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Abstract
Cancer remains a global problem, with millions of new cases diagnosed yearly and countless lives lost. The financial burden 
of cancer therapy, along with worries about the long-term safety of existing medicines, necessitates the investigation of 
alternative approaches to cancer prevention. Probiotics generate chemopreventive compounds such as bacteriocins, short-
chain fatty acids (SCFA), and extracellular polymeric substances (EPS), which have demonstrated the ability to impede 
cancer cell proliferation, induce apoptosis, and bolster the expression of pro-apoptotic genes. On the other hand, prebiotics, 
classified as non-digestible food ingredients, promote the proliferation of probiotics within the colon, thereby ensuring 
sustained functionality of the gut microbiota. Consequently, the synergistic effect of combining prebiotics with probiotics, 
known as the synbiotic effect, in dietary interventions holds promise for potentially mitigating cancer risk and augmenting 
preventive measures. The utilization of gut microbiota in cancer treatment has shown promise in alleviating adverse health 
effects. This review explored the potential and the role of probiotics and synbiotics in enhancing health and contributing to 
cancer prevention efforts. In this review, the applications of functional probiotics and synbiotics, the mechanisms of action 
of probiotics in cancer, and the relationship of probiotics with various drugs were discussed, shedding light on the potential 
of probiotics and synbiotics to alleviate the burdens of cancer treatment.
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Introduction

Cancer caused by unregulated cell proliferation that leads to 
benign or malignant tumor growth is currently one of the top 
causes of death globally. About 19.3 million new cancer cases 
were recorded globally in 2020, leading to 10 million fatali-
ties due to cancer’s lethal malignancy trait [1]. Nowadays, 

oncology medications are used alongside other treatment 
modalities, including chemotherapy, radiation therapy, and 
surgery [2]. In 2017, patients paid an average of $229,295.33 
for breast cancer treatment [3]. Costs for breast cancer treat-
ment ranged from $60,637 to $134,682, almost triple the cost 
from stage I to IV [4]. Moreover, a study has shown that the 
average distance for a patient to enrol for the facility in Malay-
sia was 41.4 km with a minimal cost of $14.08 [5]. Aside from 
the exorbitant cost of cancer treatments, the long-term safety 
of synthetic medications in contemporary cancer treatments 
is debatable. According to [6], the accumulation of toxins 
in the body from continuously administering chemotherapy 
medications might cause catastrophic side effects such as der-
matologic, ventricular dysfunction, and ophthalmologic. In 
light of this, developing low-cost chemopreventive treatments 
for minimal toxicity is critical.

The dietary intake and contemporary lifestyle have also 
increased the occurrence of methemoglobin and other disor-
ders [7]. In fact, more than half of cancer occurrences, dia-
betes and cardiovascular diseases, and deaths are preventable, 
in which 30% of cancer is related to nutrition intake and diet 
[8]. Recent research has highlighted the significant impact of 
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probiotics and synbiotics on health, suggesting their potential as 
chemopreventive agents. Functional foods such as yogurt, kefir, 
miso, tempeh, sauerkraut, and sourdough are known to enhance 
health outcomes due to their probiotic properties [9]. Exten-
sive studies have demonstrated the role of microbes in cancer 
biology, including their involvement in metabolic regulation, 
the gut-brain axis, immune system development, and gastro-
intestinal carcinogenesis. Importantly, probiotics in the gut 
microbiota have been shown to mitigate the adverse effects of 
chemotherapy [10–12]. Predominant intestinal microbes such 
as Lactobacillus and Bifidobacterium have been documented 
to bind with and deactivate carcinogens at the initial stages of 
colon carcinogenesis [13]. Lactobacillus plantarum KU15149 
and Bifidobacterium pseudocatenulatum G7 have been reported 
to adhere to gut immune cells, influence toll-like receptor sign-
aling, increase pro-inflammatory cytokine levels, and modulate 
T cells, thereby inhibiting cancer development [14, 15].

The global market for probiotics was valued at approxi-
mately $57.8 billion in 2022, with forecasts projecting growth 
to reach $85.4 billion by 2027 [16]. This growth is driven by 
their recognized benefits in improving gut health, enhancing 
livestock and pet performance, reducing mortality rates, and 
even in applications such as edible films and coatings that 
enhance food safety and preservation [17]. The probiotics 
industry has evolved into a multi-billion-dollar sector within 
the human consumption market alone. Probiotics have been 
employed to reduce mortality rates in fish, enhance growth 
in piglets, improve egg production quality in poultry, fortify 
immune defenses in fish, and mitigate Salmonella contamina-
tion in chickens [18–22]. Moreover, incorporating probiotics 
into edible films and coatings, such as a gelatin-based coat-
ing with inulin and Lacticaseibacillus rhamnosus used on 
fresh strawberries, has notably enhanced product stability and 
functional properties, maintaining probiotic viability while 
reducing pathogen counts and preserving strawberry quality, 
phenolic content, and antioxidant activity [23, 24].

This review aims to explore the potential of probiotics 
and synbiotics as chemopreventive agents, focusing on their 
mechanisms of action, the evidence supporting their role in 
cancer prevention, and the future directions for research in 
this field. By delving into the complex interactions between 
diet, gut microbiota, and cancer, this review seeks to provide 
a comprehensive overview of how probiotics and synbiotics 
could contribute to innovative and effective cancer preven-
tion strategies.

The Health Benefits of Probiotics and Their 
Role in Cancer Prevention

Cancer development is multifactorial, influenced by genet-
ics, environmental carcinogens, lifestyle choices, and 
dietary habits [25]. Diets high in fats and sugars and low 

in fiber can lead to an imbalance of gut microbiota (dys-
biosis), which is linked to numerous diseases, including 
cancer [11, 26]. For instance, a high intake of polyunsatu-
rated omega-6 fatty acids may alter gut microbiota, leading 
to metabolic disturbances and obesity, thereby increasing 
cancer risks [27]. Dysbiosis can also trigger inflammatory 
and immune responses that facilitate cancer development 
[28, 29]. The native gut microbe, Fusobacterium nuclea-
tum, has been shown to invade tumor cells and initiate 
tumorigenesis, highlighting the critical role of microbiota 
regulation in cancer prevention [30].

Probiotics, defined as live microorganisms that confer 
health benefits when administered in adequate amounts, 
have been reported to modulate gut microbiota in terms of 
enhancing barrier functions, reducing permeability, reduc-
ing systemic inflammation, preventing the translocation of 
potential carcinogens, and promoting an environment that 
is less conducive to cancerous growths (Table 1). Probiot-
ics such as Bifidobacterium, Lactobacillus, Lactococcus, 
Streptococcus, and Enterococcus have been claimed to 
enhance gut health by maintaining intestinal pH, produc-
ing hydrogen peroxide to inhibit pathogen growth, and 
synthesizing antimicrobial peptides, thus creating an envi-
ronment detrimental to pathogenic bacteria and beneficial 
for the host [31]. For example, Lactobacillus plantarum 
UBLP40 produces hydrogen peroxide against pathogens 
like Micrococcus luteus MTCC 106 and methicillin-resist-
ant Staphylococcus aureus subsp. aureus ATCC® BAA-
1720 to prevent the proliferation of harmful microbial 
colonies that can contribute to cancer progression [32].

Some probiotics produce short-chain fatty acids 
(SCFAs), including butyrate, propionate, and acetate, 
which serve as energy sources for colonocytes and regu-
late cell proliferation and apoptosis in cancer cells [58]. 
SCFAs such as those produced by Bifidobacterium ani-
malis subsp. lactis GCL2505 and Lacticaseibacillus para-
casei SD1 have demonstrated anti-cancer properties and 
help maintain a healthy intestinal microflora [59, 60]. Pro-
biotics also enhance the body’s immune response against 
cancer cells by regulating cytokine production, which is 
critical for directing immune responses and improving sur-
veillance and destruction of cancer cells. Enterococcus 
faecium S29 (EU 158,188) secretes antimicrobial com-
pounds that compete with pathogenic bacteria in the gut 
mucosa, altering microbiota composition and reducing 
cancer development [61]. Similarly, the intake of Lacto-
bacillus gasseri OLL2716: LG21 has been associated with 
a decrease in Clostridium perfringens levels (a bacterium 
linked to colorectal cancer) and an increase in beneficial 
SCFAs in the gut of colorectal cancer patients [62].

Moreover, probiotics play a role in enhancing mucin pro-
duction and maintaining the integrity of the gut barrier. It 
is crucial for preventing the translocation of bacteria and 
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Table 1   Effects of probiotics on cancer cells

Strains Type of cancer/cell lines Effect Reference

Bacillus polyfermenticus Human colon cancer cell lines HT-29, 
DLD-1 and Caco-2

Inhibited cell colony formation  [33]

Bacillus polyfermenticus KU3 RAW 264.7 (murine macrophage cell line)
MRC-5 (human lung cell line)
HeLa (cervix cancer cell line)
LoVo (human colon adenocarcinoma cell 

line)
HT-29 (human colon adenocarcinoma cell 

line)
AGS (human stomach adenocarcinoma 

cell line)
MCF-7 (human breast adenocarcinoma 

cell line)

Inhibited cell proliferation  [34]

Bifidobacterium lactis KCTC 5727 HT-29 colon cancer cells Reduced tumor incidence
Reduced tumor volume

 [35]

Clostridium butyricum ATCC Bacillus 
subtilis ATCC 9398

Human colon cancer cells HCT116, 
SW1116 and Caco-2 cells

Inhibited cell proliferation  [36]

Enterococcus faecalis CECT7121 LBC cells Inhibited proliferation of tumor cells
Induced apoptosis

 [37]

Escherichia coli KUB-36 Colorectal cancer cells HT-29
Human breast cancer cells MCF-7
Human normal breast cell MCF-10 A

Inhibited cell proliferation  [38]

Lactobacillus acidophilus 606 Colorectal cancer cells HT-29 Inhibited cell proliferation  [35]
Lactobacillus acidophilus CL1285
Lactobacillus casei LBC80R

LS513 colorectal cancer cells Induced apoptosis  [39]

Lactobacillus acidophilus KFRI342 DMH-induced colon cancer Reduced β-glucuronidase and 
β-glucosidase activity

 [40]

Lactobacillus casei ATCC 393 Murine (CT26) and
Human (HT29) colon carcinoma cell lines

Inhibited cell proliferation Induced 
apoptosis

 [41]

Lactobacillus kefiri P-IF Human multidrug-resistant (MDR) 
myeloid leukemia (HL60/AR) cells

Induced apoptosis  [42]

Lactobacillus paracasei IMPC2.1 
Lactobacillus rhamnosus GG

HGC-27 gastric and DLD-1 colon cell 
lines

Inhibited cell proliferation Induced 
apoptosis

 [43]

Lactobacillus pentosus B281 Lactobacillus 
plantarum B282

Human colon adenocarcinoma cell lines 
Caco-2 and HT-29

Inhibited cell proliferation 
Induced G1-phase arrest Down-regulation 

of cyclin genes

 [44]

Lactobacillus plantarum (AdF10) 
Lactobacillus rhamnosus GG

DMH-induced colon cancer Reduced tumor incidence
Reduced tumor volume
Reduced tumor multiplicity

 [45]

Lactobacillus plantarum A7 Lactobacillus 
rhamnosus GG

Human colorectal adenocarcinoma cell 
line Caco-2

Colorectal cancer cells HT-29

Inhibited cell proliferation  [46]

Lactobacillus plantarum NCU116 Colorectal carcinoma inhibited the proliferation of cancer cells
induction of apoptosis
increased the expression of pro-apoptotic 

genes

 [47]

Lactobacillus rhamnosus GG 
Bifidobacterium lactis Bb12

Colorectal cancer cells HT-29 Induced apoptosis  [48]

Lactobacillus rhamnosus GG 
Bifidobacterium lactis Bb12

Human colorectal cell line Caco-2 Induced apoptosis  [49]

Lactobacillus rhamnosus GG CGMCC 
1.2134

DMH-induced colon cancer Reduced tumor incidence Reduced tumor 
volume Reduced tumor multiplicity 
Induced apoptosis

 [50]

Lactobacillus rhamnosus GG MTCC 
#1408

Lactobacillus acidophilus NCDC #1

DMH-induced colon cancer Reduced tumor incidence Reduced tumor 
multiplicity

 [51]

Lactobacillus salivarius Ren DMH-induced colon cancer Reduced tumor incidence  [52]
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harmful metabolites into the systemic circulation, which 
could lead to systemic inflammation and cancer [63]. 
Escherichia coli Nissle 1917 had been reported to inhibit the 
leaky gut condition by upregulating the zonula occludens-1 
(ZO-1) in murine intestinal epithelial cells [64]. Lactobacil-
lus casei GG has been shown to inhibit the translocation of 
specific pathogenic bacteria by upregulating the MUC2 gene 
expression, contributing to maintaining the gut barrier integ-
rity [64]. Probiotics, such as Lactobacillus rhamnosus GG, 
have been shown to suppress procarcinogenic fecal enzymes 
like azoreductase, nitroreductase, and β-glucuronidase, 
which can convert procarcinogens into carcinogens [65]. 
Lactobacillus rhamnosus GG suppresses DMH-induced pro-
carcinogenic fecal enzymes and preneoplastic aberrant crypt 
foci in early colon carcinogenesis [51, 66]. Lactulose and 
OF-IN significantly decreased beta-glucuronidase activity, 
whereas a tendency to a decreased beta-glucuronidase activ-
ity was observed after L. casei Shirota intake [51, 67, 68].

Probiotics have also been reported to inhibit cancer cell 
proliferation and induce apoptosis directly. Probiotics inter-
act with and decrease toll-like receptors (TLR) on epithelial 
cells, macrophages, and lymphocytes, as well as regulate 
the synthesis of interleukin-10 (IL-10) and immunoglobu-
lin A antibodies (IgA) to eradicate pathogenic bacteria in 
the intestine [69, 70]. For instance, Lactobacillus casei 
KCCM11072P (LC11072) exhibits antiproliferative activity 
against gastric cell lines by inhibiting NF-κB and mTOR-
mediated signaling [71, 72]. The study demonstrates that 
the cell-free supernatant of Enterococcus faecalis KUMS-
T48 displayed cytotoxic effects on gastric cancer cell lines 
[73]. Beyond these cellular effects, probiotics can also bind 
to and degrade carcinogenic substances in the intestinal 

lumen, reducing their potential harm [74]. Saccharomyces 
have demonstrated clinical and experimental effectiveness in 
gut diseases such as antibiotic-associated diarrhoea, Crohn’s 
disease, and irritable bowel syndrome [75]. Saccharomyces 
cerevisiae var. boulardii has been shown to protect the nor-
mal microbiota of the human gut, inhibit pathogenic infec-
tions, and exhibit immune-modulatory properties, making 
it beneficial for managing irritable bowel syndrome [76].

Synbiotics: Combining Probiotics 
and Prebiotics with Chemopreventive

Synbiotics, which synergistically combine probiotics and 
prebiotics, enhance the survival and efficacy of beneficial 
gut bacteria, offering significant chemopreventive benefits 
(Table 2). By pairing live beneficial microbes (probiotics) 
with non-digestible fibers (prebiotics), synbiotics ensure bet-
ter microbial survival through the harsh gastric environment 
and improve colonization in the colon [77, 78]. It is criti-
cal in cancer prevention, as synbiotics effectively maintain 
a balanced gut microbiota, crucial for reducing systemic 
inflammation (a known factor in cancer progression). Synbi-
otics can be either complementary or synergistic. A comple-
mentary synbiotic comprises probiotics and prebiotics that 
interact separately to accomplish one or more health advan-
tages. In contrast, in a synergistic synbiotic, the prebiotics 
are selected to increase the activities of the co-administered 
probiotics. For instance, lactulose (prebiotic) that does not 
promote the growth of Lactobacillus plantarum has been 
combined as a complementary synbiotic with L. plantarum 
to reduce colibacillosis in pigs [79]. L-arginine boosted the 

Table 1   (continued)

Strains Type of cancer/cell lines Effect Reference

Lactococcus lactis NK34 RAW 264.7 cells (murine macrophage cell 
line)

MRC-5 cells (human lung cell line)
SK-MES-1 cells (human lung carcinoma 

cell line)
DLD-1, HT-29, LoVo cells (human colon 

adenocarcinoma cell line)
AGS cells (human stomach 

adenocarcinoma cell line)
MCF7 cells (human breast 

adenocarcinoma cell line)

Inhibited cell proliferation  [53]

Pediococcus pentosaceus FP3 
Lactobacillus salivarius FP25/FP35 
Enterococcus faecium FP51

Human colorectal adenocarcinoma cell 
line Caco-2

Inhibited cell proliferation
Induced apoptosis

 [54]

Pediococcus pentosaceus GS4 Human colon cancer cells HCT116 Inhibited cell proliferation Induced 
apoptosis

 [55]

Pediococcus pentosaceus M41 Human colorectal adenocarcinoma cell 
line Caco-2 MCF-7 cells

Inhibited cell proliferation  [56]

Propionibacterium freudenreichii ITG P9 HGT-1 human gastric cancer cell Induced apoptosis  [57]
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growth and survival of Lactobacillus rhamnosus and was 
combined as a synergistic synbiotics [80].

Some believe synbiotics are more beneficial than either 
probiotics or prebiotics alone because synbiotics display the 
qualities of both components [102, 103]. Studies suggest 
synbiotics may prevent and improve the health of diabetic 
individuals by enhancing the beneficial gut microbiota com-
position [104]. Diabetes occurs when insufficient insulin is 
produced, reducing nitric oxide bioavailability and develop-
ing endothelial dysfunction. Synbiotic fermented milk of 
Lactobacillus acidophilus ATCC® 4357™ with fructooligo-
saccharide and isomaltooligosaccharide efficiently reduces 
blood glucose levels [92]. A positive effect on reducing liver 
injury and insulin resistance was also reported in high-fat 
diet-induced rats treated with synbiotics of Lactobacillus 
paracasei B21060, arabinogalactan, and fructooligosaccha-
rides [105]. Moreover, synbiotic supplements remarkably 
decreased insulin and fasting blood sugar levels [106]. Syn-
biotic food resulted in a notable increase in the production of 
plasma nitric oxide [107, 108]. Nitric oxide is a ubiquitous 
signalling molecule that contributes to the synthesis and 
secretion of insulin [109]. It was suggested that synbiot-
ics improved endothelial nitric oxide synthase activity in 
umbilical vein endothelial cells. The synbiotic treatment 
also improved hormonal homeostasis and glycemic con-
trol and decreased the synthesis of inflammatory cytokines 
and phosphorylation in the insulin receptor in high-fat diet-
induced rats [105, 110].

Patients with diabetes are likely to suffer from heart-
related diseases [111], which can be alleviated by consum-
ing synbiotic supplements to lower systolic and diastolic 
blood pressure [110]. The improvement in blood pressure in 
diabetics may be due to an improvement in nitric oxide pro-
duction via probiotic actions. The increment of nitric oxide 
may aid the blood vessels in relaxing and maintaining low 
systolic and diastolic blood pressure [112]. The synbiotic 
effect of L. sporogenes and inulin reduces very low-density 
lipoprotein cholesterol and triacylglycerol [113]. A study 
using Enterococcus faecium CRL 183 and Lactobacillus 
helveticus ssp. jugurti 416 in combination with soybean 
and yacon extract revealed a reduction in triglyceride and 
total cholesterol levels, as well as a substantial increase in 
high-density lipoprotein (HDL) cholesterol in the treatment 
group [114]. High production of HDL cholesterol prevents 
the build-up of low-density lipoprotein (LDL) cholesterol, in 
which high LDL cholesterol content may deposit in the walls 
of the blood vessels and arteries, leading to atherosclerosis 
and heart attack. Reducing cholesterol levels is suggested 
due to the digestion and absorption of cholesterol in the 
intestine by the probiotics in the synbiotics [114]. Incorpo-
rating prebiotics in synbiotics further uplifts the probiotic’s 
survival and mechanism of action, enhancing cholesterol 
absorption in the small intestines.

The chemopreventive actions of synbiotics include 
enhancing gut barrier function to prevent the transloca-
tion of pathogenic bacteria and toxins, modulating immune 
responses to detect better and eliminate cancer cells, 
reducing exposure to carcinogens by altering gut pH and 
microbial environment, and promoting anti-inflammatory 
effects through the production of short-chain fatty acids like 
butyrate, propionate, and acetate [77]. These fatty acids are 
particularly effective in inhibiting tumor cell proliferation 
and inducing apoptosis. Clinical studies underscore the 
potential of synbiotics in reducing biomarkers of cancer 
progression, particularly in colorectal cancer, where they 
have helped decrease the incidence of polyps and adeno-
mas. Furthermore, synbiotics are being explored for their 
role in supporting cancer treatment regimens, such as 
chemotherapy, by alleviating adverse effects like diarrhea 
and mucositis and maintaining gut integrity. Synbiotics of 
Lactobacillus acidophilus LA5 and B. animalis subsp. lac-
tis BB-12 with germinated brown rice induced cancer cell 
apoptosis, thus suppressing colon tumor growth [115]. The 
chemopreventive effects of synbiotics (Lactobacillus gas-
seri 505 and Cudrania tricuspidata leaf extract) were also 
proven in in vivo studies on colitis-associated colorectal 
cancer mice [116]. Synbiotic-treated mice produce higher 
levels of SCFAs, suppressing the Staphylococcus linked to 
intestinal inflammation and colorectal cancer [117]. As a 
result, the inflammation and carcinogenesis in colorectal 
cancer tissues were decreased [117]. A notable increase of 
tumor necrosis factor-α production and apoptosis-regulating 
genes were also observed in the synbiotic-treated mice; the 
production of anti-apoptosis genes and tumor cell prolifera-
tion significantly decreased in the synbiotic-treated mice 
simultaneously [117]. Consequently, synbiotic-treated mice 
exhibited enhanced tumor repression and reduced cancer cell 
proliferation [117].

Recent Technologies and Mechanisms 
Involved in the Gut Microbiota Function

Growing evidence demonstrates gut microbiota’s signifi-
cance in regulating anti-cancer treatments’ efficacy and tox-
icity [118]. Besides the commonly known food supplements 
for gut microbiota improvement, emerging techniques such 
as fecal microbiota transplantation (FMT) and bacteriophage 
exhibited promising strategies in modulating the involve-
ment of gut microbe involvement in chemoprevention and 
cancer treatments.

Faecal Microbiota Transplantation (FMT)

FMT, or fecal microbiota transplantation, involves transfer-
ring fecal material from a healthy donor to a recipient who 
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lacks a healthy gut microbiota composition. It has been found 
to significant advantages in immunotherapy as it reduces the 
side effects of treatment [119, 120]. FMT contributes to can-
cer prevention by restoring microbial diversity, reintroducing 
beneficial microbes, enhancing immunological function and 
tolerance, and detoxifying dietary carcinogens.

As previously mentioned, the gut microbiome plays a 
crucial role in modulating immune response and balance. 
An imbalance in gut microbiota is strongly associated 
with chronic inflammation and ultimately contributes to 
the development of cancer [121]. FMT enables patients to 
restore normal gut function by receiving a well-balanced 
microbiome from a donor [122]. The reintroduction of a 
selective beneficial gut microbiome through FMT allevi-
ates disease symptoms, significantly minimizing the risk of 
cancer development. The beneficial microbes can produce 
various metabolites involved in the gastrointestinal tract’s 
homeostasis balance [95, 123]. In addition, the production 
of anti-carcinogenic metabolites such as SCFAs, EPS, and 
bacteriocin can eliminate pathogenic bacteria by induction 
of apoptosis and inhibiting cancer growth. The enriched 
microbiome from donors possesses hydrolytic enzymes that 
could rapidly break down and eliminate dietary carcinogens 
before they can destroy the gut intestinal lining and hence 
inhibit cancer development [124]. FMT from a donor with 
a microbiome adept at this detoxification process can equip 
the recipient’s gut with these beneficial bacteria. Thus, this 
improves the recipient’s ability to neutralize dietary carcino-
gens and reduces cancer risk [125].

FMT has been successfully utilized to treat Clostridioides 
difficile infections (CDI) [126], inflammatory bowel disor-
ders [127], autism [128], chronic kidney disease, metabolic 
syndrome [129], and alteration of hepatitis B virus infection 
[130]. Foremost, an in-depth systematic review of the global 
incidence of FMT to treat CDI demonstrated that FMT 
appears safe in major indication conditions with mild or 
moderate adverse events [129, 131]. It has been shown that 
FMT improves the effectiveness of anti-programmed death-1 
(PD-1) therapy in melanoma patients [132, 133]. Anti-PD-1 
therapy is an immunotherapy for metastatic melanoma that 
utilizes antibodies PD-1 to prevent the interaction of PD1 
and release CD8+ T cells from inhibition, thereby increas-
ing anti-cancer activity. A combination of responder-derived 
FMT and anti-PD-1 therapy has shown clinical success in 
30–40% of previously immunotherapy-refractory patients 
[133]. FMT and anti-PD-1 improved CD8+ T cell activation 
and changed gene expression inside the tumour microenvi-
ronment, indicating that gut microbiota modification with 
FMT could be a way to enhance anti-PD-1 treatment [133]. 
Furthermore, FMT minimises the severity of side effects 
from cancer treatment by restoring balance and reversing 
the loss of diversity in gut microbiota after cancer treat-
ment [127]. A positive result was reported in the study of 

Bifidobacterium strains in improving the immunopathology 
associated with cytotoxic T lymphocyte-associated antigen 4 
(CTLA-4) blockade. Bifidobacterium was reported to reduce 
autoimmunity after checkpoint blockade therapies without 
reducing the anti-cancer responses [134].

Despite FMT showing some promising features, it has 
some limitations that need refinement. For example, there 
are no standardization approaches to FMT. Various aspects, 
such as delivery methods, stool preparation, and donor selec-
tion, need to be considered. Limited data is available to pin-
point which gut bacteria are responsible for the treatment’s 
success or failure. The strongest evidence currently supports 
FMT’s effectiveness is limited to treating recurring CDI. 
However, the application of FMT for other disorders like 
metabolic syndrome, inflammatory bowel disease, diges-
tive problems, and obesity is still in the pioneering research 
stage. Clinical trial results are inconsistent, limiting our 
understanding of the gut microbiome’s makeup and function. 
Therefore, this highlighted the need for a more precise and 
personalized approach to isolating and transferring benefi-
cial bacteria. In short, FMT, as a potent medical procedure 
for the manipulation of gut health balance, holds great prom-
ise to reduce the risk of cancer and side effects. However, 
fortifying more understanding of the gut bacteria involved is 
important, and personalizing the treatment for better results 
across different diseases is important.

Bacteriophages

Bacteriophage therapy, or phage therapy, is a therapeutic 
approach that utilizes bacteriophages to combat bacterial 
infections. The mode of action of bacteriophage therapy 
involves attack, transfer, replication, and lysis. Initially, the 
bacteriophages target a susceptible host, followed by the 
transfer of genetic materials within the host, rapid replica-
tion, and, ultimately, the bursting of bacterial cells through 
lysis. Releasing new phages from the burst cells restores the 
phage attack cycle [135].

Recent advancements in understanding the role of bacte-
riophages in the gut microbiota have provided insights into 
their significance in human health. The interaction between 
bacteriophages and gut bacteria can contribute to the preven-
tion of intestinal dysbiosis and associated diseases [136]. 
Changes in the gut microbiota have been associated with 
conditions such as ulcerative colitis, highlighting the impact 
of bacteriophages on gut health [137]. Extensive research 
has been conducted on the potential clinical applications of 
bacteriophages, including treating antibiotic-resistant bac-
teria in lung infections, and bone and joint problems [138, 
139]. Studies have demonstrated that bacteriophages play 
a crucial role in preventing the formation of biofilms on 
medical devices [140]. Research has also indicated that bac-
teriophages have a dynamic influence on the gut microbiome 
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through predation and gene transfers, affecting the ecologi-
cal structure of gut bacteriophages and their role in diseases 
like inflammatory bowel disease [141, 142].

On the other hand, bacteriophage therapy is essential 
in maintaining gut homeostasis, detoxifying carcinogens, 
and modulating the immune system [143]. Bacteriophage 
therapy has proven effective in controlling the carcinogenic 
microbiome [144]. By assembling nanoparticles on their 
surface, bacteriophages can kill Fusobacterium nucleatum 
and activate immune cells, leading to a stronger anti-tumor 
immune response [145]. However, chemotherapy may still 
be more evident and compelling than bacteriophage treat-
ment. Moreover, dietary modulation of bacteriophages can 
potentially impact the gut microbiome, reducing the risk 
of gastroenteritis, inflammatory bowel disease, and cancer 
[146]. The versatility of phages in medical applications is 
demonstrated by their investigation for use in vaccine devel-
opment and immunotherapy [147]. Each phage has a specific 
target bacterial host, allowing it to infect and replicate within 
a particular type or strain of bacteria [148]. This targeted 
approach selectively eliminates the target bacterial host with 
minimal disruption to the gut microbiome [149, 150]. The 
gut phageome of healthy individuals is believed to play a 
critical role in maintaining a healthy gut ecosystem [123]. 
The escalating threat of antibiotic resistance, caused by the 
emergence of antibiotic-resistant bacteria (ARB) and anti-
microbial resistance genes (AMR), necessitates alternative 
treatment options [151]. Phages can be effective against bac-
teria resistant to conventional antibiotics, providing a poten-
tial solution to the growing problem of antibiotic resistance. 
In conclusion, phage therapy is gaining increasing attention 
as a potential alternative or complementary treatment for 
bacterial infections and antimicrobial resistance. However, 
further research and development are required to establish 
its broader use and effectiveness.

Probiotics and Drug Interactions

Understanding interactions between probiotics and drugs 
is essential, especially for cancer patients undergoing 
chemotherapy. Probiotics may influence the pharma-
cokinetics of chemotherapy drugs by modulating drug 
metabolism and altering drug absorption, distribution, 
and excretion [152]. Furthermore, probiotics could affect 
the efficacy and toxicity of chemotherapy by mechanisms 
such as enzyme modulation and competition for binding 
sites [153].

In the context of irinotecan (a cancer drug), there are pos-
itive and negative interactions with gut microbiota. Gut bac-
teria such as Bacteroides vulgatus, E. coli, and Clostridium 
ramosum may produce β-glucuronidase, which transforms 
SN-38 G (an active metabolite) into SN-38 (an inactive 

metabolite that may cause neutropenia and diarrhea), thereby 
increasing the risk of side effects and reducing the effective-
ness of cancer treatments. Contrarily, probiotics such as Lac-
tobacillus reuteri and Bifidobacterium infantis do not affect 
the therapy with irinotecan as they lack the gene to produce 
β-glucuronidase. Administrating a bacterial β-glucuronidase 
inhibitor shielded the mice from gastrointestinal toxicity, 
indicating that microbial β-glucuronidase inhibitor could be 
clinically used to improve drug efficacy and minimize the 
side effects (154). VSL3 (the combination of Lactobacilli 
spp., Bifidobacteria spp., and Streptococcus thermophilus) 
has also been found to reduce irinotecan-induced diarrhea 
in animal studies by promoting the growth of intestinal cells 
and preventing cell death [155]. Bifidobacterium longum 
enriched with selenium has shown promise in reducing the 
risk of irinotecan-induced diarrhea in mice by enhancing 
enzyme activity and increasing gene expression [156, 157].

Beyond the interactions with cancer drugs, probiotics 
may enhance the effectiveness of antibiotics by maintain-
ing a balanced gut microbiota, which potentially lowers the 
risk of infections during cancer treatment. For instance, the 
use of synbiotics (inulin, Lactobacillus rhamnosus, and 
Bifidobacterium lactis) has been found to reduce colorectal 
proliferation significantly, induce necrosis in colonic cells 
and increase the production of interferon γ in the cancer 
patients [74]. Clinical studies have also revealed positive 
outcomes when cancer patients took synbiotics after colo-
rectal cancer surgery, including fewer infections, less diar-
rhea, quicker recovery of normal gut function, reduced use 
of antibiotics, lower risk of severe infections, and shorter 
hospital stays [158, 159].

Furthermore, probiotics have the potential to alter the 
immune system and increase the body’s response to vac-
cines, which could have implications for cancer prevention. 
Probiotics have been shown in studies to improve vaccine-
induced immune responses. Bifidobacteria and Lactoba-
cillus have been shown to boost seroconversion and sero-
protection rates in adults receiving influenza vaccines, as 
well as increased interferon- (IFN-) production and better 
antibody responses in infants following Hepatitis B immu-
nization [160–162]. Other probiotic strains like E. coli, 
Lactococcus lactis, and Bacillus species have also demon-
strated the ability to bolster humoral and cellular immune 
responses [163–165].

Probiotics are also reported to assist in detoxifying the gut, 
potentially reducing the risk of cancer associated with pesti-
cide exposure and heavy metals. Lactobacillus was found to 
sequester organophosphate pesticides, parathion, and chlor-
pyrifos. Remarkably, this pesticide-sequestering capability 
was observed to be independent of the metabolic activity 
of the bacteria, with both live and heat-killed Lactobacillus 
strains demonstrating similar pesticide-capturing abilities 
[166]. Numerous in vitro studies have also been conducted to  
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investigate the potential of probiotics to exhibit detoxification 
properties, such as Lactobacillus plantarum on chromium, cad-
mium, and lead toxicity [167–169], Bacillus cereus on cadmium 
toxicity [170], and Lactobacillus on mercury toxicity [171]. 
These probiotics enhance the elimination of heavy metals from 
the body, reversing their adverse effects on gut microbiota.

Potential Challenges and Future Directions

Despite the growing body of research supporting probiotics 
in cancer prevention and treatment, several challenges and 
questions remain. The effects of probiotics can be highly 
strain-specific, necessitating further research to identify the 
most effective probiotic strains for cancer prevention and 
treatment. Determining optimal dosages and treatment dura-
tions and standardizing probiotic products in terms of qual-
ity, quantity, and labelling is essential to ensure consistent 
and reliable results across studies [77]. While probiotics are 
generally considered safe, certain patient populations, such 
as those with compromised immune systems, may be at risk 
of adverse effects, emphasizing the need to establish safety 
profiles for specific groups. Genetic stability, deleterious 
metabolic activity, and potential pathogenicity of probiotics 
over time must also be assessed according to the probiotics 
involved, particularly immunological effects in infants. Pro-
biotics have been reported to confer infections by transloca-
tion throughout the digestive tract and intestines [172]. Indi-
viduals with weak immune responses, specifically long-term 
hospitalized patients, have an increased risk for infection. 
Lactose intolerant individuals might also experience bloat-
ing and gas issues upon consuming synbiotic food consisting 
of lactose due to D-lactic acidosis and the overgrowth of 
bacteria in the small intestines [173]. Biogenic amines, often 
released from fermented probiotic-based food products, have 
been reported to fluctuate and rise or reduce blood flow, 
which might trigger headaches in individuals [174].

As personalized medicine advances, tailoring probiotic 
usage based on an individual’s gut microbiota and genetic 
makeup may become an exciting avenue. One of the most 
significant innovations is the application of CRISPR-Cas 
systems. The CRISPR-Cas systems are being used in probi-
otics for cancer treatment by leveraging the ability of certain 
probiotic bacteria to colonize tumor regions and deliver the 
CRISPR-Cas9 system to the tumor site. It has been demon-
strated Lactobacillus rhamnosus GG (LGG) can penetrate 
the hypoxia tumor center, allowing efficient delivery of the 
CRISPR-Cas9 system to the tumor region [175]. The pro-
cess of genetically modifying probiotics involves several key 
steps: designing a specific guide RNA (gRNA) to target a 
desired DNA sequence within the probiotic, using the Cas9 
enzyme to create a precise cut at the DNA target site, and 
then allowing the bacterial cell to repair the cut using its 

natural mechanisms, which can be harnessed to introduce or 
disrupt genes [176]. In the study by [175], the CRISPR-Cas9 
system is used to knockdown tumor immunosuppression-
related genes, which helps to amplify immunogenic cell 
death and reverse tumor immunosuppression. Consequently, 
Lactobacillus rhamnosus GG (LGG) efficiently colonizes 
the tumor area and activates the immune system, thus, 
enhancing the effectiveness of the CRISPR-Cas9 system in 
inducing ICD and lifting immunosuppression. It has been 
shown that the CRISPR-Cas9 system generates immune 
responses that effectively attack tumor cells in mice, con-
tributing to the inhibition of tumor re-challenge in vivo, 
providing an immunological memory effect, and offering 
protection against lung metastasis [175].

The emerging of single-cell RNA sequencing (scRNA-
seq) technologies also improves our understanding of gut 
microbiome and cancer relationship [176]. The study of gene 
profiles at the individual microbial cell provides the vast 
heterogeneity within microbial communities and sheds light 
on their potential roles and interactions in cancer pathology, 
particularly in how they influence the tumor microenviron-
ment [177]. For example, scRNA-seq has been reported to 
profile the transcriptomes of cells, which helps understand 
the cellular landscapes of tumors and the development of 
personalized cancer treatments. It is suggested that these 
detailed profiles can be used to tailor therapies based on 
the specific cellular makeup of each patient’s tumor, poten-
tially increasing the efficacy of treatments and reducing side 
effects [178]. The scRNA-seq has been claimed in advancing 
the cellular mechanisms and genetic mutations that facili-
tate resistance, leading to a better understanding to design 
therapies that improve patient therapeutic outcomes [179]. 
Additionally, scRNA-seq has been applied to study circulat-
ing tumor cells (CTCs), which are essential for understand-
ing cancer metastasis and progression. Analyzing the gene 
expression profiles of CTCs at the single-cell level could 
enriche the comprehension of tumor biology and metastatic 
processes, offering for new therapeutic interventions [176]. 
To date, scRNA-seq has identified various cell populations 
within lung tumors, some of which are associated with poor 
prognosis; uncovered cellular heterogeneity and mechanisms 
of drug resistance in breast cancer; and identified cell popu-
lations linked to poor prognosis and drug resistance in ovar-
ian cancer [179].

Conclusion

The genetic makeup in the gut microbiota is 100 times 
greater than that of humans. Gut microbes compensate for 
the weakness of humans’ metabolism by providing valuable 
metabolites through catabolism and anabolism reactions. 
Therefore, synbiotics have emerged as new functional foods 
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for healthy immune balance. However, the minimal intake of 
probiotics and prebiotics to exert their maximum function is 
still debated. The technology to maintain, process, and mass 
produce synbiotic products for market demand are the criti-
cal aspects that need to be considered for overall benefits. 
Various technologies to formulate synbiotics in food prod-
ucts should be studied in depth. Omics technology allows 
the pathophysiology study of synbiotics to explain the health 
diseases and prevention mechanisms. Further, in vitro and 
in vivo clinical studies are also required to analyze the effect 
of synbiotic consumption in individuals with various health 
problems, which could provide sound evidence for maxi-
mum utilizing probiotics in treatments.
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