
Background
Osteoporosis is "a systemic skeletal disease characterized by

low bone mass and micro-architectural deterioration of bone
tissue, with a consequent increase in bone fragility and
susceptibility to fractures" (1). This multifactorial polygenic
disease comprises genetic determinants that are modulated by
hormonal, environmental, and nutritional factors (2), is
asymptomatic and progress silently with age (3). Eighty one
percent of all fractures in women aged 50 years and older can
be attributed to osteoporosis (4). Osteoporotic fractures, such as
those of the hip, spine and wrist, often appear in older people
following minor trauma. Hip fractures lead to rehabilitation
problems and greatly decrease the quality of life (5, 6).

Bone parameters measured by quantitative ultrasonography
(QUS) reflect the intrinsic quality and biomechanical properties
of bone and provide information complementary to that of bone
mineral density (BMD) on bone strength (7). Recent studies
reported that bone parameters measured by QUS of the
calcaneus can predict fractures as effectively as dual-energy x-
ray absorptiometry (DXA) in postmenopausal women and men
aged of 65 years and more (8, 9). Values of QUS parameters
are generally lower in osteoporotic patients than in healthy
subjects (10).

Ultrasound bone measurement has several advantages: it is a
simple technique, fast, non-invasive, radiation-free and
inexpensive (11). Furthermore, ultrasound bone measurement

devices are portable and easy to use in remote, isolated regions,
such as those inhabited by Aboriginal communities, where
measurement of BMD cannot be performed by DXA, the
reference method for the diagnosis of osteoporosis according to
World Health Organization (8).

Inuit people living in circumpolar regions experience
extreme climatic conditions and exhibit unique lifestyle and
dietary habits, such as their traditional diet based on local game
and marine species harvesting. Inuit consume large amounts of
fatty fish and marine mammal meat and fat (12) that are
important sources of some saturated (SFAs), monounsaturated
(MUFAs) and polyunsaturated (PUFAs) fatty acids. This
dietary pattern explains for example their higher omega-3
PUFA intake (13) compared to that of other Aboriginal (14)
and non-Aboriginal populations (15). During the last decades,
Inuit people have gradually moved away from their traditional
diet to adopt a Western diet that provides a high intake of trans-
fatty acids (trans-FAs), carbohydrates and sodium, with
potentially negative health impacts.

Intakes of omega-3 and omega-6 PUFAs in balanced
proportions seem essential for proper cellular function, the
prevention of several pathologies, such as inflammatory,
autoimmune and cardiovascular diseases, diabetes, and obesity
(16), and maintenance of healthy bones (17). In humans,
several studies have reported a beneficial effect of an elevated
omega-3 PUFA intake and low omega-6/omega-3 ratio on bone
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health and prevention of osteoporosis (18, 19). For example,
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
contents of erythrocyte membrane phospholipids and the
omega-3/omega-6 PUFA ratio were positively associated with
increased broadband ultrasound attenuation (BUA, dB/mHz)
values at the calcaneus measured after a follow-up of two years
in Inuit women from Nuuk (Greenland) (13, 14). We previously
reported that a higher omega-3 PUFA content of erythrocyte
membrane phospholipids, especially EPA, was also
significantly associated with greater Stiffness Index (SI, %) in
Inuit women from Nunavik (14).

In contrast, high-fat diets rich in SFAs and trans-MUFAs
increase low-density lipoprotein cholesterol (LDL-C) levels,
leading to excessive accumulation of dietary energy and fat
mass storage, and are strongly linked to obesity and the risk to
develop diabetes, hypertension, and some cancers (20).
Conversely, reduced fat intake, low fatness, and normal
plasmatic concentrations of LDL-C were associated with high
bone mineral density (BMD) at lumbar spine and femoral neck
in women (21).

Negative associations have been reported between fat intake,
BMD at several skeletal sites (22, 23) and the risk of fracture
(24). Food with high SFA content or low in nutrients were
found to be detrimental to bone health in menopausal women
(25). Elevated dietary SFA intake was also associated with
lower BMD at the femoral neck in men (26) and with a higher
hip fracture risk in postmenopausal women (27). In contrast, an
elevated MUFA intake was positively and significantly
associated with BMD in men and women (28) and with a lower
fracture risk in postmenopausal women (27). Evidence exists to
support the implication of unsaturated fatty acids, including
oleic acid (OA), in bone cell metabolism (29).

As mentioned previously, profound dietary changes have
occurred in the Inuit population over the last decades; with the
diet shifting towards a Western style diet, MUFA and SFA
intake increases. El Hayek et al. (30) recently reported that
MUFA intake was positively associated with calcaneal BUA
values in 3-5 year-old Inuit children from Nunavut (Northern
Canada). No other information is available regarding the status
of MUFAs and SFAs in this population and its relation with
bone quality measures, osteoporosis or risk of fractures.

The aim of our study was to examine the relationship
between the proportions of certain SFAs and MUFAs contents
in erythrocyte membrane phospholipids and bone strength
estimated by Stiffness Index (SI) – a synthetic QUS index
which reflects the structural parameters and elastic properties of
the calcaneus – in Inuit women living in Nunavik (Canada).

Materials and methods

Population
The Inuit Health Survey entitled "Qanuippitaa? How are

we?" was organized by the Nunavik Regional Board of Health
and Social Services and took place from August 27 to October

1st, 2004, in the 14 Inuit communities of Nunavik (located
north of the parallel 55°N in Québec, Canada) (31).

The target population for the survey was the entire
population living permanently in Nunavik (9632 inhabitants
according to the 2001 Canadian census), with the following
exclusions: a) households where there was no adult Inuit aged
18 years and over; and b) residents of collective dwellings
(houses, hotels, nursing homes, hospitals and prisons). The
target population represented 91% of the total population of
Nunavik (31). The survey plan was a complex two-stage
stratified random sampling. The first stage was the selection of
a random sample of private Inuit households stratified by
community, with proportional allocation according to the
community size. In the second stage, all eligible individuals
living in these households were asked to participate in the
survey. Among the 677 eligible households, 521 agreed to
participate in the survey, which represents a total weighted
response rate of 77.8%. These 521 houses have generated 2,550
individuals (31).

Participants answered a series of validated questionnaires
available in English and Inuktitut that were administered by the
research staff. Those aged 18 to 74 years also participated in a
clinical session which involved collection of blood samples and
anthropometric measurements. All women aged 35-74 years
who responded to the household questionnaire were eligible for
QUS measurement. Among the 317 eligible women, 207 (aged
35-72 years) underwent QUS measurement. The weighted
mean proportion of participants to this measure was therefore
65.5% and the global weighted response rate was 51.0% (31).
Among the 207 participants, 20 of them were excluded (3 were
not Inuit, 3 had no anthropometric measurements, 13 had no
sufficient blood samples for biochemical analysis and 2,
including one without plasma sample, were pregnant at the time
of the study). Therefore, 187 Inuit women completed the study.

The project was approved by the Comité d’éthique de la
recherche de l’Université Laval and the Comité d’éthique de
santé publique du Québec. Participation in the study was
voluntary and a consent form was signed by each participant.
All information regarding the participants was kept strictly
confidential.

Measurements and analyses

Bone measurements
SI was measured at the right calcaneus of participants using

the portable ultrasound instrument Achilles Insight (GE
Healthcare Lunar, Madison, WI, USA). SI value was calculated
automatically by the instrument from two QUS parameters, the
speed of sound (SOS, m/s) and BUA (dB/MHz), using the
formula from the manufacturer: [SI% = (0.67 * BUA) + (0.28 *
SOS) – 420].

The inspection of the instrument membranes was performed
daily before the first measurement of the day, followed by a
quality control test. The instrument was calibrated daily using
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the bone-mimicking phantom provided by the manufacturer.
The accuracy was assessed in vitro based on 36 repeated
measurements conducted with the phantom of the
manufacturer; the average coefficient of variation for SI was
0.15%.

Anthropometric measures
Body weight, fat and lean mass (Kg; balance beam scale),

height and abdominal circumference (cm) were measured by
research nurses using standardized techniques.

Laboratory analyses
Fasting blood samples were processed within 2 hours of

collection. The fatty acid composition of phospholipids in
erythrocyte membranes was determined following
transmethylation with a HP5890 gas chromatograph (Hewlett
Packard, Toronto, ON) equipped with a HP8823 capillary
column, a flame ionization detector (FID) and a HP7673A
automatic injector at the Centre de recherche sur les maladies
lipidiques (Centre de Recherche CHU de Québec, QC, Canada)
according to the method previously described (32). SFA,
MUFA and PUFA contents were expressed as the percentage of
all fatty acids in membrane phospholipids.

SFAs include the following fatty acids: myristic
(tetradecanoic; C14:0), palmitic (hexadecanoic; C16:0), stearic
(octodecanoic; C18:0), arachidic (eicosanoic; C20:0), behenic
(BA; docosanoic acid; C22:0) and lignoceric acid
(tetracosanoic; C24:0).

MUFAs include both cis isomers and trans isomers. Cis
MUFAs comprise the following fatty acids: myristoleic (9-cis-
tetradecenoic acid; C14:1 cis-9), palmitoleic (9-cis-
hexadecenoic acid; C16:1 cis-9), vaccenic (VA; 11-cis-
octadecenoic acid; C18:1 cis-11), oleic (OA; cis-9-
octadecenoic acid; C18:1 cis-9), petroselinic (cis-6-
octadecenoic acid; C18:1 cis-6), gondoic (cis-11-eicosenoic
acid; C20:1 cis-11), cis-8-eicosenoic acid (C20:1 cis-8), erucic
(cis-13-docosenoic acid; C22:1 cis-13), nervonic acid (cis-15-
tetracosenoic acid; C24:1 cis-15). Trans MUFAs include
palmitelaidic (trans-9-hexadecenoic acid; C16:1 trans-9), trans-
vaccenic (trans-VA; trans-11-octadecenoic acid; C18:1 trans-
11), elaidic (trans-9-octadecenoic acid; C18:1 trans-9), trans-
11-eicosenoic acid (C20:1 trans-11) and petroselaidic acid
(trans-6-octadecenoic acid; C18:1 trans-6).

Total omega-3 PUFAs comprises the following fatty acids:
alpha-linolenic (ALA, C18:3n-3), eicosapentaenoic (EPA,
C20:5n-3), docosahexaenoic (DHA, C22:6n-3), C22:5n-3,
C18:4n-3, C20:3n-3 and C20:4n-3. Total omega-6 PUFAs refer
to the sum of linoleic acid (LA, C18:2n-6), arachidonic acid
(AA, C20:4n-6), C18:3n-6, C20:2n-6, C20:3n-6, C22:2n-6,
C22:4n-6 and C22:5n-6.

Concentrations of LDL-C, high-density lipoprotein
cholesterol (HDL-C), total cholesterol and triglycerides
(mmol/L) in plasma samples were also determined by
enzymatic methods on an Auto-analyser II instrument

(Technicon Instruments Corporation, Tarrytown, NY) in the
Centre de recherche sur les maladies lipidiques. The HDL-C
fraction was obtained after precipitation of LDL-C in the
infranatant with heparin and manganese chloride as previously
described (31).

Plasma analyses for polychlorinated biphenyls (PCBs) and
blood analyses for metals/metalloids analyses were conducted
in the Laboratoire de Toxicologie of the Institut National de
Santé Publique du Québec (INSPQ, Québec, Canada). Purified
extracts were analyzed for 45 PCB congeners, including PCB
153 (a surrogate for exposure to the majority of
organochlorines present in plasma samples), by gas
chromatography coupled to electron capture negative ion mass
spectrometry, as previously described (32). Methods for
quantifying blood levels of lead, cadmium, selenium, plasma
retinol (vitamin A) and C-Reactive Protein (CRP)
concentrations, fasting glucose level and serum vitamin D
[25(OH)D] concentrations, have been published elsewhere (31,
33).

Questionnaires
Questionnaires were administered to document socio-

demographic variables (date and place of birth; geographical
region of residence: Hudson/Ungava), lifestyle habits (smoking
during the last year, yes/no; leisure physical activity:
active/inactive) and gynaecological history (menopausal status,
non-menopausal/postmenopausal; parity, yes/no).

Physical activity was evaluated using the section of "The
Actimeter" questionnaire pertaining to leisure time physical
activity (34). A dichotomous variable was created from the
values of the Energy Expenditure Index (EEI): EEI = 0 (the
median of recorded values) defines inactive women, whereas
IDE > 0 defines active women.

Women were considered postmenopausal if they had no
menstrual period for one year before their recruitment in the
study. Medical files were consulted to document the use of
calcium and vitamin D supplements (yes/no) and
medications/affections in the past 12 months that constitute
causes of secondary osteoporosis (35) (CSO, yes/no).

Statistical analyses
Descriptive statistics (mean, standard error of the mean,

minimum, maximum for quantitative variables or numbers and
% per modality for categorical variables) were presented for the
187 participants.

Pearson correlation coefficients were calculated between
age, SI and contents of total or specific SFAs, cis-MUFAs and
trans-MUFAs in erythrocyte membrane phospholipids. The
relationship between SFAs, MUFAs and SI were examined
using multiple linear regression models: three models were
proposed that included different sets of covariates.
Multicollinearity diagnostics were performed for all
independent variables. For continuous variables, normality,
linearity and homoscedasticity of residuals were tested
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graphically and by hypothesis testing. Box-Cox procedures
were used to resolve problems encountered with the hypotheses
of normality and/or homoscedasticity in the multiple regression
models; SI was subsequently log-transformed.

A population weight was calculated for each participant by

the Institut de la Statistique du Québec (ISQ). Population
weights were used to obtain all statistical estimates; standard
errors were computed using the bootstrap procedure (31). ISQ
considered that 500 sub-samples were sufficient to provide
bootstrap weights for the survey.
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Table 1
Characteristics of Inuit women from Nunavik

Variables Na (Nb) Meanc (SE)d Range GMe (SE)d

SI (%) 1097 (187) 78.60 (0.99) 39-135
Age (years) 1097 (187) 48.33 (0.45) 35-72
Weight (kg) 1097 (187) 66.33 (1.01) 37.6-117.9
Height (cm) 1097 (187) 152.27 (0.31) 142-164
Fat mass (kg) 1097 (187) 23.57 (0.73) 3.1-56.2
Abdominal circumference (cm) 1097 (187) 94.15 (0.95) 69-130
Vitamin D (nmol/L; serum) 1097 (187) 29.95 (0.73) 5.93-67.50
Vitamin A (μmol/L; plasma) 1072 (184) 2.16 (0.04) 1.04-3.57
Fasting glucose (mmol/L; plasma) 1097 (187) 4.78 (0.07) 2.80-10
Omega-3 PUFA (%)f 1097 (187) 11.91 (0.21) 1.65-19.53
Omega-6 PUFA (%)g 1097 (187) 23.27 (0.26) 12.58-32.39
Ratio omega-3/omega-6 PUFA 1097 (187) 0.54 (0.01) 0.12-1.28
Total triglycerides (mmol/L; plasma) 1097 (187) 1.17 (0.04) 0.45-4.16
Total cholesterol (mmol/L; plasma) 1097 (187) 5.37 (0.06) 2.90-8.55
Total cholesterol/HDL-C ratio 1097 (187) 2.93 (0.06) 1.67-6.84
C-Reactive Protein (mg/L; plasma) 1090 (186) 3.59 (0.48) 0.10-94
Lead (μmol/L; blood) 1097 (187) 0.29 (0.01) 0.04-1.50 0.23 (0.01)
Cadmium (nmol/L; blood) 1097 (187) 36.47 (1.83) 3.40-130 26.43 (1.61)
Selenium (μmol/L; blood) 1097 (187) 76.69 (4.49) 1.5-458.5 40.08 (3.70)
PCB 153 (ng/L; plasma) 1097 (187) 4222.60 (326.25) 150-3000 2460.0 (152.8)

Nh (%) Nb

Menopausal status 1096.52 187
Non-menopausal 627.48 (57.22) 111
Postmenopausal 469.04 (42.78) 76
Geographical region 1096.52 187
Hudson area 681.85 (62.18) 114
Ungava area 414.68 (37.82) 73
Parity 1096.52 187
Yes 1030.86 (94.01) 177
No 65.66 (5.99) 10
Smoking status 1096.52 187
Yes 805.10 (73.42) 140
No 291.42 (26.58) 47
Physical activity 1056.90 179
Active 332.70 (31.48) 56
Inactive 724.19 (68.52) 123
Supplements usei 1096.52 187
Yes 115.41 (10.53) 19
No 981.11 (89.47) 168
Causes of secondary osteoporosis 1096.52 187
Yes 125.36 (11.43) 22
No 971.16 (88.57) 165

Note: LDL-C (mmol/L) : Na = 1097 (Nb = 187), meanc = 2.88, SEd = 0.06, Range = 1.22-6.14; HDL-C (mmol/L) : Na = 1097 (Nb = 187), meanc = 1.95, SEd = 0.04, Range = 0.86-3.11.
Statistical parameters for these variables are provided for informative purposes; they were not used as adjustment factors in multivariate models presented in Table 3. a. Weighted and
rounded size; b. Sample size; c. Arithmetic mean; d. Standard error; e. Geometric mean; f. Omega-3 PUFA = ∑C18:3n-3 + C18:4n-3 + C20:3n-3 + C20:4n-3 + C20:5n-3 + C22:5n-3 +
C22:6n-3; g. Omega-6 PUFA = ∑C18:2n-6 + C18:3n-6 + C20:2n-6 + C20:3n-6 + C20:4n-6 + C22:2n-6 + C22:4n-6 + C22:5n-6; h. Weighted size; i. Calcium and vitamin D supplements
in the last 12 months.



A p value < 0.05 in the bilateral situation was considered
statistically significant. Statistical analyses were performed
with SAS version 9.2 software (SAS Institute Inc., Cary, NC,
USA) and SUDAAN version 11.0 software.

Results

Characteristics of participants
The main characteristics of the participants are listed in

Table 1. Most Inuit women lived in the Hudson Bay area, were
aged between 35 and 72 years and were predominantly non-
menopausal. A majority of participants had children, were
smokers and physically inactive. A low proportion of Inuit
women were taking supplements of calcium and vitamin D and
had CSO.

Most Inuit women (61.6%) had a waist circumference ≥ 88
cm (abdominal obesity according to Health Canada) (36). With
respect to body mass index (BMI, kg/m²), according to Health

Canada criteria (36), 1.1% of Inuit women were underweight
(BMI < 18.5), 31.3% had a normal BMI (between 18.5 and
24.9), 30.8% were overweight (BMI between 25.0 and 29.9
kg/m2) and 36.8% were obese (BMI ≥ 30 kg/m2). A large
majority of Inuit women (93.7%) displayed minimal serum
25(OH)D levels (<50 nmol/L) (35).

SFAs and MUFAs profiles are listed in Table 2. The most
abundant SFA was palmitic acid, representing 49.4% of total
SFAs, followed by stearic (34.4%) and lignoceric (9.7%) acids.
Among cis-MUFAs, the most abundant was OA (62.6%),
followed by nervonic (25.5%) and cis-VA (6.1%) acids. Elaidic
acid represented 53.5% and trans-VA 43.6% of the total trans-
MUFA content.

Pearson’s correlation coefficients (r).
SI (log) values were negatively correlated with age (r = -

0.57, p < 0.0001). Total cis-MUFAs were positively correlated
with age (r = 0.31, p < 0.0001, in particular nervonic acid, r =
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Table 2
Saturated and monounsaturated fatty acids in phospholipids of erythrocytes membranes in Inuit women from Nunavik

Main exposure variable
(Na = 1097; Nb = 187) Mean (SE) Range % of detected values

Saturated fatty acids (%)
Myristic acid (C14:0) 0.28 (0.01) 0.00-0.51 91.41
Palmitic acid (C16:0) 21.09 (0.12) 18.96-28.40 100
Stearic acid (C18:0) 14.70 (0.06) 12.25-17.70 100
Arachidic acid (C20:0) 0.48 (0.01) 0.28-0.95 100
Behenic acid (C22:0) 1.99 (0.04) 1.06-5.34 100
Lignoceric acid (C24:0) 4.14 (0.05) 2.63-7.15 100
∑SFAsc 42.68 (0.21) 38.84-59.86 100
Monounsaturated fatty acids (%)
cis-Isomers
Myristoleic acid (C14:1 cis-9) 0.004 (0.002) 0.00-0.21 1.94
Palmitoleic acid (C16:1 cis-9) 0.56 (0.01) 0.00-1.41 98.25
Vaccenic acid (C18:1 cis-11) 1.29 (0.04) 0.00-3.05 91.17
Oleic acid (C18:1 cis-9) 13.22 (0.08) 10.25-16.86 100
Petroselinic acid (C18:1 cis-6) 0.16 (0.01) 0.00-0.77 54.4
Gondoic acid (C20:1 cis-11) 0.39 (0.01) 0.00-0.83 93.76
C20:1 cis-8 0.008 (0.003) 0.00-0.27 3.92
Erucic acid (C22:1 cis-13) 0.12 (0.03) 0.00-2.55 6.3
Nervonic acid (C24:1 cis-15) 5.38 (0.07) 3.15-9.63 100
∑cis-MUFAsd 21.13 (0.12) 17.66-26.99 100
trans-Isomers
Palmitelaidic acid (C16:1 trans-9) 0.02 (0.01) 0.00-1.10 7.95
Vaccenic acid (C18:1 trans-11) 0.44 (0.03) 0.00-2.16 74.52
Elaidic acid (C18:1 trans-9) 0.54 (0.03) 0.00-3.44 65.79
C20:1 trans-11 0.006 (0.003) 0.00-0.27 3.1
Petroselaidic acid (C18:1 trans-6) 0.004 (0.003) 0.00-0.597 0.58
∑trans-MUFAse 1.01 (0.04) 0.00-4.63 86.32
Ratio
Behenic/Palmitic acid 0.094 (0.002) 0.05-0.21 100
Oleic/Stearic acid 0.90 (0.01) 0.67-1.24 100

a. Weighted and rounded size; b. Sample size; c. ∑SFAs = C14:0 + C16:0 + C18:0 + C20:0 + C22:0 + C24:0; d. ∑cis-MUFAs = C14:1 cis-9 + C16:1 cis-9 + C18:1 cis-11 + C18:1 cis-9 +
6c-C18:1 cis-6 + C20:1 cis-11 + C20:1 cis-8 + C22:1 cis-13 + C24:1 cis-15; e. ∑trans-MUFAs = C16:1 trans-9 + C18:1 trans-11 + C18:1 trans-9 + C20:1 trans-11 + C18:1 trans-6.



0.36, p <0.0001), whereas total trans-MUFAs were negatively
correlated with age (r = -0.39, p < 0.0001, and mostly, elaidic
acid r = - 0.26, p = 0.0003). Total or individual SFAs were not
significantly correlated with age; only BA showed a correlation
of borderline significance (r = - 0.14, p = 0.0608).

Results from multivariate analyses

Main exposure variables
Among SFAs, only BA was negatively and significantly

associated with SI (log) in all models (model I: adjusted only
for age; models II and III: each adjusted for 16 covariates;
Table 3). The total of six SFAs was also negatively and
significantly associated with SI (log) in all models. Increasing
ratios of behenic/palmitic acids were significantly associated
with decreasing SI (log) values (Table 3).

Among cis-MUFAs, OA was positively and significantly
associated with SI (log) while cis-VA was negatively
associated with SI (log) in all models. The total cis-MUFA
content was also positively and significantly associated with SI
(log) in models adjusted for a larger number of covariates
(models II and III; Table 3). No association was found between
specific trans-MUFAs isomers, or total trans-MUFAs and SI

(log). An increased oleic/stearic acid ratio was associated with
elevated SI (log) values in all models (Table 3).

Independent factors significantly associated with SI (log)
In all multivariate models adjusted for several covariates

(models II and III), age and menopausal status were negatively
and significantly associated with SI (log). Other factors
negatively associated with SI (log) were blood lead level
(models II for total cis-MUFAs, total trans-MUFAs and
myristic, stearic, arachidic, behenic, lignoceric, oleic and
elaidic acids), total SFAs (models III for OA and total cis-
MUFAs) and total omega-6 PUFAs (models II for OA and total
cis-MUFAs). Factors positively and significantly associated
with SI (log) were total plasma triglyceride level (models II and
III for total trans-MUFAs and myristic, palmitic, arachidic,
behenic, lignoceric, palmitoleic, gonodic, nervonic, trans-
vaccenic and elaidic acids; model III for cis-VA), parity
(models II for total SFAs and OA), total cis-MUFAs (model III
for total SFAs) and total omega-3 PUFAs (models II for OA
and total cis-MUFAs) (data not shown).
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Table 3
Results of multiple linear regression analyses: SI (log) models

Model Ia Model IIb Model IIIc
(Nd = 1097; Ne = 187) (Nd = 1097; Ne = 187) (Nd = 1026; Ne = 175)

Main exposure R2 Regression p-Valuef R2 Regression p-Valuef R2 Regression p-Valuef
variable coefficient (SE) coefficient (SE) coefficient (SE)

SFAs
Myristic acid 0.3651 -0.141(0.109) 0.1973 0.4391 -0.167 (0.117) 0.1553 0.4373 -0.134 (0.123) 0.2768
Palmitic acid 0.3642 -0.009 (0.007) 0.1687 0.4334 -0.005 (0.017) 0.7888 0.4348 -0.009 (0.012) 0.4530
Stearic acid 0.3705 -0.027 (0.014) 0.0480 0.4365 -0.019 (0.019) 0.3162 0.4390 -0.024 (0.018) 0.1711
Arachidic acid 0.3618 -0.080 (0.097) 0.4118 0.4336 0.047 (0.121) 0.7000 0.4341 0.072 (0.114) 0.5259
Behenic acid 0.3758 -0.045 (0.018) 0.0114 0.4510 -0.060 (0.023) 0.0093 0.4537 -0.062 (0.024) 0.0102
Lignoceric acid 0.3601 -0.004 (0.019) 0.8523 0.4342 -0.016 (0.028) 0.5751 0.4357 -0.023 (0.030) 0.4358
∑SFAsg 0.3711 -0.009 (0.004) 0.0199 0.4505 -0.028 (0.011) 0.0084 0.4480 -0.017 (0.007) 0.0180
MUFAs
Palmitoleic acid 0.3651 -0.075(0.052) 0.1470 0.4378 -0.085 (0.064) 0.1903 0.4359 -0.046 (0.055) 0.3967
cis-Vaccenic acid 0.4081 -0.086 (0.020) <0.0001 0.4750 -0.087 (0.019) <0.0001 0.4590 -0.067 (0.021) 0.0015
Oleic acid 0.3728 0.020 (0.009) 0.0333 0.4598 0.037 (0.011) 0.0014 0.4556 0.029 (0.010) 0.0046
Gondoic acid 0.3608 -0.040 (0.079) 0.6120 0.4333 0.014 (0.076) 0.8573 0.4349 -0.036 (0.078) 0.6495
Nervonic acid 0.3639 0.015(0.013) 0.2602 0.4411 0.028 (0.019) 0.1264 0.4392 0.021 (0.016) 0.2063
∑cis-MUFAsh 0.3638 0.008 (0.007) 0.2436 0.4589 0.036 (0.011) 0.0008 0.4480 0.019 (0.007) 0.0100
trans-Vaccenic acid 0.3618 -0.019 (0.024) 0.4202 0.4334 -0.008 (0.033) 0.8083 0.4344 -0.003 (0.028) 0.9121
Elaidic acid 0.3612 -0.014 (0.027) 0.6093 0.4356 -0.022 (0.028) 0.4316 0.4458 -0.047 (0.026) 0.0636
∑trans-MUFAsi 0.3635 -0.023 (0.029) 0.4313 0.4353 -0.020 (0.029) 0.4954 0.4442 -0.044 (0.029) 0.1204
Ratio fatty acids
Behenic/Palmitic 0.3736 -0.923 (0.412) 0.0256 0.4516 -1.231(0.453) 0.0068 0.4513 -1.154 (0.494) 0.0199
Oleic/Stearic 0.3869 0.381 (0.115) 0.0009 0.4586 0.405 (0.130) 0.0019 0.4536 0.349 (0.133) 0.0087

a. Model adjusted for age only; b. Model adjusted for: age, body weight, height, serum vitamin D, fasting glucose, % omega-3 PUFA, % omega-6 PUFA, total plasma cholesterol, total
plasma triglycerides, blood lead, blood cadmium, menopausal status, smoking status, parity, supplements use, geographical region; c. Model adjusted for: age, blood lead, total plasma
triglycerides, menopausal status, parity, omega-3/omega-6 PUFA ratio, total cholesterol/HDL-cholesterol ratio, C-Reactive Protein, PCB 153, vitamin A, blood selenium, causes of
secondary osteoporosis, physical activity, fat mass, abdominal circumference, total cis-MUFAs (if the main exposure variable is an SFA) or total SFAs (if the main exposure variable is a
MUFA); d. Weighed and rounded size; e. Sample size; f. Wald Chi Square Test with Satterthwaite correction for the degrees of freedom; g. ∑SFAs = C14:0 + C16:0 + C18:0 + C20:0 +
C22:0 + C24:0; h. ∑cis-MUFAs = C14:1 cis-9 + C16:1 cis-9 + C18:1 cis-11 + C18:1 cis-9 + C18:1 cis-6 + C20:1 cis-11 + C20:1 cis-8 + C22:1 cis-13 +C24:1 cis-15; i. ∑trans-MUFAs =
C16:1 trans-9 + C18:1 trans-11 + C18:1 trans-9 + C20:1 trans-11 + C18:1 trans-6.



Discussion

We have investigated the relation between the proportions of
selected SFAs and MUFAs in erythrocyte membrane
phospholipids and bone strength assessed by SI in a
representative sample of Inuit women from Nunavik. Total
SFAs, in particular BA, and cis-VA were negatively associated,
whereas OA and total cis-MUFAs were positively associated
with SI in multivariate models adjusted for several covariates.

The mean SI value of 78.6% reported here for Inuit women
from Nunavik is lower than that of 91.5% measured using the
same instrument (Achilles InSight) at the right calcaneus of 249
Cree women (mean age of 48 years; 41% postmenopausal)
from East of James Bay, another aboriginal population of
Northern Quebec (Canada) (14).

Unpublished data on fatty acid content in erythrocyte
membrane phospholipids in 254 Cree women can be used to
compare levels of SFAs and MUFAs reported here for Nunavik
women. The average total SFAs content (weighted mean of
42.68%) of erythrocyte membrane phospholipids in Inuit
women from Nunavik was similar to that of Cree women
(weighted mean of 43.17%). BA content in Inuit women from
Nunavik (weighted mean of 1.99%, representing 4.66% of total
SFAs) was similar to that of Cree women (weighted mean of
1.82% representing 4.22% of total SFAs). Mean total cis-
MUFAs content (weighted mean of 21.13%) in Inuit women
from Nunavik appears to be slightly higher than that of Cree
women (weighted mean of 19.09%). OA content in Inuit
women from Nunavik (weighted mean of 13.22% representing
62.57% of total cis-MUFAs) was slightly greater than that of
Cree women (weighted mean of 11.63%, corresponding to
60.92% of total cis-MUFAs). Cis-VA content in Inuit women
from Nunavik (weighted mean of 1.29%, representing 6.11% of
total cis-MUFAs) was similar to that of Cree women (weighted
mean of 1.10% corresponding to 5.76% of total cis-MUFAs).

Only a few studies have investigated the relationship
between dietary intakes of SFAs or MUFAs and BMD at
different skeletal sites, the risk of osteoporosis and fragility
fractures (25-28). Corwin et al. reported that an elevated dietary
saturated fat intake (median value of 35 g) was inversely
associated with BMD at the femoral neck (linear trend,
p=0.004) in men aged <50 years who participated in the
NHANES III Study (26). Higher SFA consumption was also
associated with higher risk of hip fracture [quartile 4
multivariate-adjusted hazard ratio (HR): 1.31, p for trend =
0.001] in postmenopausal women enrolled in the Women’s
Health Initiative (27). In the same study, lower total fracture
risk was associated with a higher MUFA intake (quartile 3 HR:
0.94, p for trend = 0.05) (27).

Even less information is available regarding the relation
between specific SFAs and bone quality. Griffith et al. reported
significant differences in proportions of cis-7-hexadecenoic
acid and BA in bone marrow fatty acids between subjects (men
and women, mean age 69.7 years) with low bone mass (%
mean ± SD: 0.90% ± 0.16 for cis-7-hexadecenoic acid and

0.03% ± 0.02 for BA, respectively) and those with osteoporosis
(0.78% ± 0.15 and 0.06% ± 0.08, respectively) (37). While
significant differences were observed, cis-7-hexadecenoic acid
and BA are minor constituents, accounting for <1% and <0.1%
of the total marrow fatty acid composition, respectively (37).
Nevertheless, results indicating higher BA content in subjects
with osteoporosis are in agreement with the negative
association observed between BA status and SI in our study.

Dietary BA is hydrolysed shortly after absorption into
shorter-chain SFAs, particularly stearic, palmitic, myristic and
lauric acids (38). Despite its low bioavaibility compared to OA,
BA is known as a total cholesterol and LDL-cholesterol-raising
fatty acid in humans (38). However, in our study, neither BA
nor other SFA were correlated with total cholesterol and LDL-
C plasma levels. No study could be located concerning the
effect of BA on bone tissues.

FAs present in the body originate from the diet as well as de
novo fatty acid synthesis. An endogenous pathway for lipid
synthesis is de novo lipogenesis (DNL), wherein carbohydrates
and proteins are converted to fatty acids (39). The main product
of DNL is palmitic acid which can be metabolised either by
delta-9 desaturation to palmitoleic acid and then by elongation
to cis-VA, or by elongation to stearic acid followed by
desaturation to OA (40).

Cis and trans MUFAs isomers possess different physical,
chemical, biological and physiological properties: cis-MUFAs
are generally considered "healthy" and trans-MUFAs
"unhealthy" (41). Trans-MUFAs and mostly those from
partially hydrogenated vegetable oils (a typical example is
elaidic acid), were associated with an increase risk of
cardiovascular disease, decreased insulin sensitivity in adipose
tissue, increased total cholesterol and LDL-C levels, systemic
inflammation and endothelial dysfunction (42-45). Natural
trans-MUFAs are produced in the rumen of ruminants through
partial hydrogenation and/or isomerisation of cis-MUFAs
present in the feed, which is catalysed by bacterial enzymes
(46). Trans-VA is the predominant natural trans-MUFA in the
fat and milk of ruminant (47) produced during the partial
biohydrogenation of LA and ALA (48). Trans-VA acts as
precursor for the endogenous synthesis of cis-9, trans-11-
conjugated linoleic acid (CLA) via the action of the 9-desturase
enzyme in animals and humans (49). Next, trans-VA is
converted to stearic acid. In the case of VA, the trans-isomer
does not seem detrimental (50) and is rather beneficial to
human health (47), while the cis-isomer was associated with
reduced kidney function (reduced glomerular filtration rate) in
Chinese-American men and women aged 45-84 years,
participating in the Multi-ethnic Study of Atherosclerosis
(MESA) (51). Kidney dysfunction may contribute to an
increase in bone loss and constitutes a CSO (35). In our study,
trans-VA was not associated with SI, whereas cis-VA was
negatively associated with SI in all statistical models.

There is evidence supporting an effect of unsaturated fatty
acids on bone cell metabolism. Both EPA and OA increased
gene expression of type I collagen and fibronectin via a
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transforming growth factor-beta-independent mechanism in
cultured osteoblast-like human cells (29). Diets rich in OA have
beneficial effects in inflammatory-related diseases (52). It was
suggested that OA could exert its anti-inflammatory effect by
decreasing oxidative stress and the production of AA
metabolites. Competitive substitution of membrane AA by OA
in male Sprague-Dawley rats reduced pro-inflammatory
eicosanoid production, in particular that of prostaglandin
(PG)E2, the main prostaglandin involved in bone resorption,
and decreased mucosal AA concentrations as well as AA/EPA
ratio (52, 53).

In addition, dietary FAs such as EPA, DHA, CLA and OA
induce anti-inflammatory effects through several mechanisms
that include activation of the 5’adenosine monophosphate-
activated protein kinase (AMPK) and peroxisome proliferator-
activated receptor gamma (PPAR-γ), suppression of toll-like
receptors (TLRs) and nuclear factor-КB (NF-КB) pathways
(54). For example, OA can reduce the inflammatory effects of
long-chain SFAs in human aortic endothelial cells through
reducing cellular stearic acid incorporation and NF-КB
activation (55).

MUFAs also reduce the secretion of pro-inflammatory
cytokines by adipocytes (56). In individuals with abdominal
obesity, adipose tissue inflammation is induced by high-SFA,
but not high-MUFA diets (57). High MUFA diets reduce
expression of lipoprotein lipase and increase phosphorylation of
hormone-sensitive lipase (54).

It was also reported that intakes of OA and LA can
significantly reduce serum C-reactive Protein (CRP) – a marker
of systemic inflammation – in Japanese men and women aged
35-60 years, especially when the intake of long-chain omega-3
PUFAs (EPA+DHA) is at a moderate level (0.30-0.51% of
energy in men and 0.21-0.38% in women), after adjustment for
confounding factors (58).

In our study, a large proportion of women were considered
obese according to international criteria, such as BMI and
abdominal circumference. However, in Inuit women from
Nunavik, anthropometric parameters were not associated with
SI in multivariate models. Furthermore, among Inuit, compared
to the general population, the measure of obesity based on BMI
may not be appropriate because of the higher sitting height
measures in Inuit (59).

Recent epidemiologic studies show that a high level of fat
mass is detrimental to bone mass and fat mass itself may be a
risk factor for osteoporosis and fragility fractures (60, 61). High
body fat percentage and waist circumference have been related
to low BMD and vertebral fracture (62).

As previously reported in Inuit, obesity may not reflect the
same degree of metabolic risk: for each level of BMI or waist
circumference, the Inuit had lower values of metabolic
indicators such as plasma lipids or blood pressure than Euro-
Canadians (59, 63). This appears in agreement with our results
indicating that neither the weight, nor the amount of body fat
nor the abdominal circumference was associated with the bone
strength estimated by SI.

Strengths and limitations of our study
Our study has several strengths. Firstly, the data used in this

work were obtained from a large health survey conducted in the
Inuit population of Nunavik. Our population sample was likely
representative of the women aged 35 to 72 years of Nunavik,
because of the study design, the recruitment strategy and the
weighting scheme that takes into account non-response and
refusals to participate. Secondly, we considered a large number
of covariates as adjustment factors in our multivariate models.
Thirdly, measurement biases on the dependent variable or
exposure variables are unlikely. QUS parameters,
anthropometric measures and biological sampling were all
performed by research nurses using standardized techniques.

However, this study has some limitations. Firstly, the main
methodological limitation is its cross-sectional design, with
exposure and the dependent variable measured at the same
time, such that the temporal sequence of cause and effect
cannot be determined. Secondly, the participation rate of
women aged between 35 and 72 years old at QUS
measurements was relatively small, which can suspect a
selection bias. However, this bias is quantitatively unimportant,
since it is unlikely that the characteristics of the subjects
included in the study are different from those of all eligible
persons. Regarding the non-response and refusal to participate
in the study, it is unlikely that these subjects have different
levels in SFAs or MUFAs or SI values, compared with
participants; the recruitment of participants was made for a
survey of general health and not specifically for the purpose of
our study.

In conclusion, we observed that OA status has a positive
relation with SI in Inuit women from Nunavik. In contrast, their
status in total SFAs (especially of BA) and cis-VA has a
negative relation with calcaneal SI values. OA, the most
abundant MUFA in erythrocyte membrane phospholipids,
favours bone strength in this population of Inuit women aged
35 to 72 years.
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