Effect of SiO₂ addition on the microstructure and electrical properties of ZnO-based varistors

Zhen-hong Wu¹⁾, Jian-hui Fang^{1,2)}, Dong Xu³⁾, Qin-dong Zhong³⁾, and Li-yi Shi^{1,3)}

1) Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, China

2) School of Science, Shanghai University, Shanghai 200444, China

3) School of Material Science and Engineering, Shanghai University, Shanghai 200072, China

(Received: 5 January 2009; revised: 10 February 2009; accepted: 17 February 2009)

Abstract: The microstructure and electrical properties of ZnO-based varistors with the SiO₂ content in the range of 0-1.00mol% were prepared by a solid reaction route. The varistors were characterized by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry, inductively coupled plasma-atomic emission spectrometry, and X-ray photoelectron spectroscopy. The results indicate that the average grain size of ZnO decreases with the SiO₂ content increasing. A new second phase (Zn₂SiO₄) and a glass phase (Bi₂SiO₅) are found. Element Si mainly exists in the grain boundary and plays an important role in controlling the Bi₂O₃ vaporization. The electric measurement shows that the incorporation of SiO₂ can significantly improve the nonlinear properties of ZnO-based varistors, and the nonlinear coefficients of the varistors with SiO₂ are in the range of 36.8-69.5. The varistor voltage reaches the maximum value of 463 V/mm and the leakage current reaches the minimum value of 0.11 μ A at the SiO₂ content of 0.75mol%.

Keywords: inorganic materials; varistor; silicon dioxide; electrical properties

1. Introduction

ZnO-based varistors are polycrystalline ceramic devices which exhibit highly nonlinear current-voltage characteristics that are often expressed by $I = KV^{\alpha}$, where K is a constant, V is the voltage, and α is the nonlinear exponent [1-2]. This extensive nonohmic characteristic together with an ability of repeatedly withstanding relatively high power pulses has resulted in the widespread application of varistors as voltage surge protectors in electrical circuits since the 1970s [3-4]. Most commonly varistors are produced by sintering ZnO powder together with small amounts of oxide additives, such as Sb₂O₃, Bi₂O₃, Co₂O₃, MnO₂, and Cr₂O₃[5-9]. These oxide additions can affect the varistor properties in two ways: (1) directly, in an electrical sense, as in the case of Bi₂O₃ which segregates at the grain boundaries and relates to the nonlinearity of the current voltage characteristics [6, 10]; (2) indirectly, by affecting the microstructural development of a ceramic body during firing. One interesting group of additive oxides is that which reacts with ZnO to

form a second phase with the spinel structure, such as Sb_2O_3 and Al_2O_3 [5, 11]. The other is Bi_2O_3 , as a sintering aid due to the formation of a ZnO- Bi_2O_3 eutectic at 750°C, plays an essential role in imparting nonlinear behavior to the material [12]. However, the Bi_2O_3 liquid phase starts to vaporize from its inception and keeps vaporizing during the entire sintering procedure. This means that the composition is likely to change after sintering due to the Bi_2O_3 vaporization which may affects the properties of ZnO varistors [7, 13].

Recently, several literatures [14-16] reported that SiO_2 could control the sintering mechanism, tremendously enhance the nonlinearity, and increase the density of traps considerably. In the present study, ZnO-Bi₂O₃ varistors were fabricated with the SiO₂ additive to scrutinize the effect of SiO₂ content on the microstructure, and hence the electrical properties of ZnO-Bi₂O₃ varistors, such as the breakdown voltage, leakage current, nonlinear coefficient, and field current density (*E-J*) characteristics, could be improved significantly. In addition, the Bi₂O₃ vaporization affected by

Corresponding author: Li-yi Shi E-mail: sly0726@163.com

[©] University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2010

the SiO₂ content was also discussed.

2. Experimental procedure

2.1. Sample preparation

ZnO-based varistor samples with the composition of (96.50-x)mol% ZnO+0.70mol% Bi₂O₃+1.00mol% Sb₂O₃+ 0.80mol% Co₂O₃+0.50mol% Cr₂O₃+0.50mol% MnO₂+ xmol% SiO₂ for x=0, 0.25, 0.50, 0.75, and 1.00 (samples labeled a, b, c, d, and e, respectively) were chosen for investigation. The reagent-grade ZnO powder and additives were milled together in ethanol in a polyethylene jar for 5 h using zirconia balls as the milling media in a planetary ball mill operated at 500 r/min. The mixture was dried at 70°C for 24 h. After 2wt% polyvinyl alcohol binder addition, the mixture was milled again using an agate mortar to produce the starting powder. The powder was uniaxially pressed into disks of 12 mm in diameter and 2 mm in thickness, and around 56% of the theoretical density (TD, 5.67 g/cm³). The green pellets were placed on an alumina crucible covered with ZnO powders to separate the samples from the alumina crucible and prevent material diffusion into the substrate, then were sintered in air at 1100°C for 2 h at a heating rate of 5°C/min followed by cooling in the furnace.

2.2. Microstructure analysis

For microstructure analysis, the cross-section of the samples were ground and polished, then part of the samples were etched chemically by dilute acid for about 10 min to expose the grain boundaries for the stereological analysis. The surface microstructures were examined by a scanning electron microscope (SEM, FEI QUANTA 400) in a backscattered electron (BE) mold. The other polished (un-etched) part of the samples were used to analyze the phase composition by X-ray diffractometry (XRD, Rigaku D/max 2200, Japan) using a Cu K_a radiation. The compositional analysis of the selected areas was determined in the SEM by energy dispersive X-ray spectrometry (EDS). The X-ray photoelectron spectrum (XPS) was recorded on a PHI-5000C ESCA system (Perkin Elmer) with Al K_{α} radiation. The average grain sizes (d) were determined by the linear intercept method, given by d=1.56L/MN, where L is the random line length on the micrograph, M is the magnification of the micrograph, and N is the number of the grain boundaries intercepted by lines [17]. The Bi₂O₃ content of the sintered varistors was measured using an inductively coupled plasma-atomic emission spectrometer (ICP-AES) (Perkin-Elmer, America). The density of the pellets (ρ) was measured geometrically.

2.3. Electrical measurements

To measure the electrical properties, silver paste was placed on both surfaces of the samples and heated at 600°C for 10 min. The size of electrodes was 5 mm in diameter. The electric field strength-current density (*E-J*) characteristics were measured using a DC parameter instrument for varistor (Model CJ1001). The nominal varistor voltages (V_N) at 0.1 mA ($V_{0.1 \text{ mA}}$) and 1 mA ($V_{1 \text{ mA}}$) were measured. The threshold voltage (V_T , V/mm), which was the breakdown voltage per unit thickness of varistor ceramic, was measured by $V_T = V_{1 \text{ mA}}/d$, where *d* was the thickness of the sample in mm. The leakage current (I_L) was measured at 0.75 $V_{1 \text{ mA}}$. The nonlinear coefficient (α) was obtained from the equation $\alpha = 1/\lg(V_{1 \text{ mA}}/V_{0.1 \text{ mA}})$ [2].

3. Results and discussion

3.1. Microstructure

Fig. 1(a) shows the XRD patterns of the samples with different SiO₂ contents. The patterns show the existence of $Zn_7Sb_2O_{12}$ spinel phase and the Bi-rich phase in all the samples in addition to the ZnO phase. The additional peak of Zn_2SiO_4 phase is only found in the sample with the SiO₂ content of 1.00mol%, while other samples do not show the additional peak because of their small amount of SiO₂, *i.e.*, less than 1.00mol%. In addition, a new phase, Bi₂SiO₅, is found in all the samples, the peaks of which are very weak at 29.28°, shown as the local magnified image in Fig. 1(b). Bi₂SiO₅, as a glass phase, can make the liquid phase wet the grain boundaries more easily, and is helpful to the atomic Bi absorbed on the surfaces of ZnO grains. Thus, the addition of SiO₂ is helpful in controlling the Bi₂O₃ vaporization from ZnO-based varistors.

Fig. 2 shows the back-scattered electron images (BEI) of the samples with different SiO₂ contents. The microstructures do not have much difference from each other with increasing the SiO₂ content except for the grain size. The sample with 0.50mol% SiO₂ appears more homogeneous in comparison to other samples. The average grain size of the samples determined by the linear intercept method is presented in Fig. 3. It markedly decreases with increasing the SiO₂ content, which can be accounted by the generation of the secondary phase (Zn₂SiO₄ and Zn₇Sb₂O₁₂). Beyond the SiO₂ content of 0.50mol%, the average grain size of ZnO changes a little. Fig. 3 also presents the density (ρ) of the samples with different SiO₂ contents. It increases first and then decreases. The sample with 0.50mol% SiO₂ exhibits the highest density at 5.52 g/cm³ corresponding to 97.69% of the theoretical density (5.65 g/cm³ in ZnO). In addition, doping Sb_2O_3 to the ZnO-Bi₂O₃ based varistors results in the formation of inversion boundaries (IBs), shown in Fig. 2(a). Recent findings [18-20] have revealed that IBs play a crucial role *via* the so-called IBs-induced grain-growth mechanism

and microstructural development of varistor ceramics. It is generally known that IBs are related to the Sb_2O_3/Bi_2O_3 ratio, and the amount of Bi_2O_3 is affected by the sintering process.

Fig. 1. XRD patterns of the samples: (a) with different SiO₂ contents; (b) with the SiO₂ content of 1.00mol%.

Fig. 4(A) shows the wide survey XPS spectra of samples

(a) and (e), the composites mainly contain elements Zn, O,

and C (contamination carbon). Fig. 4(B) shows that the binding energy of the Si2p photoelectron peak is 103 eV, which is neither the peak of pure Si (99.5 eV) nor that of Si^{4+} in SiO₂ (103.6 eV) [21].

As shown in Fig. 4(D), the binding energy of the O1s photoelectron peak of sample (e) is 532.2 eV (the standard value is 532.5 eV), it shifts to high binding energies compared to sample (a). These results indicate that element O is a little deficient in the SiO₂ crystal lattice and SiO₂ is the main existence form of Si and O elements in sample (e). Fig. 4(C) displays the binding energies of Zn2p for samples (a) and (e). The binding energy for Zn2p of sample (a) is 1020.1 eV. After doping 1.00mol% SiO₂, the peak shifts to the higher binding energy of 1022.4 eV. This can be explained as element Si is substitutional or interstitial at the Zn site of the ZnO crystal, and then a chemical-defect reaction is created. Using Kroger-Vink notation, the reaction can be expressed as

$$2\text{SiO}_2 \rightarrow \text{Si}_{\text{Zn}}^{2+} + 2e + \text{SiO}_2 + O_2$$

where Si_{Zn}^{2+} is two positively charged Si ions substituted for Zn lattice site.

SiO₂, as glass phase, has high insulation. The oxygen generated in the above reaction affects the donor concentration. Si $_{Zn}^{2+}$ as a positive charged center can enhance the ability of bound electron, and then make the binding energy of Zn2p shift higher. This was further confirmed by the EDS study (Fig. 5) which obviously showed the presence of Si peaks at the grain boundary as well as within the grain.

Fig. 3. Density (ρ) and average grain size (d) of the samples with different SiO₂ contents.

Fig. 4. Wide survey XPS spectra of samples (a) and (e) (A), XPS Si2p spectra of sample (e) (B), XPS Zn2p spectra of samples (a) and (e) (C), and XPS O1s spectra of samples (a) and (e) (D).

3.2. Electrical characteristics

Table 1 shows the V-I characteristic parameters of the varistors. It can be seen that the nonlinear coefficient (α) of the varistor without SiO₂ is 29.5, whereas the value of α of the varistors with SiO₂ abruptly increases in the range of 36.8-69.5. The maximum value of α is obtained at 1.00mol% SiO₂. Furthermore, it is changed a little beyond the SiO₂ content of 0.75mol%. The leakage currents are all less than 0.5 μ A, and the minimum value is 0.11 μ A at 0.75mol% SiO₂. As the SiO₂ content increases, $V_{\rm T}$ first increases and then decreases. It reaches the maximum of 463 V/mm at the SiO₂ content of 0.75mol%. The results indicate that the varistor with 0.75mol% SiO₂ has the best electrical properties. The amount of Bi2O3 vaporization of the samples with SiO₂ are all lower than that without SiO₂, which can be attributed to the formation of Bi₂SiO₅ phase and Zn₂SiO₄ phase.

Fig. 5. EDS analysis of the samples with 0.75mol% SiO₂.

 Table 1.
 V-I characteristic parameters and Bi₂O₃ vaporization of the samples with different SiO₂ contents

SiO ₂ content / mol%	$V = V_{\rm T} / ({\rm V \cdot mm^{-1}})$	<i>I</i> _L / μΑ	Bi ₂ O ₃ vaporization / wt%	α
0.00	332	0.15	28.4	29.5
0.25	355	0.38	15.9	36.8
0.50	462	0.16	18.0	48.3
0.75	463	0.11	21.6	67.7
1.00	460	0.12	19.5	69.5

Fig. 6 shows the electric field strength-current density (E-J) characteristics of ZnO-based varistors with different SiO₂ contents. It shows that all the samples have similar *E-J* curves with a sharp transition from the low current zones to

the nonlinear regions. The electrical conduction characteristics are divided into two regions: a linear *E-J* relationship before the critical operation field and a nonlinear *E-J* relationship after the critical operation field. Nahm [22] reported that the sharper the knee of the curves between the two regions was, the better the nonlinear properties were. In Fig. 6, only samples (a) and (b) show a much gentler transition indicating a poor electrical response. This result is consistent with the characteristic parameters shown in Table 1.

Fig. 6. E-J characteristics of the samples with various SiO₂ contents

4. Conclusions

ZnO-based varistors were prepared with different SiO₂ contents by a solid reaction route. The average grain size of ZnO decreases from 8.50 to 5.85 μ m with the SiO₂ content increasing. The analyses using EDS and XPS indicate that element Si distributes in the grain boundary as well as in the grains. Two new phases, Zn₂SiO₄ and Bi₂SiO₅, are found in the varistors with SiO₂. The results of ICP-AES show that the amount of Bi₂O₃ vaporization in all the varistors with SiO₂ is lower than that without SiO₂. $V_{\rm T}$ and α of the varistors increase with the SiO₂ content increasing. $V_{\rm T}$ reaches the maximum value of 463 V/mm at the SiO₂ content of 0.75mol%, and α reaches the maximum value of 69.5 at the SiO_2 content of 1.00mol%, respectively. The I_L exhibits a minimum value of 0.11 µA at 0.75mol% SiO₂. Considering all the data of electrical properties and density, the best value of SiO₂ addition in ZnO-based varistors is 0.75mol%.

References

- D.R. Clarke, Varistor ceramics, J. Am. Ceram. Soc., 82(1999), p.485.
- [2] D. Xu, L. Shi, Z. Wu, et al., Microstructure and electrical

Z.H. Wu et al., Effect of SiO₂ addition on the microstructure and electrical properties of ZnO-based varistors

properties of ZnO-Bi₂O₃-based varistor ceramics by different sintering processes, *J. Eur. Ceram. Soc.*, 29(2009), p.1789.

- [3] M. Matsuoka, Nonohmic properties of zinc oxide ceramics, *Jpn. J. Appl. Phys.*, 10(1971), p.736.
- [4] T.K. Gupta, Applications of zinc oxide ceramics, J. Am. Ceram. Soc., 73(1990), p.1817.
- [5] T. Takemura, M. Kobayashi, Y. Takada, and K. Sato, Effects of antimony oxide on the characteristics of ZnO varistors, J. Am. Ceram. Soc., 70(1987), p.237.
- [6] E. Olsson and G.L. Dunlop, The effect of Bi₂O₃ content on the microstructure and electrical properties of ZnO varistor materials, *J. Appl. Phys.*, 66(1989), p.4317.
- [7] M. Peiteado, M.A. De, M.J. Velasco, *et al.*, Bi₂O₃ vaporization from ZnO-based varistors, *J. Eur. Ceram. Soc.*, 25(2005), p.675.
- [8] C.C. Lin, W.S. Lee, C.C. Sun, and W.H. Whu, The influences of bismuth antimony additives and cobalt manganese dopants on the electrical properties of ZnO-based varistors, *Compos. Part B*, 38(2007), p.338.
- [9] S.G. Cho, H. Lee, and H.S. Kim, Effect of chromium on the phase evolution and microstructure of ZnO doped with bismuth and antimony, *J. Mater. Sci.*, 32(1997), p.4283.
- [10] K.O. Magnusson and S. Wiklund, Interface formation of Bi on ceramic ZnO: a simple model varistor grain boundary, J. Appl. Phys., 76(1994), p.7405.
- [11] S. Bernik and N. Daneu, Characteristics of ZnO-based varistor ceramics doped with Al₂O₃, *J. Eur. Ceram. Soc.*, 27(2007), p.3161.
- [12] J. Ott, A. Lorenz, M. Harrer, *et al.*, The influence of Bi₂O₃ and Sb₂O₃ on the electrical properties of ZnO-based varistors, *J. Electroceram.*, 6(2001), p.135.

- [13] C. Lin, Z. Xu, P. Hu, and D.F. Sun, Bi₂O₃ vaporization in microwave-sintered ZnO varistors, J. Am. Ceram. Soc., 90(2007), p.2791.
- [14] R. Einzinger, Metal oxide varistors, Ann. Rev. Mater. Sci., 17(1987), p.299.
- [15] T.R.N. Kutty and S. Ezhilvalavan, The role of silica in enhancing the nonlinearity coefficients by modifying the trap states of zinc oxide ceramic varistors, *J. Phys. D*, 29(1996), p.809.
- [16] S.J. So and C.B. Park, Improvement in the electrical stability of semiconducting ZnO ceramic varistors with SiO₂ additive, *J. Korean Phys. Soc.*, 40(2002), p.925.
- [17] C.W. Nahm, Effect of cooling rate on degradation characteristics of ZnO·Pr₆O₁₁·CoO·Cr₂O₃·Y₂O₃-based varistors, *Solid State Commun.*, 132(2004), p.213.
- [18] B.A. Haskell, S.J. Souri, and M.A. Helfand, Varistor behavior at twin boundaries in ZnO, J. Am. Ceram. Soc., 82(1999), p.2106.
- [19] A. Rečnik, N. Daneu, T. Walther, and W. Mader, Structure and chemistry of basal-plane inversion boundaries in antimony oxide doped zinc oxide, *J. Am. Ceram. Soc.*, 84(2001), p.2657.
- [20] S. Bernik, N. Daneu, and A. Rečnik, Inversion boundary induced grain growth in TiO₂ or Sb₂O₃ doped ZnO-based varistor ceramics, *J. Eur. Ceram. Soc.*, 24(2004), p.3703.
- [21] C.N. Ye, N.Y. Tang, X.M. Wu, et al., XPS analysis of Ge-SiO₂ thin film, *Microfabr. Technol.* (in Chinese), 1(2002), p.36.
- [22] C.W. Nahm, The effect of sintering temperature on electrical properties and accelerated aging behavior of PCCL-doped ZnO varistors, *Mater. Sci. Eng. B*, 136(2007), p.134.