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Abstract
Purpose of Review Breast cancer is a complex disease that is fueled by genetic as well as non-genetic factors. As data risk
estimates become better, stratifying a woman’s risk for breast cancer can lead to better prevention strategies. The purpose of this
review is to introduce the polygenic risk score (PRS) and shed light on its clinical applications as well as shortcomings in the field
of breast cancer prevention.
Recent Findings A PRS combines relevant single-nucleotide polypeptides (SNPs) and generates an estimated risk of a specific
cancer. It has the ability of questioning the whole genome and incorporating the added benefit of an individualized assessment.
The PRS has become a part of the risk assessment evaluation without being officially approved.
Summary The benefit of the PRS can be substantial and holds the promise of improved breast cancer prevention. However, more
studies are needed to justify its routine use in our clinics.
Trial Registration NCT03688204
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Introduction

Breast cancer remains the most common type of female ma-
lignancy diagnosed in the Western world and the second most
common cause of death in all women [1, 2].

Known risk factors for breast cancer include aging, early
menarche, first live birth, late menopause, proliferative breast
disease, and family history. Environmental factors including
diet and lifestyle have also been implicated but their associa-
tion with breast cancer risk has been less well demonstrated.
Because family history is one of the strongest predictors of a
woman’s chance of developing breast cancer, researchers
turned to cancer-prone families to find specific inherited ge-
netic alterations that could be the culprit. After decades of
research, two genes were found that are altered in many fam-
ilies with hereditary breast cancer. In 1994 and in 1995,
BRCA1 (BReast CAncer gene) and BRCA2 were discovered,

respectively [3–6]. The search for other genes continued, and
recently, several more genes, such as p53, STK11, CDH1,
PALB2, PTEN, and the mismatch repair genes have been
found to be associated with breast cancer risk [7]. These genes
confer an extremely elevated lifetime risk of breast cancer,
which can be as high as 80%. However, those genes are rare
and account for only up 5% of breast cancer [8–10].

Research turned towards SNPs or single nucleotide poly-
morphisms for identification of additional genetic risk. SNPs
are the most common genetic variation identified in a popula-
tion. About 10 million SNPs are found in the human genome,
and they make up more than 1% of the human genomic pro-
file. An individual is estimated to carry between 2.8 and 3.9
million single–base pair variants. When considered individu-
ally, SNPs confer a very small increased risk. However, risks
from several SNPs can be combined into what has been called
a polygenic risk score (PRS) to provide a more significant
estimation of risk. The PRS is calculated as the summation
of the number of risk alleles multiplied by their presumed odds
ratio of causing breast cancer [11]. The generated score is then
used to predict an individual predilection for a specific dis-
ease. This approach can be used to build a powerful risk pre-
diction model.

There has been renewed interest in the PRS to predict phe-
notypic differences and predisposition to common diseases.
Major milestones have contributed to the PRS application
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including the generation of genome-wide association studies
(GWAS) and the availability of large cohort studies with long
follow-ups. Large GWAS and public datasets with easy reach
to scientists worldwide like for example the UK biobank have
made the PRS an attractive clinical tool [12]. The hope is that
genomic profiling can ultimately stratify an individual’s risk
for any disease and improve methods of screening as well as
prevention.

Early clinical applications have been conducted in plant,
animal, and behavioral genetics. In plants, GWAS and SNP
studies identified seven major regions responsible for iron
deficiency chlorosis in soybean [13]. Interesting enough, the
PRSs are widely used in animal breeding also called genomic
prediction, where they help in livestock breeding [14]. Early
studies in humans have used the PRS to predict educational
attainment by the age of 16 or even predisposition for psycho-
logical and psychiatric diseases such as schizophrenia
[15–17]. Other applications have been in coronary artery dis-
ease [18], type 2 diabetes, and more recently other diseases
including malignancies.

During the past decade, the focus has shifted to the field of
cancer prevention and screening. Prostate cancer studies
showed that the PRS can possibly be used to predict high risk
vs. low risk for malignancy, leading to better-individualized
care [19]. In a large Swedish population-based study, adding a
PRS on prediction models for prostate cancer helped decrease
the numbers of unnecessary prostate biopsies from 12 to 5%
without missing cases of aggressive cancer [20].

The PRS is gaining incredible momentum in the breast
cancer field. It is shedding light on a large proportion of the
familial risk in women with breast cancer that have no patho-
genic deleterious mutation in high- or moderate-risk breast
cancer genes [21–23]. This review will discuss the variety of
the PRSs published today, review their clinical applications,
and highlight the limitations currently associated with the use
of the PRS.

Discovery of SNPs and Associationwith Breast
Cancer Risk

In 2005, 2 large cooperative groups, the Cancer Genetic
Markers of Susceptibility (CGEMS) Breast Cancer
Consortium and the Breast Cancer Association Consortium
(BCAC), started using the GWAS to identify SNPs that in-
crease breast cancer risk [24, 25•]. Soon after, Easton and
colleagues identified the first five breast cancer risk loci
(FGFR2—rs2981582, 8q24—rs13281615, LSP1—
rs3817198, TNRC9—rs3803662, and MAP 3K1—
rs889312) in a three-stage GWAS of Caucasian women that
involved several thousands of controls and cases [25•]. To this
day, SNPs in the FGFR2 remain among the strongest loci
implicated with breast cancer.

By 2015, 79 breast cancer susceptibility loci had been pub-
lished, and 71 of those were confirmed in a 2015 meta-
analysis including the data from BCAC and 11 additional
GWAS [26]. That meta-analysis included 62,533 breast can-
cer cases and 60,976 controls and was able to identify 15 new
breast cancer susceptibility loci which brought the total num-
ber of identified SNPs to 94.

More recently, the largest breast cancer GWAS to date used
the Illumina OncoArray BeadChip, which included approxi-
mately 570,000 SNPs to study over 100,000 cases. 61,282
breast cancer cases and 45,494 controls of European ancestry
were genotyped using that OncoArray platform, and results
were used in a meta-analysis that led to the discovery of even
more specific SNPs. To date, the identified breast cancer sus-
ceptibility loci or SNP account for approximately 18% of the
familial risk for breast cancer [27, 28].

More homogenous populations with specific subtypes of
cancer are currently being investigated to generate more infor-
mative SNPs. It is interesting that many variants confer risks
that differ by breast cancer subtypes suggesting that subtype-
specific PRS might predict for a subtype specific disease
[29–34]. In Jan 2019, Mavaddat and colleagues published
data from 79 studies conducted by the BCAC. They reported
the development and validation of the PRS for breast cancer
optimized for prediction of subtype-specific disease. The data
was based on the largest available GWAS dataset using 313
breast cancer-specific SNPs [35]. Interestingly, the prediction
was significantly better for estrogen-positive (ER+) tumors as
compared with estrogen-receptor-negative. However, this was
no surprise, since ER+ tumors are much more common and
are represented more frequently in the GWAS data sets. That
makes the GWAS less powerful in predicting estrogen-
receptor-negative subtypes. As a result, more efforts led by
the Triple Negative Breast Cancer Consortium (TNBCC),
among other groups are focusing specifically on identifying
SNPs directly linked to triple negative disease [31–34]. Larger
data sets for the GWAS analysis are still however needed for
prediction of less common disease subtypes [36].

PRS, Breast Cancer Risk Models, and Clinical
Application

Identifying specific SNPs and generating a PRS remain only
one part of breast cancer risk assessment. A comprehensive
approach to adequate risk stratification does require the incor-
poration of the genetic risk with other well-known risk factors
including age, family history, menstrual history, BMI, and
breast biopsies and use of HRT.

At present, the PRS is being investigated as an added com-
ponent in several risk prediction models like Tyrer-Cuzick,
Gail, and BRCAPRO. Both multiplicative and non-
multiplicative risk models have been proposed as another
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way to incorporate all those risk factors [37]. Recently, Dr.
Cuzick and colleagues generated a combined approach to im-
proving breast cancer risk stratification to enable more early
targeted preventive strategies. They proposed a better predic-
tive risk by incorporating the PRS with breast density as well
as the Tyrer-Cuzick model [38]. Studies of the PRS interaction
with lifestyle and hormonal risk factors are currently ongoing.
The goal is to come up with a formula that provides an accu-
rate estimate of a lifetime risk (SNP × lifestyle/hormonal fac-
tors) [39].

Knowing their individualized risk profile can help the pa-
tient and his/her health provider make better informedmedical
decisions. This personalized model can ultimately affect 3
important areas: (1) screening recommendations, (2) preven-
tion recommendations, and (3) compliance to both screening
and preventive recommendations which is ultimately the most
important goal.

Concerning screening recommendations, in healthy wom-
en, a prediction model for breast cancer can be the answer to
the frequency of mammograms and reduce screening interval
in the high risk whereas increasing screening interval in the
low risk. A woman with a low risk score might need every
other year screening, whereas a woman with a high score
would benefit from more aggressive screening on every 6-
month basis.

Furthermore, it can also guide the type of screening modal-
ity. In the higher risk patient population, identified as carrying
more than 20% lifetime risk and yet with no mutation, a PRS
may provide a tool to differentiate women who need the ad-
dition of a screening MRI vs. women who do not.

The PRS may also impact clinical care by informing na-
tional screening guidelines, particularly in women ages 40–
49, for whom professional societies still disagree on ultimate
recommendations. The Women Informed to Screen
Depending On Measure of risk (WISDOM) population-
based study is currently investigating breast cancer screening
modalities in the genomic era [40]. It is evaluating the recom-
mendation thresholds by combining the traditional models
with the PRS. It is also looking at subtype-specific risk, which
may result in more frequent screening for women at a higher
risk of more aggressive breast cancers (e.g., ER-negative dis-
ease) [40]. Those efforts are happening worldwide. Ongoing
international studies investigating the use of the PRS to inform
targeted breast cancer screening programs are currently under-
way worldwide including CORDIS, a European-randomized
study comparing personalized, risk-stratified standard breast
cancer screening in women aged 40–70 (https://cordis.europa.
eu/project/rcn/212694/factsheet/en).

Another area where a PRS could be useful is possibly
predicting the profile or phenotype of a specific subtype of
breast cancer to guide chemoprevention. If a PRS can predict
the risk of developing estrogen-receptor-positive breast can-
cer, it will provide additional support for a recommendation of

prevention therapy. Providers may be more inclined to give
tamoxifen or other endocrine therapies to a woman with the
PRS predicting endocrine-sensitive disease vs. triple negative
or HER2-positive. And finally, recent data is showing that the
more patients are informed of their risk, the more they are
inclined to be compliant with recommendations made by their
providers. The GENRE study presented at the American
Society of Clinical Oncology, ASCO, this year (2019) by
Julian Oliver Kim and colleagues revealed that when provided
with the PRS risk counseling, 41.9% of those with high PRS
were more inclined to take endocrine therapy and 46.7% of
women with low PRS were less inclined to take it. Another
study is currently recruiting in the USA to assess how the PRS
affects the breast cancer risk management recommendations
that healthcare providers make to their patients.

Polygenic Risk Score and Cost-effectiveness

Genomic sequencing remains however relatively expensive,
and applying the PRS on a population-wide scope might seem
financially draining. However, in the long term, if it ultimately
leads to a better individualization of care, it might spare people
unnecessary testing and invasive procedures. Recently, as
published in the JNCCN, Dinan et al. have shown that geno-
mic testing (oncotype dx) is associated with lower healthcare
costs particularly in clinically high-risk patients [41]. A British
study in the JAMA tackled recently the following question
“Can risk-stratified screening for breast cancer improve the
cost-effectiveness and benefit-to-harm ratio of screening pro-
grams?” [42]. That study showed that a risk-stratified screen-
ing strategy could improve the cost-effectiveness in a breast
cancer screening program. It concluded that offering screen-
ing to lower risk women is not cost-effective, whereas
targeting the higher risk population would markedly improve
the benefit-to-harm ratio.

Other individualized screening strategies have echoed the
same findings.

Polygenic Risk Score Limitations

The PRS has unfortunately several limitations. There have
been only a handful of clinical trials that validate the PRS
predictive power in clinical settings [43••].

Recently, Vachon and colleagues reported on the effect of
75 SNPs on breast cancer risk in women taking SERMs for
primary prevention in the NSABP P-1 and P-2 studies. In that
study, they show that the predictive intrinsic risk of breast
cancer by the PRS is maintained regardless of chemo-
preventive therapy. The risk of breast cancer ranged from
OR= 0.59 to 1.98 for those with the lowest and highest PRS
respectively compared with the average PRS [44••].
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Another more recent study that predicts lifetime breast can-
cer incidence by risk score is the study by Mavaddat and
colleagues. In that study, they demonstrated that compared
with women in the middle quintile, those in the highest 1%
of risk had 4.37- and 2.78-fold risks and those in the lowest
1% of risk had 0.16- and 0.27-fold risks of developing ER-
positive and ER-negative diseases, respectively. Nevertheless,
the prediction for ER+ disease remains significantly better
[35]. No study however has used the PRS score to predict
who would benefit from chemoprevention.

Furthermore, the PRS has not been incorporated with the
pathological risk related to high-risk lesions (atypical ductal
hyperplasia for example), or the risk related to high risk im-
aging like dense breasts. However, it is getting closer to being
incorporated into many prediction models like the
BOADICEA [45••].

But the main problem with the PRS currently re-
mains the fact that it is currently more tailored to the
white Caucasian population and does not have a fair
representation of different ethnicities. The PRS generat-
ed from the GWAS mostly representing European-
descent cohorts can ultimately improve health outcome
in European patients but will most likely under- or
overestimate the risk in individuals of different descent.
This can be also complicated by the fact that in some
cultures, having a genetic predisposition remains a taboo
and not a topic to be approached publicly. We have
come to realize that precision medicine can lead to
more health care disparities. I believe this should not
however stop the scientific community from moving
forward. It should push us to join more forces to broad-
en our horizons and capture a wider representation of
our real patient population.

It remains, however, that in the field of genetics, the PRS
information has recently sneaked into the official genetic re-
port results without being officially validated. Multiple com-
panies do include it now as part of reporting results for a
genetic panel test. Validation with more studies is however
still needed before adopting widespread use of this tool.

The Future

Technology is moving so quickly that we as medical profes-
sionals can barely keep up. We have reached an era where
genomic sequencing and gene profiling have become easily
accessible and relatively affordable. With the advent of artifi-
cial intelligence, it is only a matter of time and I do not mean
decades, I mean a few years that every single person and every
single disease will be sequenced and genomically profiled.

However, pressing questions remain: (1) How much tech-
nology can alter clinically relevant outcomes; (2) Can the PRS
help with predicting clinically aggressive vs. indolent disease;

(3) Can the PRS help with predicting disease onset younger
vs. older, etc.; (4) Can the PRS be added to imaging, pathol-
ogy, and environmental factors?; and (5) Can the PRS ulti-
mately generate such a specific prediction that no biopsies will
ever be needed for benign diseases or more specifically no
biopsy is needed for any lesion that will not become life-
threatening.

It remains to be determined however if we can select for the
SNPs that really matter from our complex and advanced DNA
makeup. We can also hope that genetic companies and re-
searchers will join forces to make the field advance in a mean-
ingful and timely manner, because the goal remains the pre-
vention of a potentially deadly disease.

Conclusion

Genetic testing has come a long way; it has become cheaper
and more available, and we are all under pressure to use it. I
think we can make the case that the inclusion of polygenic risk
score in risk assessment is essential for personalized medicine.
However, validation is critical, as is a better understanding of
how to incorporate a PRS with clinical risk factors.

Unfortunately, we are still far from the goal. The desired
association or prediction linked to the PRS has not been con-
firmed, and larger studies with more diverse populations need
to be conducted to reach a reliable tool and ultimately lead to
better mechanisms of prevention.
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