
Introduction

Sarcopenia, the age-related loss of muscle mass and strength,
is a fundamental cause of functional decline, disability and
frailty in older persons. In the year 2000, $18.5 billion in health
care costs were directly attributable to sarcopenia. This
economic burden will increase dramatically over the next
decade as persons are living to older ages. The primary causes
of sarcopenia include: sedentary lifestyle, malnutrition,
oxidative stress, chronic inflammation, and endocrine changes.
Moreover, older persons with type 2 diabetes have an increased
risk for disability, falls and frailty compared to those without
diabetes. Considering that insulin resistance significantly
contributes to type 2 diabetes,  an insulin resistance-related
pathway may have a specific role on skeletal muscle fibre
atrophy in older persons with diabetes. Data from the
InCHIANTI study showed that insulin resistance substantially
increased with aging and was an independent determinant of
weaker muscle strength in older persons (1). In addition, data
from the HealthABC study (2) showed an excessive loss of
skeletal muscle mass in older adults with type 2 diabetes was
two times faster than those without diabetes. Such decline in
skeletal muscle mass may explain why elders with diabetes are
at such a dramatic risk for disability. Unfortunately, up to date
the mechanisms leading to skeletal muscle mass loss over aging
and in particular in older persons with diabetes are lacking. 
Recent studies are investigating the potential changes of

mitochondria in skeletal muscle due to the fact that
mitochondria have an important role in energy production.

Even though the capacity of mitochondria to produce energy,
ATP, declines with aging in concert with decreases in maximal
energy production during peak walking speeds and inefficient
utilization of energy at sustainable walking speeds, this decline
seems to be more rapid in type 2 diabetes. Recent studies have
shown a decreased activity of mitochondrial oxidative
phosphorylation in skeletal muscle of type 2 diabetes (3-4).
Considering that there is growing evidence for an insulin-
related pathway on mitochondrial signalling, we hypothesize
that a high degree of insulin resistance will be associated with
the development of sarcopenia through specific alterations in
mitochondrial functioning. This paper will highlight potential
steps involved in sarcopenia over aging, including potential
biomolecular mechanisms of insulin resistance on
mitochondrial functioning which may be an important basis for
future interventions on sarcopenia driven mitochondrial
dysfunction.

Sarcopenia

Age-associated skeletal muscle dysfunction has been well
characterized and includes a reduction of muscle mass, strength
and, according to several studies, endurance capacity (5-6).
These alterations represent a major risk factor for falls,
fractures and loss of independence in older persons (7).
Sarcopenia, loss of muscle mass, is characterized by a decrease
in the total number of skeletal muscle fibers,  reduced cross-
sectional area of the thigh, and an increase in intramuscular fat
content (8). Age-related loss in skeletal muscle mass and the
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factors that may affect such loss are constantly under
investigation. Sarcopenia may also be a common pathway by
which multiple diseases contribute to the risk of functional
limitation and disability in old age, even though many risk
factors have still not been fully identified.  Considering the
growing literature on insulin resistance and mitochondrial
dysfunction over aging, one may hypothesize a specific
pathway of sarcopenia due to  insulin resistance on
mitochondrial dysfunction. 

Insulin resistance and mitochondrial skeletal muscle
changes over aging

As the result of an increase in the ageing of populations in
both developing and developed countries, the number of elderly
persons continues to rise worldwide with a parallel rise in type
2 (the non-insulin dependent form of diabetes). Furthermore,
the incidence of both insulin resistance and type 2 diabetes
leads to a significant increase in healthcare challenges and costs
(9). Impaired insulin action to stimulate tissue substrate
utilization with particular regard to glucose is a common
metabolic defect and a defining feature of insulin resistance in
both type 2 diabetes and ageing. Skeletal muscle is a key
metabolic organ and the major site of insulin-mediated glucose
disposal, plays an important role in the metabolic alterations of
insulin signaling.
There is growing evidence that age-related changes of

hormonal regulation play a role in pathophysiological
mechanisms implicated in the pathogenesis of sarcopenia (10).
Insulin is known to play a pivotal role in muscle functioning by
increasing glucose uptake and promoting intracellular glucose
metabolism. The contraction of type I fibers is more dependent
on glucose entry and metabolism than is the contraction of type
IIa (fast twitch, oxidative, glycolytic) or IIb (fast twitch,
glycolytic) fibers (11). Type I fibers are more responsive to
insulin and more represented in the muscle of older persons
(11). First, age-related insulin resistance is associated with
impaired muscle glucose handling that in turn impairs
intracellular energy production and results in weaker muscle
contraction. Second, a vicious circle connects insulin action and
an age-related decline in physical activity that progressively
aggravates the degree of insulin resistance. During the aging
process, changes both in the contractile efficiency of muscle
fibers and in tissue quality, such as pericellular fat infiltration,
may also contribute to altered muscle function (12-13).
Moreover, insulin resistance could be further worsened by the
occurrence of pericellular fat accumulation both directly and
through the increased production of pro-inflammatory
cytokines such as TNF-� and IL-6 that in turn have been
associated with lower muscle mass and strength (14). An
increased proteolytic state, commonly observed in older
persons, reflects a significant depletion in protein activity and
has been reported to be associated with risk factors related to
muscle strength and function, such as impaired mobility and

balance, suggesting a link with sarcopenia (15). It is well
known that insulin is capable of preventing protein breakdown
by increasing amino acid availability needed for protein
synthesis in muscle tissue. Therefore, age-related IR may define
protein catabolism and muscle weakness. Furthermore, a
decline in aged skeletal muscle strength might also be due to a
reduction of L-type calcium channels (16). Insulin has a
stimulatory effect on intracellular calcium uptake, thus insulin
resistance may negatively affect muscle contraction through
this mechanism.
The role of mitochondrial dysfunction in the etiology of

sarcopenia has been extensively characterized (17-20).  The
“mitochondrial dysfunction on muscle over aging” highlights
that the aging process is modulated by reactive oxygen species
(ROS)-mediated toxicity leading to mitochondrial DNA
(mtDNA) deletions and mutations, macromolecular oxidation,
electron transport chain (ETC) dysfunction, cellular senescence
and cell death. Muscle from older adults have shown: i) an
increase in mitochondrial ETC abnormalities marked by the
accumulation of cytochrome c oxidase negative and succinate
dehydrogenase hyper-positive fibres, ii) accumulation of
somatic mtDNA mutations iii) an increase in markers of
oxidative stress. Despite a strong relationship between aging
and oxidative damage, the literature on the effect of aging on
skeletal muscle ETC function remains unclear in humans.
Many studies have demonstrated a significant age-related
reduction of mitochondrial ETC complex enzymes in human
skeletal muscle (21-22). However, it has also been suggested
that the age-related reduction in ETC function, reduced
mitochondrial complex I, II, III, and IV activity,  is not related
to the aging process per se, but rather due to other confounding
factors, including physical inactivity (23). In fact a previous
study reported normal mitochondrial ETC function in the
skeletal muscle of physically active older persons (average age
of 72±2 years) despite an increase in markers of oxidative
damage compared to healthy young individuals (average age of
22±3 years) (24). Hence, the relationship between
mitochondrial ETC dysfunction, oxidative stress and sarcopenia
remains an important and unresolved issue in aging research
that may be influenced by factors other than aging alone.
Age-related decreases in the amount of functionally intact

mitochondria with concomitant decline in cellular production of
adenosinetriphosphate (ATP), energy-dependent protein
synthesis and increased peroxide leakage may contribute to
muscle loss (25). Mitochondrial enzymes have been reported to
undergo relevant impairment in the muscle of old human
beings, as well as laboratory animals. With specific reference to
human studies, the number of mitochondria per gram of tissue
(and, because of fibre loss, the mitochondrial content per whole
muscle) decreases in persons over the age of 50 years. The
functional outcome of these changes is a marked reduction in
aerobic endurance which appears to be closely related to the
density of mitochondria and to their competence in providing
adequate amounts of ATP. Furthermore, it is widely known that
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the capacity of mitochondria to produce energy as ATP
declines with aging in concert with decreases in maximal
energy production during peak walking speeds and inefficient
utilization of energy at preferred sustainable walking speeds.
As documented by images from electron microscopy of
different tissues, the ultrastructural features of a given
mitochondrial population, in addition to being closely coupled
to the organelles’ functional performances, undergo significant
adaptations according to environmental conditions. Thus,
quantitative investigations on mitochondrial morphological
parameters, while estimating the cell potential for energy
provision, enable to uncover underlying alterations in the
cellular hardware related to an impaired metabolism. 
Mitochondrial oxidative capacity is decreased in skeletal

muscle of obese individuals and is considered a consequence of
insulin resistance in humans (26). Age-associated alterations
have been reported in skeletal muscle at  both transcriptional
and functional levels of mitochondrial gene expression (27).
Indeed, these data indicate alterations other than those
associated with oxidative damage and mtDNA alterations can
contribute to muscle mitochondrial alterations with ageing. At
the moment, mitochondrial functions  are at the center of
numerous protocols due to the their significant capacity in
oxidizing substrates and generating ATP. 

Insulin resistance on mitochondria functioning in
sarcopenia

Skeletal muscle has also emerged as a target of acute insulin
effects on mitochondria in humans. Hyperinsulinemia in the
high–physiological range increased transcript levels of complex
I and complex IV subunits of the respiratory chain (28).
Interestingly, increments in mitochondrial transcripts were
positively related to those of insulin-mediated glucose disposal
(29), supporting the hypothesis that muscle mitochondria are
mediators of insulin action to increase glucose utilization. A
study further characterized the role of insulin in the acute
regulation of skeletal muscle mitochondrial function. When
insulin was infused into healthy middle-aged subjects,
mitochondrial transcript levels, protein synthesis, respiratory
chain enzyme activity and the ATP production rate all
significantly increased (30). This important study introduced
the theory that insulin is a stimulator of muscle mitochondrial
function in vivo in humans.
Acute increments in the plasma insulin concentration have

been demonstrated to stimulate skeletal muscle mitochondrial
gene expression, protein synthesis and function in vivo in
healthy individuals.  Acute intravenous insulin infusion in an
animal model was shown to enhance the mitochondrial protein
synthesis rate in a tissue-specific fashion (31). Mitochondrial
protein synthesis was increased in skeletal muscle, but not in
cardiac muscle and liver. Considering that liver mitochondrial
protein synthesis tended to be lower during hyperinsulinemia,
the stimulatory effect of insulin seems to be specific to skeletal

muscle (31). In addition, these authors showed that such
increased mitochondrial protein synthesis was not associated
with increments in the synthesis rates of other muscle protein
pools, including sarcoplasmic protein and major contractile
protein myosin heavy chain (31). Indeed these findings indicate
a specific effect of insulin on selectively enhancing muscle
mitochondrial protein synthesis in vivo.
It has been observed that basal ATP synthesis rates in

skeletal muscle are lower in insulin resistant subjects (32)  and
studies have provided evidence for dysfunctional mitochondria
in insulin resistant states as seen by a down-regulation of genes
encoding for mitochondrial enzymes (33, 34) decreased
mitochondrial content and lower respiratory chain activity
(35).There have also been reports on altered mitochondrial
adaptations in skeletal muscle during the development of
insulin resistance in adults (36-37), as well as an improvement
in mitochondrial capacity to oxidize fat-derived substrates and
increase in number (38). Intervention studies on physical
activity and mitochondrial function report parallel increases in
response to training with a weak relation between
mitochondrial activity and insulin sensitivity in older persons
(39). However,  it is still unknown whether an improvement in
insulin resistance through aerobic exercise is able to increase
the expression of anti-apoptotic genes (e.g. Bcl-2 or Bak) in
older subjects. 
There is reasonable debate that mitochondria may also be

considered the origin and not the victim in insulin resistance
associated skeletal muscle loss (40). This differences lies in the
fact that mitochondrial dysfunction causes the production of
ROS which in turn begin a vicious cycle with insulin
resistance. Anderson et al. (41) demonstrated that dietary fat
induced insulin resistance results from increased mitochondrial
H2O2 production and this insulin resistance is prevented by use
of a mitochondrial targeted antioxidant or overexpression of
catalase.   However, there is very recent data indicating that a
deficiency in the mitochondrial electron transport chain (ETC)
in muscle does not cause insulin resistance (42) in contrast to
the potential mechanism of “mitochondrial deficiency” in
which it is hypothesized that insulin resistance is caused by an
accumulation of intramuscular lipids as a result of decreased
capacity for fat oxidation (43). Interestingly, a significant role
altered fat acid oxidation and lipid storage, impaired insulin
signaling and insulin resistance were associated significantly
lower mitochondrial phosphorylation capacity in obese type 2
diabetic subjects compared to non-obese diabetics (44), thus
strengthening the hypothesis that insulin resistance has a direct
role on mitochondrial functional impairment. 

Skeletal muscle lipid infiltration, insulin resistance and
mitochondria dysfunction

Ageing is associated with changes in muscle size and quality
as evidenced by an increase in fat infiltration that has been
referred to as myosteatosis. As determined by the computerized
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tomography (CT) attenuation coefficient of muscle, lipid
infiltration is an important  determinant of insulin resistance in
healthy (45) and diseased patients (46): it is independent of
visceral fat and is associated with decreased muscle strength
and physical performance in older persons (47). Muscle
attenuation in Hounsfield Units (HU) obtained by CT is a non-
invasive measure of muscle density and correlates with
intramuscular lipid content obtained by muscle biopsy (47-48).
Lower HU reflects higher intramuscular lipid content, and has
been used as a reliable parameter in a number of studies on
sarcopenia (47-48).
However, whether reduced mitochondrial capacity in

skeletal muscle is causative for insulin resistance or, instead,
arises as a consequence of insulin resistance impacting muscle
loss needs to be clarified. Indeed there are data that support the
hypothesis that insulin resistance in humans arises from defects
in mitochondrial fatty acid oxidation (32), which leads to an
increase in intracellular fatty acid metabolites (acyl CoA and
diacylglyerol) capable of interfering with the insulin signaling
pathway (49). However, lower oxidative capacity may also
result from insulin resistance and high intramyocellular
triglycerides by lipotoxic measures. In particular, accumulating
fatty acids within myoctyes interact with ROS-forming
peroxides which in turn lead to lipotoxic effects on
mitochondria (26). Table 1 shows data from recent studies
supporting studies supporting mechanisms between insulin
resistance and mitochondrial dysfunction. 
Even though it was originally believed that thyroid

hormones were solely responsible for energy production within
mitochondria, we have underlined that recent studies have also

show that insulin also plays a role in regulating the efficiency
of ATP production especially in muscle cells. However, it is
also important to highlight that potential treatment with diverse
sex hormones may also improve both insulin resistance and
mitochondria dysfunction in muscle cells of older adults. In
particular, female sex hormones, estrogen and progesterone,
have been recently shown to impact animal and human skeletal
muscle  with concomitant role on improving insulin resistance
(50, 51). In particular, it was shown that in women the ovarian
steroid hormones, estradiol and progesterone, influence insulin
sensitivity via alterations in the production of mitochondrial
H2O2 in skeletal muscle (51) with a direct effect on
mitochondrial function in skeletal muscle. The administration
of testosterone to hypogonadal  elderly men has shown to
produce a moderate improvement in body composition
(increased lean mass and decreased fat mass), but few studies
have reported increases in strength (52). The risks associated
with testosterone replacement are still not clear. Few studies
have reported adverse effects, but few have administered to
elderly subjects doses high enough to produce substantial
anabolic effects and impact insulin resistance substantially.
However, whether the use of sex hormones can significantly
impact sarcopenia by improving insulin resistance and/or
mitochondria dysfunction in older persons with type 2 diabetes
remains to discovered.  

Conclusions

The mechanisms explaining the development of sarcopenia
in older diabetics remain controversial, however mitochondrial

Table 1
Some studies supporting the relationship between insulin resistance and mitochondrial dysfunction 

Author (year) Type of study (n) Mean age (years) Insulin sensitivity Mitochondrial function Findings
technique assessment

Brehm A (2006) Human (n=8) 21 ± 1 Euglycemic- Skeletal muscle ATP During the high-insulin period, flux through ATP synthase 
(56) hyperinsulinemic clamp synthase flux increased;

Under insulin-stimulated conditions, increased lipid levels 
reduced the increase in insulin-stimulated ATP synthase 
flux & impair glucose transport

Fleischman A Human (n=16) 31 ± 2 Euglycemic- Mito DNA/nuclear DNA
(2007)(57) hyperinsulinemic clamp in muscle Altered mitochondrial function in muscle may be an 

important factor in the development of insulin resistance.
Petersen KF Human 70 ± 2 Euglycemic- Mitochondrial oxidative  Rates of mitochondrial oxidative and phosphorylation 
(2003)(32) (n=15 elders) 27 ±2 hyperinsulinemic clamp activity in skeletal muscle activity were reduced by ~40% in the elderly vs. young 

(n=13 young) by 13C NMR and controls;
phosphorylation activity Insulin resistance in the elderly is related to increases in
by 31P NMR intramyocellular fatty acid metabolites that may be

a result of an age-associated reduction in mitochondrial 
oxidative and phosphorylation activity

Bonnard C (37) Animal (mice) Glucose and insulin Mitochondrial density HFHSD-induced mitochondrial alterations in skeletal 
(2008) (HFHSD) tolerance tests (mtDNA/ nuclear DNA muscle are a consequence of hyperglycemia- and 

(SD) in the skeletal muscle) hyperlipidemia-induced ROS production in mice, which 
result from mitochondrial overfunctioning and an increase 
in NAD(P)H oxidase in response to insulin resistance

Han DH (2011)(42) Animal (rats) Insulin levels, Expression Mito proteins, Deficiency of the electron transport chain (ETC), and 
GLUT-4 in skeletal muscle ETC markers imbalance between the ETC and �-oxidation pathways, 

does not cause muscle insulin resistance.
Hoeks J (2010)(26) Human (n=12) 24 ± 1 Euglycemic- Mito DNA copy no., Insulin resistance has secondary negative effects on 

hyperinsulinemic clamp citrate synthase activity mitochondrial function

HFHSD= high-fat, high-sucrose diet, SD= standard diet



dysfunction, due to altered insulin signaling, may have a crucial
role in aging and in particular in patients with type 2 diabetes.
Even though a recent study speculated that the defects in
mitochondrial content/morphology in aging occurred
independently of insulin resistance, the authors did not
determine the type of muscle fiber in relation to mitochondria
and insulin resistance (53). Considering that type I fibers are
more responsive to insulin and have a greater mitochondrial
content, a specific role played by insulin resistance in
sarcopenia cannot be overruled. Structural changes in
intracellular lipid content and mitochondria have been related
to aberrant lipid metabolism, mitochondrial dysfunction and
oxidative stress, however the impact of an altered insulin
pathway on mitochondrial activity in specific muscle fibers
remains unknown. Furthermore, changes in mitochondrial
function, oxidative stress, and chronic inflammation observed
in skeletal muscle of older persons with type 2 diabetes during
regular aerobic physical training need to be investigated
according to fiber type. Some studies have reported no
difference between muscle fiber type and mitochondrial
function, however data on older sarcopenic individuals with
type 2 diabetes are lacking. 
Insulin resistance, that also leads to type 2 diabetes, has been

considered to be responsible of the development of skeletal
muscle lipid deposition that also characterizes sarcopenia as a
consequence of severe fat infiltration. Insulin resistance in
skeletal muscle in obesity or type 2 diabetes is associated with
reduced muscle oxidative capacity (54). 
As insulin resistance characterizes type 2 diabetes, it is

conceivable that mitochondrial defects occur in this disease, in
particular in skeletal muscle. The study by Stump et al (30)
provided further important evidence in this regard by
demonstrating that the acute stimulation of mitochondrial ATP
production observed in healthy individuals was not achieved by
insulin in age-matched individuals with type 2 diabetes. A
defective response of skeletal muscle mitochondria to acute
insulin-induced stimulation occurs in humans with type 2
diabetes. An altered mitochondrial response to insulin could
therefore contribute to impaired substrate utilization, as an
integral component of insulin resistance in this disease. These
results are particularly relevant to the post-prandial period,
when plasma insulin concentrations increase in an acute fashion
to levels comparable to those achieved in the study.
Physical activity plays an important role in delaying or

preventing the development of type 2 diabetes in individuals at
risk, both directly by improving insulin sensitivity and
indirectly by producing beneficial changes in the body mass
and body composition. Regular physical activity leads to a
number of beneficial physiological changes that favorably
modulate muscle and liver insulin sensitivity, muscle glucose
uptake and utilization, and overall glycemic control. Moreover,
a lifestyle that includes an adequate physical activity is reported
to improve lipid profile, decrease body weight and the
percentage of body fat, lower blood pressure, reduce the risk of

cardiovascular disease. Regular physical activity may
contribute to prevent or delay neuropathy, retinopathy, may
reduce stress, feelings of anxiety, and may positively counteract
the physiological functional decline that occurs with aging. 
A sedentary lifestyle has a negative impact on mitochondrial

function, and the stimulatory effects of aerobic exercise on
muscle mitochondrial oxidative capacity have long been
recognized  and confirmed in ageing individuals. Interestingly,
however, parallel declines in mitochondrial succinate
dehydrogenase and oxygen consumption were reported in a
longitudinal study of elite distance runners who maintained
intense training programs through middle age (55), indicating
that physical activity per se is not sufficient for the complete
prevention of age-related deleterious skeletal muscle changes.
Reduced blood flow is also a potentially important factor in
impaired ageing mitochondrial function, through a reduction in
oxygen supply that can limit oxidative metabolism and protein
turnover, as well as, in the development of lower muscle mass
over time in older persons (48). 
In conclusion, mitochondrial dysfunction is associated with

insulin resistance and type 2 diabetes. Even though the past
literature has largely suggested that primary and/or genetic
abnormalities in mitochondrial function may lead to
accumulation of toxic lipid species in muscle, impairing insulin
action on glucose metabolism, new data promote a direct role
of  insulin resistance pathways  on  mitochondrial dysfunction.
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