardless of operational costs, can be obtained at the follow-
ing values: T ≈247-250°C, c ≈ 0.4, v ≈1437-1500 r/min, and 
t ≈58.5-60 min. (2) If safety and operational costs are taken 
into account, a sufficient percentage of nickel (93%-95% 
from 1.13% available in nickel ore) can be obtained using 
values of factors: T ≈ 240°C, c ≈ 0.35-0.4, v ≈ 875 r/min, 
and t ≈ 30 min. 

These values correspond to the actual parameter domain 
and suggest that the resulting model based on a BP neural 
network is successfully applied. The results of modeling 
would have been even better if the number of experimental 
data had been made larger. The lack of data testing set can 
be overcome in further research in order to improve the pre-
sented ANN model for HPSAL of nickel laterite; especially, 
the self-interactive of parameters using recurrent and differ-
ent kinds of networks will be investigated. A detailed analy-
sis of operational costs and environmental impact can be the 
subject of our further techno-economical research. 
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