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Abstract
Curdlan, a β-1,3/1,6-glucan found in Alcaligenes faecalis (A. faecalis) wall, activates innate and humoral immunity. The 
aim of this study is to evaluate whether pretreated rats with A. faecalis A12C could prevent sepsis disturbances and identify 
the immunomodulatory mechanisms involved. Experiments occurred in two stages: a survival study with 16 rats randomly 
divided into septic (SC) (n = 8) and septic pretreated (SA) (n = 8) groups and 45 rats divided into four groups: healthy (AGU-
SAN) (n = 9), septic (AGUIC) (n = 13), septic pretreated (AGUIA) (n = 14), and healthy pretreated (AGUSTO) (n = 9). Sepsis 
was induced by cecal ligation and puncture after 30 days of A. faecalis A12C pretreatment or without. SA group had a higher 
survival rate of 58% vs. 16% for SC group (P < 0.05). Overall, AGUIA showed better status than AGUIC (P < 0.01). Higher 
monocytosis was found in AGUIA and AGUSTO vs. AGUIC and AGUSAN, respectively (P < 0.05). A gradual increase in 
curdlan fecal concentration was observed in AGUIA during pretreatment. Fecal concentrations of Escherichia coli signifi-
cantly decreased in AGUIA and AGUSTO. Bacterial load in urine, peritoneal lavage fluid (PLF), and bronchoalveolar lavage 
fluid (BALF) decreased (P < 0.05) in AGUIA vs. AGUIC. Finally, lower inflammation was observed in serum, BALF, and 
PLF, with reduced IL-6, IL-10, IL-1β, and TNF-α, along with less damage in lungs and peritoneum in AGUIA vs. AGUIC. 
These findings suggest the connection between curdlan—produced by A. faecalis A12C—with the immune system and the 
reduction in severity of experimental sepsis.
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Introduction

In recent years, there has been an increase in the number of 
studies associating the use of bacterial strains with health 
benefits, including Bifidobacterium spp., Lactobacillus 
spp., Enterococcus spp., Streptococcus spp., or Bacillus spp. 
These probiotic candidates have shown benefits on human 
and/or animal health [1–3]. Some authors have explained 
the beneficial effects based on the ability to promote the 
production of anti-inflammatory cytokines or to inhibit pro-
inflammatory cytokines [4].

While lactic acid bacteria have traditionally been the most 
commonly employed probiotics in the fields of human and 
veterinary medicine, there is a growing trend in research 
focused on the assessment of novel bacterial species that 
may have potential utility as probiotics [5–9]. In several 
studies by our group, a strain of Alcaligenes faecalis subsp. 
faecalis (A. faecalis A12C), isolated from Argyrosomus 
regius gills, has shown excellent conditions as potential 
probiotic in fish due to inhibitory activity against different 
pathogens, particularly Photobacterium damselae subsp. 
piscicida and Vibrio anguillarum, stimulating their immune 
response by activating a variety of pro-inflammatory 
cytokines, such as interleukin-6 (IL-6) and tumor necrosis 
factor alpha (TNF-α) [10, 11]. Our group reported the first 
study examining the probiotic effects of A. faecalis A12C 
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on general, biochemical, and pathological parameters in a 
clinically relevant rodent model of peritonitis, showing that 
oral administration of this strain during 7 days is safe and 
had marked effects on the spread of infection [12].

A. faecalis has aerobic growth at 37 °C and at a neutral 
pH in blood agar, producing a large amount of curdlan when 
there is a limitation of nitrogen and a supply of ammonium 
phosphate in the culture media [5, 7]. Curdlan is a linear 
polymer composed of a β-1,3-glucan, whose only basic unit 
is glucose with a high molecular weight [13]. The main 
β-glucan molecules are found in the cell wall of organisms 
such as bacteria, yeasts, fungi, algae, and plants. In A. fae-
calis, curdlan is polymerized by the β-1,3-glucan synthase 
CrdS in the inner membrane. It is speculated to provide a 

channel for the export of the high-molecular-weight curdlan 
chain [14]. After entering the periplasm, the polysaccharide 
is hydrolyzed by the β-endonuclease ExsH and crosses the 
outer membrane passing through a β-barrel membrane pro-
tein. A tetrapeptide repeat (TPR) protein protects the glycan 
chain during secretion and regulates the degradation of poly-
saccharide chains by the β-endonuclease ExsH [15] (Fig. 1).

This polysaccharide activates the innate immune system 
and humoral immunity [15, 16], providing protection against 
otherwise severe or lethal infections. There is extensive sci-
entific evidence about the protective effect of β-glucans 
against bacterial and fungal infections [17, 18] and viral 
and parasitic infections [19–21] through immunomodulat-
ing mechanisms. The glucans were able to increase secretion 

Fig. 1  Diagram of the curdlan 
biosynthesis and secretion 
system in A. faecalis 
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of interleukins, increase expression of dectin-1 on mac-
rophages, and increase expression of Toll-like receptor 2 on 
dendritic cells [22].

Based on this background, we decided to test whether A. 
faecalis A12C can provide protection against a clinically rele-
vant model of sepsis in vivo. We evaluated the immunomodu-
latory effect of A. faecalis A12C on certain cytokines and the 
production of curdlan by this bacterial strain.

Materials and Methods

Animals

In accordance with the guidelines outlined by the European 
Commission (2010/63/EU) and Spanish Legislation (Law 
53/2013) for the protection of animals in scientific research, 
this study received approval from the Local Animal Ethics 
Committee at the Hospital Universitario de Gran Canaria Dr. 
Negrín (HUGCDN) in Las Palmas de Gran Canaria, Spain.

A total of 61 male pathogen-free Crl Sprague Dawley® 
(SD) rats, each 12 weeks old, were employed for this study. 
These rats were maintained under semi-barrier conditions 
at the animal facilities of HUGCDN. The rats were housed 
in pairs and provided with enrichment items such as igloos 
and nesting material. Cage changes were carried out twice a 
week. The rats had access to a diet comprising rat chow pel-
lets (Teklad® Global 14% Protein Rodent Maintenance Diet, 
Harlan, Barcelona, Spain) and ad libitum access to drinking 
water (Fonteide®, S/C de Tenerife, Spain). The lighting con-
ditions followed a 12:12-h light/dark cycle. Room tempera-
ture was maintained at 21 ± 1 °C, and relative humidity was 
maintained at 55 ± 5%, with an air exchange rate of 15 times 
per hour (details in Supplementary Material and Methods).

Preparation of A. faecalis A12C

The probiotic strain A. faecalis A12C was isolated from 
Argyrosomus regius gills at the Instituto de Sanidad Animal 
y Seguridad Alimentaria of the University of Las Palmas 
de Gran Canaria, Spain. Fresh cultures were made as previ-
ously described by our group [12] (details in Supplementary 
Material and Methods).

Sepsis Model

Sepsis was induced by cecal ligation and puncture (CLP) 
method as previously described [23]. All procedures were 
performed under general anesthesia, with a subcutaneous 
cocktail of fentanyl (Fentanest®, Kern Pharma, Barcelona, 
Spain) and medetomidine (Domtor®, Orion, Espoo, Fin-
land), both at 0.3 mg/kg. Briefly, after a laparotomy, the 
cecum was ligated at half the distance between distal pole 

and the base of the cecum to induce mild-grade sepsis and 
perforated twice; feces were extruded, and the abdominal 
incision was closed. Animals received prewarmed normal 
saline (37 °C; 5 ml per 100 g body weight) subcutaneously 
for fluid resuscitation. For postoperative analgesia, all ani-
mals’ welfares were evaluated (Supplementary Table 1) [24] 
and treated subcutaneously with buprenorphine (Buprex®, 
Indivior Europe Ltd, Dublin, Ireland) 0.05 mg/kg for at least 
2 days (details in Supplementary Material and Methods).

Experimental Design

This study was conducted in two phases. In the first phase, 
16 animals were randomly divided into two groups for 
examining survival: (i) septic control group (SC) (n = 8), in 
which A. faecalis A12C was not administered and sepsis was 
induced by CLP, and (ii) septic group pretreated with A. fae-
calis A12C (SA) (n = 8), in which the probiotic was admin-
istered during 30 days in the drinking water (6 ×  108 CFU/
ml) and water were replenished daily. In a second phase, 
45 experimental animals were randomly divided into four 
groups: (i) healthy control group (AGUSAN) (n = 9), in 
which A. faecalis A12C was not administered nor was sub-
jected to sepsis; (ii) septic control group (AGUIC) (n = 13), 
in which A. faecalis A12C was not administered and sepsis 
was induced by CLP; (iii) septic group pretreated with A. 
faecalis A12C (AGUIA) (n = 14), in which the probiotic 
was administered during 30 days in the drinking water; and 
(iv) healthy pretreated control group (AGUSTO) (n = 9), in 
which A. faecalis A12C was administered during 30 days in 
the drinking water but CLP was not performed.

After 30 days of probiotics or water alone, a hematologi-
cal study and microbiological examination of the feces were 
made in all animals. Surviving rats were euthanized, and 
samples were collected at 48 h after CLP in SC and SA 
(phase 1), at 20 h post-CLP in AGUIC and AGUIA, and at 
20 h after 30 days of probiotics or water administration in 
AGUSTO and AGUSAN groups (phase 2). Figure 2 sum-
marizes the experimental design.

Body Temperature, Weight, and Sample Collection

At the end of each experimental phase, animals were 
weighed (body temperature was measured) and anesthe-
tized. In anesthetized animals, the following samples were 
collected: blood from external jugular vein for blood count 
and biochemistry, intracardiac blood for blood culture and 
serum collection, urine by direct puncture of urinary blad-
der for urine culture, bronchoalveolar lavage fluid (BALF) 
from the right lung (2–3 ml), and peritoneal lavage fluid 
(PLF) from the abdominal cavity (4 ml) for microbiological 
culture, cytological analysis, and cytokine and curdlan meas-
urements. Finally, liver, kidney, spleen, duodenum, pancreas, 
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jejunum, mesenteric lymph nodes, thymus, and lung were 
collected for histological evaluation. Rats were euthanized 
by exsanguination after excision of the caudal vena cava and 
abdominal aorta.

Blood Count and Blood Chemistry

Whole blood samples were analyzed to determine hema-
tological parameters, including hematocrit, red blood cell 
count, platelet count, total white blood cell count, lympho-
cytes, mononuclear cells, neutrophils, eosinophils, and baso-
phils. Additionally, serum biochemical parameters such as 
alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), creatinine (CREA), urea (UREA), and C-reactive 
protein (CRP) were quantified (details in Supplementary 
Material and Methods).

Bacterial Counts in Feces

To assess the gut survival capabilities of the probiotic A. 
faecalis A12C and its impact on E. coli growth within 
the fecal microbiota, the bacterial load was quantified in 

colony-forming units per gram (CFU/g) for both bacterial 
species. Fecal samples were obtained from the animals by 
gently massaging the abdomen at the beginning and at the 
end of each experimental phase. To regulate bacterial abun-
dance, tenfold dilutions were prepared in 0.9% sterile saline 
and plated on agar plates containing 4.5 g/100 ml sodium 
chloride, 64 mg/l vancomycin (SALA, Barcelona, Spain), 
and 0.02 g/l bromothymol blue (Merck, Darmstadt, Ger-
many). Incubation was carried out at 37 °C for 24 h (for E. 
coli) or 72 h (for A. faecalis A12C) to calculate the total 
number of viable bacteria (CFU/g of feces) in the original 
sample. Colonies were isolated and subjected to repeated 
subcultures. Bacterial species were identified based on col-
ony morphology and Gram staining. Advanced identification 
was performed using the MALDI-TOF MS (Vitek® MS, 
Biomerieux) technique [25].

Microbiological Analysis

Samples were processed within 2 h of collection. Both 
aerobic and anaerobic microorganisms were assessed from 
PLF, BALF, and urine using 100 µl of the sample and 3 ml 

Fig. 2  Experimental design and timeline. Phase 1, survival study: 
septic group without A. faecalis A12C (SC), and septic group but pre-
treated with A. faecalis A12C (SA) during 30  days in the drinking 
water (6 × 108 CFU/ml). Phase 2, healthy control group (AGUSAN) 
without A. faecalis A12C; septic control group induced by CLP, with-
out A. faecalis A12C (AGUIC); septic group pretreated with A. fae-

calis A12C (AGUIA), in which the probiotic was administered during 
30 days in the drinking water (6 ×  108 CFU/ml); and healthy control 
group (AGUSTO), in which A. faecalis A12C was administered dur-
ing 30 days in the drinking water (6 ×  108 CFU/ml). CLP, cecal liga-
tion and puncture method; E, euthanatized



Probiotics and Antimicrobial Proteins 

of blood sample. Incubation conditions were maintained 
at 37 °C. Aerobic microorganisms were cultured in 10 ml 
Brain–Heart Infusion broth (PanReac AppliChem), and after 
24 h, 25 µl of these cultures was streaked onto various agar 
media, including CLED, MacConkey, Mannitol Salt Agar, 
and Sabouraud Dextrose Agar (all supplied by PanReac 
AppliChem). Anaerobic microorganisms were plated on 
Brucella Blood Agar with Hemin and Vitamin K1 (Becton 
Dickinson) and incubated for 4 days under anaerobic con-
ditions. To investigate aerobic and anaerobic bacteremia, 
blood samples were inoculated into 10 ml of BD BACTEC 
Lytic Anaerobic (Becton Dickinson) and placed in the BD 
BACTEC FX blood culture system (Becton Dickinson) for 
5 days. If any signs of bacterial growth were observed, a 
secondary culture was prepared on Blood Chocolate and 
MacConkey agar (both from Becton Dickinson), and the 
plates were incubated for 48 h in a 5%  CO2 environment. 
Additionally, Brucella Blood Agar with Hemin and Vita-
min K1 (Becton Dickinson) was incubated for 4 days under 
anaerobic conditions. Bacterial species were identified based 
on colony morphology and Gram staining, and advanced 
identification was carried out using the MALDI-TOF MS 
(Vitek® MS, Biomerieux) technique.

Cytokine Assays

Serum, BALF, and PLF concentrations of IL-1β, IL-6, 
IL-10, TNF-α, and interferon (IFN)-γ were determined 
in duplicates using available ELISA kits for rat cytokines 
(details in Supplementary Material and Methods).

Curdlan Measurement

In all groups of animals of the second phase of the study, 
curdlan concentrations in feces, urine, serum, PLF, and BALF 
were measured (details in Supplementary Material and Meth-
ods). Curdlan concentrations in feces were assessed at 0 day, 
7 days, 15 days, and 30 days after the first dose of A. faecalis 
A12C. Urine, serum, PLF, and BALF curdlan concentrations 
were assessed at 30 days after the first dose of A. faecalis 
A12C. Before analysis, the samples used were previously lyo-
philized and the concentrations were determined as percent-
age of curdlan in the dry weight of the samples.

PLF, BALF, and Urine Cytology

Immediately after sampling, the PLF, BALF, and urine 
specimens were equally divided into three 200 µl K3-EDTA 
microtubes. Samples were analyzed with a flow cytometer 
using setting for rats [26, 27] for reporting differential count 
of total nucleated cells (TNCC), granulocytes (GRAN), 
agranulocytes (AGRAN), and red blood cells (RBC) (details 
in Supplementary Material and Methods).

Histological Evaluation and Wet‑to‑Dry Lung  
Weight Ratio

Tissue samples from animals of the second experimental 
phase were fixed in 4% formalin for 24 h, embedded in par-
affin, and cut into 4-µ sections for histological study. Slides 
were subjected to staining with hematoxylin–eosin and 
subsequently scrutinized using a light microscope. Slides 
were evaluated by two pathologists blinded to experimental 
groups (details in Supplementary Material and Methods). In 
all organs, an assessment was made regarding the presence 
of bacteria within the vessels, which involved microscopic 
observation of tiny rod-shaped structures exhibiting a blue 
hue inside these vessels. Additionally, evaluations were con-
ducted for parenchymal disarray, interstitial swelling, the 
infiltration of white blood cells, tissue damage, and inter-
stitial bleeding. Lung damage was quantified using a semi-
quantitative scoring system that considered factors such as 
thickening of alveolar septa, the presence of neutrophils in 
the interstitial or alveolar areas, the formation of hyaline 
membranes, and the accumulation of proteinaceous material 
within the airspaces [28]. Heart injury was assessed based 
on the presence of an inflammatory response in the epicar-
dium and/or myocardium. Evaluation of intestinal damage 
encompassed examinations at both mucosal and serosal lev-
els. Our histological indicators for renal damage included 
the vacuolization of proximal tubule cells, loss of the brush 
border, and shedding of cells into the tubular lumen. Hepatic 
sections were examined for decreased staining, vesicular 
nuclei, and opening of the sinusoids [29]. Peritoneal injury 
was assessed based on a semi-quantitative severity score of 
histopathological peritonitis [30] as 0, 1, 2, and 3.

Wet-to-dry (W/D) lung weight ratio was evaluated. Left 
lungs were dissected free of hilar structures, weighed (wet 
weight), dried at a constant temperature of 50 °C in a gravity 
convection oven (Memmert GmbH, Schwabach, Germany) 
for 72 h, and weighed again (dry weight) to obtain the W/D 
lung weight ratio as a marker of extravascular lung water 
[31].

Statistical Analysis

The analyses were conducted using the Statistical Pack-
age R 2019 version 3.5.3 (R Foundation for Statistical 
Computing, Vienna, Austria). To assess the normality of 
quantitative variables, the Shapiro–Wilk test was utilized. 
Continuous variables are presented as medians along with 
the 25th and 75th percentiles. When making comparisons 
among more than two groups, the Kruskal–Wallis test 
was employed, and adjustments for multiple comparisons 
were made using the Bonferroni correction as necessary. 
Comparisons of two independent groups were conducted 
using the Mann–Whitney U test. Survival rate studies were 
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analyzed using Kaplan–Meier methods, followed by log-
rank tests. Data are visually represented using box and 
whisker plots. In all cases, two-tailed tests were performed, 
and statistical significance was considered achieved at a 
significance level (P < 0.05).

Results

Evaluation and Survival

In the first phase, to investigate the effects of A. faecalis 
A12C on the survival rate of septic rats, survival rate was 
measured at 0 h, 12 h, 24 h, 36 h, and 48 h after CLP. Over-
all survival rate of septic group pretreated with A. faecalis 
A12C (SA) was higher than that of those untreated (58% 
vs. 16%, P < 0.05) (Fig. 3). In the second phase, survival at 
20 h after CLP was 100% in AGUIC and AGUIA, as in their 
healthy control groups (AGUSAN and AGUSTO). However, 
differences in clinical signs were observed (Fig. 4). Greater 
discomfort was found in the group of septic animals not 
treated with probiotics (AGUIC) compared to septic ones 
and pretreated with A12C (AGUIA). The most frequent clin-
ical signs present were ruffled fur, chromodacryorrhea, and 
dehydration. There were no significant differences between 
AGUSAN and AGUSTO. At the end of the second phase, 
all experimental groups did not show significant changes in 
body weight (Supplementary Fig. 1).

Blood Count and Blood Chemistry

In regard to hematological parameters from phase 2 (Sup-
plementary Table 2), in most cases, septic animals pre-
treated with A. faecalis A12C (AGUIA) had closer values 
to healthy pretreated animals (AGUSTO) or non-pretreated 
(AGUSAN) with A. faecalis A12C, than the septic group 

without pretreatment with A. faecalis A12C (AGUIC). An 
increase in RBC concentration (P < 0.01) was observed in 
AGUSTO group compared to AGUSAN group (11.05 ×  106/
µl vs. 10.41 ×  106/µl, respectively) (Fig. 5). Thrombocyto-
penia was also found in septic animals when compared to 
non-septic animals (P < 0.01). However, a decrease in plate-
lets was much lower in animals pretreated with A. faecalis 
A12C than in non-pretreated septic groups (558.5 ×  103/µl 
vs. 442.5 ×  103/µl) (Supplementary Table 2). AGUIC and 
AGUIA septic groups had marked leukopenia (P < 0.01) 
compared to non-septic groups, although leukopenia was 
lower in AGUIA group (4.02 ×  103/µl) than in AGUIC 
(1.89 ×  103/µl). In addition, a significant increase (P < 0.01), 
within physiological ranges, in the concentration of leuko-
cytes was observed in the AGUSTO group (7.22 ×  103/µl) 
compared to the AGUSAN group (5.54 ×  103/µl). Finally, 
in both septic groups (AGUIC and AGUIA), significant 
decreases (P < 0.05) were observed in the percentages of 
lymphocytes, eosinophils, and neutrophils. On the other 
hand, monocytosis was found in the septic groups, which 
was more pronounced in AGUIA (30.4%) than in AGUIC 
(26.4%) (P < 0.05).

Values of serum biochemical parameters are reported 
in Fig. 6. In general, AGUIC and AGUIA had significant 
increases (P < 0.05 and P < 0.01) in the levels of urea, cre-
atinine, AST, and ALT when compared to AGUSAN and 
AGUSTO. Levels of creatinine (0.27 mg/dl vs. 0.32 mg/dl, 
P < 0.05) and ALT (36 mg/dl vs. 45.5 mg/dl, P < 0.05) were 
different between non-septic and septic groups.

Fig. 3  Survival time after CLP. Septic control group (SC) vs. sep-
tic pretreated with A. faecalis A12C during 30  days group (SA). 
*P < 0.05

Fig. 4  Level of discomfort in healthy groups (AGUSAN and AGUSTO) 
and septic groups (AGUIC and AGUIA) just before euthanasia, accord-
ing to the clinical signs shown in Supplementary Table  1. Box and 
whisker diagrams depict the smallest observation, lower quartile, median, 
upper quartile, and largest observation. **P < 0.01
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Fig. 5  Hematological parame-
ters in healthy groups (AGU-
SAN and AGUSTO) and septic 
groups (AGUIC and AGUIA) 
at the time of euthanasia (phase 
2). A RBC, red blood cells; 
B WBC, white blood cells; 
C Neut, neutrophils; D Mon, 
monocytes; E Lymph, lympho-
cytes; F Eos, eosinophils; G 
PLT, platelets. Box and whisker 
diagrams depict the smallest 
observation, lower quartile, 
median, upper quartile, and 
largest observation. *P < 0.05; 
**P < 0.01



 Probiotics and Antimicrobial Proteins

Microbiological Analysis in Blood, Feces, PLF, Urine, 
and BALF

All septic animals (AGUIC and AGUIA groups) had posi-
tive blood cultures; E. coli was the main isolated micro-
organism (Supplementary Table 3). All non-septic groups 
(AGUSAN and AGUSTO) had negative blood cultures. In 
feces, decreases of E. coli were observed in groups pre-
treated with A. faecalis A12C (AGUIA and AGUSTO) 
(P < 0.05 and P < 0.01, respectively) compared to the other 
two groups (Fig. 7A). A. faecalis A12C were found in 
higher amounts (P < 0.01) in groups pretreated for 30 days 
(AGUSTO and AGUIA) (2 ×  107 CFU/ml vs. 3 ×  106 CFU/
ml, P < 0.01) (Fig. 7B). Aerobic bacterial load of PLF, 
urine, and BALF (Fig.  7C–E, respectively) decreased 
(P < 0.05) in AGUIA compared to AGUIC. In addition, 
the bacterial species were isolated from the different body 
fluids, corresponding to each animal, and their total per-
centages in each group (Supplementary Table 4), where E. 
coli were the most prevalence bacteria (92.9% vs. 73.3% in 
AGUIC vs. AGUIA group). Finally, the significant decrease 
in the number of urine samples with positive cultures in sep-
tic animals pretreated with A. faecalis A12C (AGUIA) was 
very striking compared to almost all septic animals without 
pretreatment (AGUIC), where E. coli returned to being the 
most frequently isolated bacterial species (90.9%).

Cytokines and CRP Assays

IL-6 in serum (Fig.  8A (1)), PLF (Fig.  8B (1)), and 
BALF (Fig.  8C (1)) were all distinctly elevated after 
CLP (P < 0.01, P < 0.01, and P < 0.05, respectively) and 
mitigated by pretreatment with A. faecalis A12C. Simi-
lar results were observed in IL-10 in serum (Fig. 8A (2)) 
and PLF (Fig. 8B (2)). IL-1β increased in septic groups 
and attenuated in AGUIA group compared to AGUIC 
(Fig. 8B (3), C (2)) (P < 0.05). TNF-α was not detectable 
in serum nor in BALF; however, TNF increased in PLFs 
from AGUIC and AGUIA groups (Fig. 8B (4)). After 20 h 
of CLP, CRP concentration increased (P < 0.01) in PLF 
in AGUIC and AGUIA groups (Fig. 9A) and decreased in 
BALF in septic groups (Fig. 9B). The decrease in CRP was 
more pronounced in AGUIA than in AGUIC (P < 0.05). 
Serum CRP increased in AGUIA when compared to 
AGUIC (Fig. 9C) (P < 0.01).

Curdlan Measurement

A progressive increase (P < 0.05) in the concentration of 
curdlan in feces in AGUIA group was found. In contrast, 
this beta-glucan remained stable throughout the 30 days in 
the AGUIC group (Fig. 10A). At 30 days after the admin-
istration of A. faecalis A12C, curdlan in feces increased 

Fig. 6  Serum levels of bio-
chemical parameters (A urea, 
B creatinine, C aspartate ami-
notransferase (AST), and D ala-
nine aminotransferase (ALT)) 
in healthy groups (AGUSAN 
and AGUSTO) and septic 
groups (AGUIC and AGUIA) 
at the time of euthanasia (phase 
2). Box and whisker diagrams 
depict the smallest observation, 
lower quartile, median, upper 
quartile, and largest observa-
tion. *P < 0.05; **P < 0.01
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in AGUSTO and AGUIA groups (P < 0.01) (Fig. 10B). 
Curdlan in PLF, in the rats of the AGUIA group compared 
to their AGUIC control group, showed a very significant 
increase (P < 0.01) similar to that previously described in 
feces. However, a very significant decrease (P < 0.01) was 
observed in the AGUSTO group compared to AGUSAN 
(Fig. 10C). Serum curdlan did not experience significant 
differences between AGUIC and AGUIA septic groups. 
On the other hand, a significant decrease (P < 0.05) in the 
amount of serum curdlan was observed in the AGUSTO 
group, compared to its control AGUSAN (Fig.  10D). 
Curdlan was not detectable neither in urine nor in BALF 
in any of the groups after administration of A. faecalis 
A12C (AGUSTO and AGUIA) or just water (AGUSAN 
and AGUIC).

Cytological Evaluation of PLF, Urine, and BALF

In PLF (Fig. 11A), the results showed a trend towards 
an increase in granulocytes in AGUIC group compared 
to AGUIA (P < 0.05). On the other hand, there was a 
decrease in granulocytes in animals of AGUIC group 
with respect to AGUIA (P < 0.05). In urine (Fig. 11B), 
significant differences could be observed among groups, 
with a lower increase in the total number of nucleated 
cells in the AGUIA group (0.27 ×  103 cell/ml) than in the 
AGUIC group (1.15 ×  103 cell/ml). No differences were 
found between groups in the percentages of granulocytes 
and agranulocytes. In BALF (Fig. 11C), a similar trend 
was observed in the total number of nucleated cells, with 
a lower increase in the AGUIA group (0.17 ×  103 cell/ml) 

Fig. 7  Feces concentration of E. 
coli (A) and A. faecalis A12C 
(B) at 30 days, after the first 
dose of probiotic in AGUSTO 
and AGUIA or only water, with-
out probiotic, in AGUSAN and 
AGUIC. Bacterial load in PLF 
(C), urine (D), and BALF (E) 
at the time of euthanasia (phase 
2). Box and whisker diagrams 
depict the smallest observation, 
lower quartile, median, upper 
quartile, and largest observa-
tion. *P < 0.05; **P < 0.01
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than in the AGUIC group (0.46 ×  103 cell/ml). In addi-
tion, a significant decrease in the percentage of granulo-
cytes was also observed in AGUIC compared to AGUSAN 
(P < 0.05) and an increase in the percentage of agranulo-
cytes between the same groups (P < 0.05). However, no 
differences were found either in the percentage of granu-
locytes or in the percentage of agranulocytes between the 
AGUSAN and AGUIA groups.

Histological Evaluation and W/D Lung Weight Ratio

Both septic groups had lesions compatible with perito-
nitis. Severity of lung damage was significantly lower in 

AGUIA than in AGUIC (P < 0.01) (Fig. 12E). Histologi-
cally, a similar situation could be observed in the case of 
lung lesions. Thus, there was less lung damage in AGUIA 
than in AGUIC (Fig. 13E), according to the lung injury 
score used (median 15 vs. 33, P < 0.05). Degree of pulmo-
nary edema was analyzed based on the W/D lung weight 
ratio (Fig. 13F), and it was lower in AGUIA than in AGUIC 
(P < 0.01). No signs of peritoneal or pulmonary injury were 
found in the AGUSAN and AGUSTO groups. Except for 
peritoneum and lung, no significant histological changes 
were observed in any of other organs in the four groups. 
Representative histological lesions are shown in Figs. 12 
and Fig. 13.

Fig. 8  Effect of A. faecalis A12C pretreatment on inflammatory 
cytokines (IL-1β, IL-6, IL-10, and TNF-α) in AGUSTO and AGUIA 
and in their corresponding non-pretreated control groups (AGUSAN 
and AGUIC). Levels of cytokines in serum (A), PLF (B), and BALF 

(C). Box and whisker diagrams depict the smallest observation, lower 
quartile, median, upper quartile, and largest observation. *P < 0.05; 
**P < 0.01

Fig. 9  Effect of A. faecalis A12C pretreatment on C-reactive protein 
(CRP) in AGUSTO and AGUIA and in their corresponding non-pre-
treated control groups (AGUSAN and AGUIC). CRP levels in PLF 

(A), BALF (B), and serum (C). Box and whisker diagrams depict the 
smallest observation, lower quartile, median, upper quartile, and larg-
est observation. *P < 0.05; **P < 0.01



Probiotics and Antimicrobial Proteins 

Discussion

The primary discoveries of our research indicate the safety 
of A. faecalis A12C, which was isolated from Argyroso-
mus regius. It also suggests a potential link between the 
β-1,3-glucan (curdlan) produced by this specific strain and 
its impact on the immune system, resulting in a reduction 
in the severity of septic conditions. This study represents 
the initial exploration of the probiotic properties of A. fae-
calis and the influence of β-glucan produced by A. faecalis 

A12C as an immune response modulator in the widely 
recognized animal model of sepsis.

Previous in vitro and in vivo studies carried out with A. 
faecalis A12C demonstrated its probiotic crossed effect 
against vibriosis or Photobacterium damselae subsp. pisci-
cida in relevant fish species for marine aquaculture [11, 32]. 
Recently, our research group has shown the potential probi-
otic effect of this strain in mammals. Administration of A. 
faecalis A12C in drinking water (6 ×  108 CFU/ml) for 7 days 
was associated in this study with a lesser spread of infection, 

Fig. 10  Feces concentrations of curdlan at different times in sep-
tic groups (AGUIC and AGUIA) (A) assessed at 0  day (0d; just 
before administration of A. faecalis A12C or only water), 7  days 
(7d), 15  days (15d), and 30  days (30d), after the first dose of pro-
biotic or only water. Percentage of curdlan in feces (B) assessed at 
30 days, after the first dose of probiotic in AGUSTO and AGUIA or 

only water, without probiotic, in AGUSAN and AGUIC (phase 2). 
Percentage of curdlan in PLF (C) and serum (D) in healthy groups 
(AGUSAN and AGUSTO) and septic groups (AGUIC and AGUIA) 
at the time of euthanasia (phase 2). Box and whisker diagrams depict 
the smallest observation, lower quartile, median, upper quartile, and 
largest observation. *P < 0.05; **P < 0.01
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Fig. 11  Effect of A. faecalis A12C pretreatment on total nucleated 
cell count (TNCC) and their corresponding percentages of agranulo-
cytes (%AGRAN) and granulocytes (%GRAN) in PLF (A), urine (B), 
and BALF (C), in AGUSTO and AGUIA and in their corresponding 
non-pretreated control groups (AGUSAN and AGUIC). The results 
are expressed as the median (P50) from rats. *P < 0.05; **P < 0.01

◂

obtaining promising clinical, microbiological, biochemical, 
and histopathological results in a rat model of peritonitis 
produced by E. coli [12]. These findings, together with the 
scarcity of studies focused on the probiotic properties of this 
strain [33], set us the objective of evaluating whether the 
administration of A. faecalis A12C would generate a preven-
tive effect against the damage caused by sepsis, as well as 
to identify the possible immunomodulatory mechanisms of 
action in an experimental model in rats.

Thus, we analyzed the survival of A. faecalis A12C–pre-
treated septic animals. It was demonstrated that this strain 
improved the survival of septic rats. For sepsis induction, we 
have used the most common model described, cecal puncture 
ligation where survival rate, 24 h after CLP, is close to 80% 
in rats without any type of treatment, except analgesia and 
subcutaneous hydration [23]. However, in animals pretreated 
with A. faecalis A12C, the survival rate improved and was 
higher than expected for this technique at 24 h and were 
similar to that found by other authors at 48 h and 72oursh, 
in which they tested the activity of mixtures of probiotics 
included Bifidobacterium longum, Lactobacillus bulgaricus, 
and Streptococcus thermophilus in Wistar septic rats by CLP 
[2, 34]. In addition, the survival rate of healthy animals that 
were administered the strain was not affected. Regarding the 
clinical signs due to sepsis and although there are authors 
who find clinical signs similar to ours [12, 2], there are no 
papers with quantitative studies of these variables using the 
rat CLP model in probiotic efficacy studies.

Feces and fluid microbiological study showed a signifi-
cant decrease in the fecal concentration of E. coli in healthy 
and septic groups pretreated with A. faecalis A12C (AGUIC 
and AGUIA). This finding has already been described by 
our group in a peritonitis model [12], suggesting a competi-
tive effect of A. faecalis A12C on E. coli. Other authors have 
shown that the use of Lactobacillus spp. in broilers, orally, 
also reduces the concentration of E. coli in the intestine 
[35]. In addition, pigs fed for 2 weeks after weaning with 
β-glucans from Saccharomyces cerevisiae and/or Sclerotium 
rolfsii were less susceptible to an F4 antigen + enterotoxi-
genic E. coli infection in comparison with the control group. 
This was evidenced by a reduction in the fecal excretion of 
F4 + E. coli as well as a reduced F4-specific serum antibody 
response [18]. CLP is considered as the gold standard model 
for studying sepsis in animals which closely mimics human 
sepsis and isolating E. coli very frequently in various bio-
logical samples [23, 36]. However, microbial identification 

is not a common practice in preclinical models of sepsis 
[37]. In this way, one of the most interesting results of this 
study has been to verify a decrease in the number of samples 
which E. coli was isolated and the greater variety of bacte-
rial species isolated in the PLF and BALF samples in the 
pretreated septic group (AGUIA) compared to septic animals 
without pretreatment (AGUIC). In a study based on bacte-
rial identification in blood and PLF samples in Wistar rat’s 
septic by CLP, with study times similar to ours, they have 
reported that E. coli (88%), Enterococcus faecalis (81%), 
and Enterobacter cloacae (75%) were the main pathogens 
found in blood cultures. However, E. coli (75%), Enterococ-
cus faecalis (94%), and Lactobacillus murinus (69%) were 
the main pathogens found in PLF cultures [37]. These results 
are in partial agreement with ours since E. coli was also the 
most frequent species in the blood cultures; however, Lac-
tobacillus murinus was isolated also, being more frequent in 
the AGUIA blood cultures than in AGUIC. In the bacteria 
isolated from PLF, we also agree with these authors, since 
the species mostly isolated were E. coli, Enterococcus fae-
calis, and Lactobacillus murinus, although the percentages 
of isolates are lower. Analyzing the results of the BALF 
samples, it was striking to observe that none of the spe-
cies that we isolated and identified in healthy animals with 
(AGUSTO) or without (AGUSAN) pretreatment with A. fae-
calis A12C (Muribacterium muris, Klebsiella pneumoniae, 
Corynebacterium striatum, Lactobacillus paracasei, and 
Staphylococcus spp. (coag -)) was isolated in the groups of 
septic animals (AGUIC and AGUIA), where E. coli, Roden-
tibacter pneumotropicus, Staphylococcus sciuri, and Hae-
mophilus haemolyticus were the most frequently isolated 
species. In summary, our results are in accordance with 
common polymicrobial infections in stercoral peritonitis in 
humans, and similar microbial profile (Enterobacteriaceae 
and Enterococci) was also found between our CLP model 
and human peritonitis [37, 38].We think that the microbio-
logical diagnostic methodology used in this work, focused 
on an effort for the intentional search for both aerobic and 
anaerobic bacterial species and a powerful and highly reli-
able identification system such as MALDI-TOF, has been 
decisive in obtaining a more accurate information on the 
spread of infection by the different biological fluids.

It is well known that the main molecules of β-glucans 
are found in the cell wall of a wide range of bacteria, fungi, 
yeasts, plants, and algae. In our study, we observed a sig-
nificant increase in the fecal concentrations of curdlan in 
pretreated groups with A. faecalis A12C compared to the 
untreated groups. This could be explained by the fact that 
some authors have reported that certain β-glucans can pass 
undigested through the gastrointestinal tract, acting as a sub-
strate for microbial fermentation and selectively stimulating 
the growth and activity of a small number of bacteria [39, 
40]. In PLF, a significant increase in curdlan concentration 
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was observed in the groups pretreated with A. faecalis A12C 
compared to the AGUIC group. These findings are consist-
ent with results reported by other researchers in pilot studies, 
where β-glucans are used as biomarkers for the diagnosis of 
fungal peritonitis, detecting concentrations of β-glucans of 
both bacterial and fungal origins [41]. This aligns with our 
previous findings [12], which revealed an increase in the 
quantity of A. faecalis A12C in our study, which contains 
curdlan. Furthermore, the detection of curdlan in PLF could 
be attributed to the transmural migration of gastrointestinal 
macromolecules produced during intestinal inflammation, 

as indicated by other previous studies [42–44]. Regarding 
curdlan levels in serum, we found a small but significant 
decrease in the pretreated groups (AGUSTO and AGUIA) 
compared to the healthy rat group (AGUSAN). Other 
authors have reported that they did not detect any changes 
in orally administered β-glucan levels during their 14-day 
study [45]. This may suggest that the decrease we observed 
in our study could be attributed to the curdlan’s mechanism 
of action with certain immune cells present in the blood, 
such as monocytes or macrophages favoring its phagocytosis 
and transfer to other organs such as the spleen [16]. Urine 

Fig. 12  Representative histological images of hematoxylin and 
eosin–stained sections of jejunal peritoneum. No sign of inflamma-
tion or tissue alteration in peritoneal surface in a rat from AGUSAN 
group (A) neither in the other one belonging to AGUSTO group (B). 
Dulling of the peritoneal surface, swelling of mesothelial cell (black 
arrow), and leukocytic infiltrate (gray arrow) in jejunal peritoneum 

in a rat from AGUIC group (C) and, with less evidence, in the other 
one from AGUIA group (D). Focal desquamation of mesothelial cells 
(white arrow) in peritoneum from AGUIC group (C). Extravascular 
erythrocytes (red arrow) in a rat belonging to AGUIA group (D). E 
Severity of lung damage. **P < 0.01

Fig. 13  Representative histological images of hematoxylin and eosin–
stained sections of lung. No sign of inflammation or tissue alteration 
in a rat from AGUSAN group (A) neither in the other one belong-
ing to AGUSTO group (B). Neutrophils in the interstitial space (black 
arrow) in a rat from AGUIC group (C) and, with less evidence, in 

the other one from AGUIA group (D). Two to four times alveolar 
septal thickening (**) in a rat from AGUIC group (C) and less than 
two times alveolar septal thickening (*) in the other one from AGUIA 
group (D). *P < 0.05; **P < 0.01
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and BALF curdlan concentrations were unable to detect, and 
this may be due to the fact that, during the lyophilization 
process, the minimum required sample quantity for β-glucan 
detection was not met, highlighting an area for improvement 
in future studies.

Some of the most important interleukins in septic pro-
cess were measured in serum, BALF, and PLF by ELISA 
(IL-6, IL-1β, TNF-α, IL-10). Non-septic animals presented 
undetectable levels of cytokines (AGUSAN, AGUSTO). 

However, in septic animals, an increase in IL-6, IL-1β,  
and IL-10 levels in non-pretreated group (AGUIC) vs.  
pretreated group (AGUIA) was observed, but no significant 
changes were observed for TNF-α in PLF. These results 
showed a decrease of some pro-inflammatory and anti-
inflammatory cytokines, and similar results were described 
in a lung injury rodent model by CLP treated with probiotics  
Lactobacillus rhamnosus GG and Bifidobacterium 
longum [46] or in a recent study about the evaluation of 

Fig. 14  Graphic representa-
tion of the process occurring 
after the administration of A. 
faecalis A12C, adapted from 
the referenced studies [16, 50, 
52]. A higher bacterial load of 
A. faecalis A12C is observed 
in the intestine compared to E. 
coli (A). Following gut rupture 
and subsequent peritonitis, 
macrophages, monocytes, and 
dendritic cells are recruited 
to the affected area. These 
cells recognize and bind to the 
β-1,3/1,6-glucan chains, specifi-
cally curdlan, through dectin-1 
receptor and Toll-like receptor 
(TLR). This interaction triggers 
an increase in phagolysosome 
formation, production of reac-
tive oxygen species through Syk 
and Src kinases, and improved 
antimicrobial activity, as well as 
an elevation in the concentration 
of monocytes and white blood 
cells (WBC). Dectin-1 collabo-
rates with other receptors such 
as TLRs in the induction of 
pro-inflammatory cytokine pro-
duction to activate NF-κB (B). 
Finally, an enhanced immunity 
response occurs, in which the 
primary immune cells phago-
cytize the pathogens present in 
the environment (C)
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Lactobacillus plantarum and Lactobacillus acidophilus  
on the efficacy of immune system in male and female 
Wistar rats [47]. In regard to these results, we propose that 
immunomodulation may play an important role in how the 
immune system acts against pathogen. Many experimen-
tal and clinical studies have shown that sepsis induces  
multiple organ dysfunction syndrome (MODS), where  
the lungs are ones of the most important organ affected  
and often it leads to acute respiratory distress syndrome  
that is caused by an uncontrolled and complex interaction 
between inflammatory cytokines and cellular mediators 
that produce alveolocapillary damage [31, 36, 48]. In this 
way, it has been proposed that early attenuation of these  
pro-inflammatory cytokines is a goal in sepsis treatment  
[49]. Immunomodulatory effect of A. faecalis A12C can 
lead to an improvement in MODS through downregulating 
inflammatory cytokines and cellular mediators, making a 
smarter response against infection, where curdlan may play 
an important role. There are some authors that describe 
how β-glucans improve innate immune response–enhanced 
antimicrobial and inflammatory properties derived from 
dectin-1/Toll-like receptor (TLR) activation (Fig. 14) [16]. 
It has been described that daily consumption of β-glucans 
was associated with fewer episodes and shorter duration 
of acute respiratory infections in children, as well as less 
antibiotic use. The children who consumed β-glucans had 
increased serum IL-10 and white blood cells, suggesting  
an anti-inflammatory mechanism and/or an increase in  
effector immune cells [50]. Some clinical trials evaluating 
the in vivo effects of orally administered β-glucans on blood 
effects have suggested an increased activation of circulating 
leucocyte and monocyte concentrations, altered monocyte  
cell-surface receptors, increased T cell concentration, 
increased serum IFN-γ, and an increase in LPS-stimulated 
production of IFN-γ and IL-2 [50–52]. These findings are 
consistent, partially, with the significant elevation in the  
total number of white blood cells and blood monocyte  
concentrations that we have found, both in healthy pretreated 
animals (AGUSTO) and in septic pretreated animals 
(AGUIA) compared to their respective controls without 
A. faecalis A12C (AGUSAN and AGUIC). This could be 
explained by the fact that β-glucans are phagocytosed and 
processed by monocytes and macrophages found in the 
intestinal lymphatic tissue, and then transported to different 
immune organs to prepare immune cells for an antimicrobial 
and inflammatory response against potential pathogens [16]. 
In contrast, in other in vitro studies where β-glucans from A. 
faecalis are administrated in not pathologic conditions, these 
produce an increase in the expression of M1 macrophages 
that have a pro-inflammatory phenotype with pathogen-
killing abilities, upregulating IL-6, IL-1β, TNF-α, and 
MCP-1 expression [53, 54]. As in our case, in which we have  
not detected differences in the concentrations of cytokines 

in the different fluids analyzed between the healthy animals 
(AGUSAN) and the healthy ones pretreated (AGUSTO), in  
a study of ex vivo stimulation of leukocytes from healthy 
adults who received β-glucans, it was observed that no 
β-glucans were detected in serum. In addition, leukocyte 
cytokines were not altered compared to controls [45].

Regarding biochemical markers of liver and kidney 
damage, we have observed that there is a slight elevation 
of creatinine and ALT in the AGUSTO group compared to 
AGUSAN. This increase in serum creatinine has also been 
observed in healthy Wistar female rats treated with Lac-
tobacillus spp. [47], and as in our case, there are authors 
who have observed a non-significant increase in ALT and 
AST in rats of both sexes that were given a strain of Lacto-
bacillus paracasei [55]. However, the significant decrease 
in the concentration of ALT, which we have observed in 
septic animals pretreated (AGUIA) compared to septic ani-
mals without pretreatment (AGUIC), could suggest that A. 
faecalis A12C has a certain hepatoprotective effect during 
sepsis. Many studies have investigated the possible effect of 
probiotics on the concentrations of liver enzymes. Most of 
the research has concluded that administration of different 
probiotics strains to experimental animals not only induces 
the increase of serum liver enzymes, but also reduces the 
amounts of these enzymes [55–58].

The lungs are one of the first organs primed by local 
and/or systemic cytokine storm during sepsis, and they are 
damaged both morphologically and functionally. There is 
increasing acknowledgment that the cellular makeup of the 
inflammatory response may not be limited to neutrophils 
alone. Instead, it varies depending on the specific model sys-
tem employed and the stage of injury. Consequently, recent 
revisions in the assessment of experimental acute lung injury 
(ALI) in animal studies suggest the consideration of elevated 
levels of inflammatory monocyte and macrophage (and/or 
lymphocyte) subgroups in BALF or lung tissue as a sig-
nificant characteristic. This likely reflects the importance of 
these infiltrating cell types in scenarios such as lung injuries 
induced by bacteria or viruses, as well as in cases of sterile 
injury [59]. Based on this and following the recommenda-
tions of the American Thoracic Society for the evaluation 
of lung damage in animal models, we have chosen to add, to 
the histopathological measurement of lung damage, the W/D 
index for measuring changes in lung vascular and epithelial 
permeability, and the cell concentration in BALF for meas-
uring inflammation. In this way, we were able to observe 
an excellent correlation between the W/D index, the his-
tological damage score, and BALF cellular concentrations 
(TNCC). The marked statistically significant decrease in the 
three variables studied in the AGUIA group compared to the 
AGUIC group suggests an important protective effect on the 
lung of the A. faecalis A12C strain. Similar effects on lungs 
have been described by other authors, in both clinical and 
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experimental studies, when the therapeutic potential of some 
strains as probiotics (Lactobacillus paracasei, Saccharomy-
ces boulardii, Bifidobacterium, Lactobacillus, Enterococcus, 
and Bacillus) was assessed [60–62].

At the peritoneal level, it was possible to observe an evi-
dent anti-inflammatory effect in AGUIA group compared to 
that in AGUIC. Histopathologically, a decrease in the score 
used was observed, due to less desquamation of mesothe-
lial cells, less degree of infiltration of inflammatory cells, 
as well as less thickening of the peritoneal surface. These 
results are in accordance with those recently obtained by 
our group, in a model of fecal peritonitis due to E. coli 
inoculation where the protective role of A. faecalis A12C 
was evaluated [12]. In addition, the significant increase, in 
the AGUIA group, in the concentration of agranulocytes 
in PLF could be associated with the effect of proliferation 
and activation of macrophages and monocytes that A. fae-
calis A12C, through curdlan, could be produced in the focus 
of the infection as previously described by other authors 
[16]. Recent studies have demonstrated this proliferation of 
monocytes and macrophages in the peritoneum of rats after 
administration of Lactobacillus rhamnosus [63]. In regard to 
histopathological evaluation in liver, spleen, kidney, thymus, 
and heart, no injury signs were found. Nevertheless, some 
authors describe inflammatory infiltrate, cell wall disorder, 
interstitial edema, and interstitial area hemorrhage among 
other tissue injuries in similar models [64–66]. However, 
most studies report these damages 24 h after CLP when 
our evaluation is 20 h post-CLP, even though other studies 
showed early damage in mice before 20 h post-CLP [67, 68].

Our study exhibits some weaknesses and strong  
points. First, we do not know the possible late effects  
that A. faecalis A12C may cause in rats after 30 days of 
administration, as well as the safety and efficacy ranges 
at different doses. Second, the results of this work are 
obtained from research in male rats, and we do not know 
if the hormonal cycles in the female sex could interfere 
in the modulation of the immune response that A. faecalis 
A12C has shown in males. Third, although the enzymatic 
technique for the quantification of curdlan used in this 
work is recommended and validated, we think that in the 
future, we must modify it or use other more sensitive and 
specific ones for liquid samples, which allow us to detect 
this β-1,3-glucan in urine or BALF, where it was not 
detectable, possibly due to its low concentration. Fourth, 
in our study, we have focused on the microbiological dif-
ferences between our animal groups for bacterial levels, 
without considering the essential role that virus and fungi 
could play in gut microenvironment.

However, the major strength of this study is that we used 
a potent and translational model of sepsis that allowed us to 
obtain results of clinical, hematological, biochemical, histo-
pathological, immunological, and microbiological relevance 

with a global vision of the potential therapeutics used of 
A. faecalis A12C, and the possible immunomodulatory role 
that its metabolite, curdlan, could be playing.

In summary, our findings suggest that A. faecalis 
A12C could influence clinically relevant parameters in 
sepsis. Administration of 6 ×  108 CFU/ml water, orally for 
30 days, was associated with a less spread of infection, 
a modification in cytokine concentrations and a survival 
increase. In this context, our study may add a piece to 
the complex puzzle of bacteria–host interactions and new 
therapeutic possibilities in the prophylaxis of sepsis. How-
ever, more studies are needed to allow us know in greater 
detail the immunomodulatory mechanisms of action of A. 
faecalis A12C and, specially, its metabolite curdlan.
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