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Abstract
Neuropsychiatric disorders are clinical conditions that affect cognitive function and emotional stability, often resulting from 
damage or disease in the central nervous system (CNS). These disorders are a worldwide concern, impacting approximately 
12.5% of the global population. The gut microbiota has been linked to neurological development and function, implicating 
its involvement in neuropsychiatric conditions. Due to their interaction with gut microbial communities, probiotics offer 
a natural alternative to traditional treatments such as therapeutic drugs and interventions for alleviating neuropsychiatric 
symptoms. Introduced by Metchnikoff in the early 1900s, probiotics are live microorganisms that provide various health 
benefits, including improved digestion, enhanced sleep quality, and reduced mental problems. However, concerns about their 
safety, particularly in immunocompromised patients, warrant further investigation; this has led to the concept of “paraprobiot-
ics”, inactivated forms of beneficial microorganisms that offer a safer alternative. This review begins by exploring different 
methods of inactivation, each targeting specific cellular components like DNA or proteins. The choice of inactivation method 
is crucial, as the health benefits may vary depending on the conditions employed for inactivation. The subsequent sections 
focus on the potential mechanisms of action and specific applications of probiotics and paraprobiotics in neuropsychiatric 
therapy. Probiotics and paraprobiotics interact with gut microbes, modulating the gut microbial composition and alleviating 
gut dysbiosis. The resulting neuropsychiatric benefits primarily stem from the gut-brain axis, a bidirectional communication 
channel involving various pathways discussed in the review. While further research is needed, probiotics and paraprobiotics 
are promising therapeutic agents for the management of neuropsychiatric disorders.
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Introduction

Neuropsychiatry refers to the scientific and medical 
approach toward conditions that include both neurologi-
cal and psychological manifestations. It seeks to integrate 

neuroscience and psychiatry in the assessment and subse-
quent treatment of such conditions [1]. Neuropsychiatric 
disorders encompass a range of diseases that affect both the 
brain and mental health. They are highly prevalent globally, 
impacting individuals of all ages and backgrounds. As per 
reports from the World Health Organization (WHO), an 
estimated 12.5% of the global population is afflicted by 
neuropsychiatric disorders such as anxiety, bipolar disor-
der, major depressive disorder (MDD), attention-deficit/
hyperactivity disorder (ADHD), and autism spectrum dis-
order (ASD). These disorders, especially those associated 
with erratic mood changes, have been identified as a sig-
nificant cause of suicide [2]. It is evident that neuropsy-
chiatric disorders are a prevalent and significant concern 
in the global health arena, and they demand attention and 
allocation of resources for their mitigation. Studies have 
linked the gut microbiota to neurological development and 
brain function through the gut-brain axis (GBA), suggesting 
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that changes in the gut microbial populations could influ-
ence the development of neuropsychiatric symptoms [3]. 
Given this connection, beneficial microbes offer a natural 
therapeutic alternative to conventional drugs for treating 
and alleviating the symptoms of neuropsychiatric condi-
tions. The term “bacteria” or “microbes” is often associated 
with the stigma that they are inherently harmful. However, 
this perception is not entirely accurate, as they can be both 
beneficial and detrimental depending on the context. While 
some microbes can cause infections and diseases, others 
play essential roles in maintaining human health and the 
environment. Probiotics represent these beneficial viable 
microbes that provide health benefits when consumed in 
appropriate amounts [4, 5].

Ilya Metchnikoff, a scientist from Russia, is credited 
with putting forth the idea of using live microorganisms to 
enhance human well-being in the early 1900s. He noted that 
individuals from Bulgaria who consumed fermented dairy 
products lived longer and experienced fewer illnesses, and 
he attributed these positive outcomes to microbes present in 
their fermented dairy. This concept laid the groundwork for 
the modern understanding of probiotics and the crucial role 
of the gut microbiome in health. Today, several microbes, 
mainly bacteria and yeasts, are considered probiotics, such 
as Lactobacillus reuteri, Lactobacillus rhamnosus, Lactoba-
cillus casei, Bifidobacterium bifidum, and Saccharomyces 
boulardii.

However, the health benefits they provide are still being 
investigated by ongoing scientific studies [6, 7]. Further-
more, the exact means through which they optimize the gut 
microbiome and provide health benefits are still not com-
pletely understood but evidence suggests the involvement 
of multiple factors such as amensalism via the release of 
antimicrobials, stimulating the secretion of mucus to pro-
tect the gut lining, contending with invading pathogenic 
microbes for adhesion sites, stabilizing gut barrier func-
tion, and inducing immunological responses, while the 
psycho-emotional benefits are mediated by the gut-brain 
axis (GBA) [8, 9].

Probiotics exist in a variety of fermented, dairy, and non-
dairy food products such as yogurt, kefir, sauerkraut, kimchi, 
and miso which can be included in correct portions in the 
daily diet; alternatively, they can also be taken separately 
as supplements in the form of tablets or capsules in appro-
priate doses. The global probiotics market is anticipated to 
compound at a rate of 7.5% annually till 2030, starting with 
a value of 58.17 billion US dollars in 2021 [10].

Despite the potential benefits, several concerns have 
been associated with probiotic use. Due to the widespread 
and inappropriate use of antibiotics, several probiotics have 
been shown to exhibit resistance to widely used antibiotics. 
Thus, the possibility of horizontal transfer of these resistance 
genes to pathogens or the transfer of virulence genes from 

pathogens to probiotics is a pressing issue [11, 12]. Further-
more, there have been reports of infections such as bactere-
mia, fungemia, sepsis, and endocarditis in immunodeficient 
patients and patients having underlying disorders such as 
AIDS and ulcerative colitis[13–15]. Moreover, metabolic 
effects such as D-lactic acidosis also have been observed 
[16]. Hence, safety assessments of probiotics, particularly 
concerning specific population subsets such as immunocom-
promised patients, are required before they can be commer-
cially produced.

A new concept of paraprobiotics, also known as non-
viable, dead, inactivated, or ghost probiotics, has been 
introduced to represent inactivated microbes that provide 
various health benefits, including immunomodulatory, anti-
inflammatory, antioxidant, and anti-hypertensive effects. 
Paraprobiotics can be defined as non-viable microbial cells, 
as well as cellular components, microbial fractions, and bac-
terial lysates, that improve the health of the host through 
interactions with the gut microbiome when administered in 
sufficient quantity. They generally comprise peptidoglycans, 
polysaccharides from the microbial cell walls, cell surface 
proteins, and teichoic acid [17]. Substantial evidence, both 
in vitro and in vivo, has shown that the beneficial effects of 
paraprobiotics are comparable to those exhibited by probiot-
ics, despite the former consisting of only dead or inactivated 
cells that lack the ability to proliferate and colonize in the 
gut microbiota, unlike live probiotics that can interact with 
gut microbes of the host thereby regulating the composi-
tion of the gut microbiota. This seemingly counterintuitive 
phenomenon has been termed the “probiotic paradox” [18]. 
While additional research is required to elucidate the mecha-
nism of action of paraprobiotics, studies have reported cer-
tain methods by which they exert health benefits, such as 
host interactions mediated by dead cell components lead-
ing to an immune response, and production of beneficial 
microbial metabolites including peptides and short-chain 
fatty acids (SCFAs) [18, 19].

The health advantages associated with both probiotics 
and paraprobiotics are multifaceted. These benefits include 
improved sleep quality, alleviation of symptoms associated 
with irritable bowel syndrome (IBS), and potential anti-
cancerous effects, as illustrated in Fig. 1. However, this 
review primarily focuses on the neuropsychiatric benefits 
of probiotics and paraprobiotics. Paraprobiotics present sev-
eral compelling advantages when compared to probiotics, 
particularly regarding their safety and potential to positively 
impact host health. As previously explained, probiotics, 
which contain live bacteria could be problematic for patients 
with underlying disorders and carry several safety issues. In 
contrast, paraprobiotics do not carry such risks since they 
are rendered inviable prior to administration. This charac-
teristic enhances their likelihood of receiving regulatory 
approval for use as supplements or functional ingredients in 
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food products. Another noteworthy benefit of paraprobiot-
ics is their extended shelf life and lack of interaction with 
the other constituents of food products. They also maintain 
structural and functional stability across a wide temperature 
range. This simplifies their management and transportation 
within the food industry. Furthermore, paraprobiotics dis-
play bioactivity even when incorporated into non-dairy food 
matrices. This is significant because non-dairy substrates are 
typically challenging environments for the survival of tradi-
tional probiotics. Moreover, the capacity of paraprobiotics 
to thrive in such matrices has the potential to diversify the 
functional food market by allowing their integration into a 
broader spectrum of products [20].

This review introduces the potential therapeutic effects 
of probiotics and paraprobiotics in the management of neu-
ropsychiatric disorders like anxiety and MDD in light of 
their effect on the gut microbiota which, in turn, affects neu-
ral functioning through the GBA. The main objectives of this 
review are to explain the concept of probiotics and parapro-
biotics, to describe the microbiota-gut-brain axis and its sig-
nificance, and finally, to highlight the potential of probiotics 
and paraprobiotics in treating neuropsychiatric problems. 
The first section of the review focuses on the different inac-
tivation methods employed for the conversion of probiotics 
into paraprobiotics, namely, thermal treatment, supercritical 
carbon dioxide (SC-CO2) technology, high pressure, ohmic 
heating, sonication, ionizing radiation (IR), pulsed electric 
field (PEF), and ultraviolet (UV) rays. The process involved 
in each inactivation method has been briefly explained 

followed by details of its mechanism of action and examples 
of its application. In the subsequent section, the focus shifts 
to the GBA and its connection to neuropsychiatric disorders. 
The signaling pathways and regulatory constituents involved 
in the GBA, viz., the vagus nerve, immunological activity, 
inflammatory reflex and neuroinflammation, microbial 
metabolites, and neuroactive compounds are explored. The 
influence of each of these elements on the development of 
neuropsychiatric disorders like ASD is also discussed in this 
section. Lastly, the final section delves into the applications 
of probiotics and paraprobiotics in alleviating the symptoms 
of neuropsychiatric problems. The results of preclinical stud-
ies and clinical trials are delineated in order to provide the 
readers with an overview of the current status of the ongoing 
research on probiotics and paraprobiotics in neuropsychiatric 
therapy.

Inactivation Methods

Paraprobiotics can be obtained from live probiotics through 
chemical means using acids and formalin or through physi-
cal processes such as thermal treatment, ohmic heating, and  
ionizing radiation (IR), as highlighted in Fig. 2, with each 
method having different mechanisms that alter their structural 
properties and may have contrasting health effects. Hence, 
monitoring the impact of various inactivation methods on the 
structural properties of the bacteria as well as the quantitative 
and qualitative maintenance of probiotic properties by each  
of these methods is extremely crucial [20, 22].

Fig. 1   Health benefits exerted by paraprobiotics [21]
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Thermal Treatment

Thermal treatment is highly conventional and the most 
widely used process in the production of paraprobiotics 
since it is well-developed and requires low investment costs. 
It involves the exposure of probiotic species to high tem-
peratures, thereby inducing cellular damage, as explained in 
Table 1, consequently making them non-viable.

Thermal treatments can be classified into two cat-
egories based on the extent of heat applied and the goal— 
pasteurization and sterilization. Pasteurization, named 
after Louis Pasteur, involves the use of mild temperatures 
(< 100 °C). It may further involve inactivation by heating to 
higher temperatures (72 °C) for around 15 s or about 63 °C for 
30 min; while the former is an example of high-temperature  
short time (HTST) pasteurization, the latter uses the low- 
temperature long time (LTLT) method. Though pasteurization 
may not be suitable for inactivation of spore-forming probiotics 
such as Bacillus coagulans, these spore-forming microbes can 
be inactivated by other methods that have been subsequently 
discussed. Sterilization involves the use of higher temperatures 

(> 100 °C in most cases) for a short time to render the probiotics 
non-viable or inactive [19, 23–25].

The thermal resistance of probiotic species is one of the 
parameters that need to be considered during this treatment. 
The D-values and Z-values are employed to measure how 
resistant the microbial species are to heat or thermal treat-
ments. The D-value, also known as decimal reduction time, 
is defined as the time required at a specific temperature to 
reduce the cell viability to 10% while the Z-value is the tem-
perature necessary to bring about a tenfold reduction in the 
D-value [19, 25].

Microorganisms display diverse responses to temperature 
changes, and these responses are shaped by the differences in 
their mechanisms for resisting heat. The ability to withstand 
heat is a critical aspect for microorganisms, as it determines 
their ability to survive and thrive in varying temperature 
environments. Certain strains of probiotics such as L. plan-
tarum can accumulate osmoprotectants like glycine betaine 
or trehalose. These substances serve a protective role by sta-
bilizing proteins and cellular structures, safeguarding cells 
from damage caused by elevated temperatures, ensuring the 

Fig. 2   Common methods for the production of paraprobiotics [19, 21]

Table 1   Sites of damage due to exposure to heat

Site Damage References

Cell wall/outer membrane The outer membrane (OM) of Gram-negative cells is one of the structures affected by heat. Loss 
of lipopolysaccharide and vesicles. Morphological and structural changes or blebbing have also 
been reported.

[23, 30]

Peptidoglycan wall The chelation of magnesium ions in the cell wall had an impact on vital metabolic processes 
within the cell. It was shown that exposing Lactobacillus bulgaricus cells to a temperature of 
64 °C caused damage to their cell walls since it increased their susceptibility to penicillin.

[23, 30, 31]

Cytoplasmic/inner membrane Cells become leaky which eventually leads to cell death. Loss of respiration activity, osmotic 
homeostasis, and pH homeostasis. The loss of ions, UV-absorbing substances, and other cyto-
plasmic materials has also been reported in various species.

[31–35]

Ribosomes and RNA RNA degradation. Ribosome degradation was also observed which depended on the concentration 
of magnesium ions in the medium which increases ribosomal resistance toward heat.

[23, 30]

DNA Single-strand breaks (SSB) or double-strand breaks (DSB) are introduced. [23, 30, 36]
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maintenance of proper protein folding, preserving cellular 
membranes, and preventing water loss, thereby enhancing  
the resilience of probiotic cells in the face of heat stress 
[26, 27]. Others produce heat shock proteins (HSPs) such 
as GroEL and GroES when subjected to high temperatures 
[28, 29]. Thus, heat resistance mechanisms differ based on 
the specific strains employed due to differences in the genetic 
constitution, physiology, and form, i.e., vegetative or sporous, 
and environmental factors like growth medium, temperature, 
and pH, among others, which need to be examined individu-
ally for assessing the response of probiotics to heat treatments 
and thereby optimizing the inactivation protocol.

Therefore, understanding the temperature ranges is cru-
cial for the development of efficient thermal treatment pro-
tocols and the dosage may vary accordingly. Standardiza-
tion is achieved by subjecting microorganisms to diverse 
temperatures over varying time periods and evaluating their 
viability. The resulting data aids in the determination of 
heat resistance characteristics specific to the microorgan-
isms under study, forming the basis for their heat resistance 
profile. Other methods to determine thermal inactivation 
include the thermal death time (TDT) tube method and the 
submerged-coil heating apparatus [24]. Studies comparing 
the dosage and duration of the inactivation treatment against 
the health benefits of the inactivated paraprobiotics are nec-
essary to develop an appropriate inactivation protocol.

Supercritical Carbon Dioxide (SC‑CO2) Technology

The principle behind utilizing the supercritical carbon dioxide 
(SC-CO2) technology to inactivate microbes lies in leverag-
ing the unique properties of supercritical CO2. Carbon diox-
ide (CO2) has a critical point value of 31 °C and 7.38 MPa. 
In this state, CO2 exhibits both gas- and liquid-like proper-
ties, enabling enhanced solvating power and diffusion capa-
bilities along with low viscosity [37, 38]. Optimizing key  
parameters such as temperature, pressure, and exposure time 
is necessary to achieve effective microbial inactivation.

SC-CO2 can penetrate the cell membrane of microorgan-
isms due to its low viscosity and high diffusivity. This pen-
etration disrupts membrane integrity, resulting in increased 
permeability and leakage of intracellular components. When 
SC-CO2 dissolves in water or aqueous solutions, it forms 
carbonic acid, which leads to a decrease in pH. The acidic 
environment can disrupt microbial cellular processes and 
compromise their survival. Furthermore, SC-CO2 can extract 
lipids and other essential cellular components from micro-
bial cells. The supercritical fluid’s solvating power allows 
it to dissolve and remove lipids, proteins, and other crucial 
components necessary for microbial viability [39, 40].

High Pressure

The use of high pressure to inactivate microbes is another 
emergent technique that finds application in paraprobiotic 
production. In this technique, microorganisms are suspended 
in a fluid medium like water that allows for pressure transmis-
sion and then subjected to high hydrostatic pressure ranging 
from 30 to 350 MPa in a high-pressure homogenizer [41].

The range of pressure employed as well as the treatment 
duration are both very critical in this technique. As demon-
strated in Fig. 3, the effect on the microbe varies for different 
pressure intervals. At a pressure of 50 MPa, protein synthe-
sis is inhibited along with a decrease in ribosome number, 
and upon a one-fold increase in pressure to around 100 MPa, 
vacuoles get compressed, and proteins are reversibly dena-
tured. Further increase in pressure to 200 MPa crosses the 
threshold of lethality leading to cell membrane damage 
which causes subsequent leakage of cell contents. Finally, 
the proteins undergo irreversible denaturation accompanied 
by the complete leakage of cell contents at around 300 MPa 
[42]. Deadly impact to the cell is seen upon irreversible dis-
turbances in the transport system coupled to the membrane 
at pressures greater than 400 MPa. As a result, depending 
on the treatment, intensity, and process duration, varying 
impacts on cell integrity will be produced [43].

Fig. 3   Cellular alterations 
caused by high pressure [42]
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Microbes that have been inactivated by high pressure do 
not lose their probiotic properties since specific disrupted 
cell fractions are recognized by members of the immune 
system, thus eliciting a proinflammatory response. Addition-
ally, certain probiotics continue to secrete microbial metabo-
lites even after the pressure exceeds the threshold of lethality 
[18]. Though it is apparent that the increase in pressure is 
directly proportional to the rate of inactivation, equipment 
design limitations and the required extent of cell inactivation 
must also be considered. In order to decrease the duration 
and pressure, this technique can be used in combination with 
other inactivation methods such as thermal treatment [44].

Ohmic Heating

Inactivation via ohmic heating is achieved by passing an 
electrical current through the target microorganisms, caus-
ing them to heat up due to the resistance encountered by 
the electrical current. This process, also known as electri-
cal resistance heating or Joule heating, leads to a rapid and 
even rise in the temperature of the substance which can 
potentially be used as an alternative technique to inactivate 
desired microbes for the production of probiotics as opposed 
to traditional heating methods. The inactivation mechanism 

of probiotics using ohmic heating is the same as that of tradi-
tional thermal treatments, along with non-thermal damages 
due to electroporation; however, ohmic heating has several 
advantages over conventional heating methods, including 
reduced processing time, enhanced quality retention of the 
food matrix, and improved energy efficiency [20, 45]. Elec-
tron micrographs of Lactobacillus casei subsp. paracasei 
after conventional and ohmic heating are shown in Fig. 4.

During the process of ohmic heating, the internal genera-
tion of heat ensures that substantial temperature gradients 
do not occur in the sample, thus reducing the risk of over-
heating. This stands in stark contrast to conventional meth-
ods, where uneven heat distribution within the sample is 
common. Nevertheless, this technique still faces challenges 
related to overheating or underheating in certain conditions. 
As the conductivity increases with temperature, controlling 
the endpoint temperature becomes difficult. Furthermore, 
the irregular shapes of treatment chambers can lead to local 
temperature variations, especially when dealing with diverse 
probiotic sample properties. Electrode geometries are cus-
tomized to enhance uniform heating. Issues arise with the 
survival of microorganisms in crevices and temperature dif-
ferences in mixtures of probiotic samples. Strategies such as 
using a heating medium with equal conductivity, combining 

Fig. 4   Scanning electron micrographs of Lactobacillus casei subsp. 
paracasei 01 (LC) a CONT, control; b cells after conventional heat-
ing (CONV); c, d, and e cells after ohmic heating at 4, 8, and 12 V/

cm, 95 °C for 7 min, respectively. Blue arrows indicate damage and 
roughness on the cell surface while red arrows show ruptured cells 
and fragments/debris of the cell [20]
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ohmic heating with other methods, and developing specific 
models based on experimental data have been explored to 
address challenges and ensure precise temperature control 
during the preparation of paraprobiotics [46].

Sonication

Sonication is an alternative non-thermal method that 
employs ultrasound or sound waves with frequencies more 
than 20 kHz. The desired effects of sonication are caused by 
cavitation. The introduction of high-intensity ultrasound into 
a medium containing probiotics causes a cycle of alternat-
ing compression and rarefaction. This leads to the formation 
of bubbles or “voids”. These bubbles expand and collapse 
violently, generating high temperatures and pressures that 
can reach 5500 °C and 50,000 kPa, physically damaging the 
probiotic cells. The mechanical stresses and shock waves 
produced during cavitation can rupture cell membranes,  
disrupt cellular structures, and impair vital metabolic func-
tions [47, 48]. Furthermore, sonication can be performed in 
combination with other treatments, such as UV and heat [24, 
49]. The efficacy of ultrasonic inactivation is influenced by 
several factors, such as the ultrasound frequency and inten-
sity, duration of exposure, target organism, and the properties 
of the liquid medium. The SEM images of L. delbrueckii ssp. 
bulgaricus after sonication treatment are provided in Fig. 5.

Different frequencies of ultrasound waves can be used 
to disrupt the cell wall and cell integrity of probiotics, thus  
facilitating the release of several biomolecules like proteins 
and DNA that have beneficial properties. Since the opti-
mal frequencies depend on the strain used and the intended 
application, standardization is a critical step prior to inac-
tivation in order to maximize the release of the necessary 
cellular component for the desired purpose. A  study con-
ducted on Saccharomyces cerevisiae showed the effect  
of different frequencies on the structure and growth of the 

microbe, with 20 kHz causing significant external damage 
to the cell morphology and structural integrity [50]. For 
probiotics, on the other hand, lower frequencies are used in 
order to maintain cell viability by reducing the sheer stress 
on the cells. Controlled sonication at low frequencies of up 
to 100 kHz enhances microbial growth and productivity; 
however, in certain cases, it can increase cell permeability. 
Further, studies have shown that the effect of sonication  
on microbes is also influenced by the amplitude intensity 
and duration of exposure. Another study conducted on Lac-
tobacillus brevis demonstrated that sonication treatment at 
23 kHz with an amplitude of 10 µm enhanced the cell count 
and proliferation rate while the same frequency caused cell 
death and hindered metabolic activity on increasing the 
amplitude to 15 µm [51]. Thus, probiotic-specific studies 
examining the effect of sonication at different intensities for 
different time periods are of utmost importance in fine-tun-
ing the sonication parameters for the required cell viability, 
metabolite production, and biological function depending 
on the intended application.

Ionizing Radiation (IR)

Other non-thermal methods can also be employed for inac-
tivation of bacterial species. For instance, the irradiation 
method utilizes Ionizing Radiation (IR) like X-rays, electron 
beams, and gamma rays for microbial inactivation [53, 54]. 
There are no significant differences in the inactivation effec-
tiveness of the three radiation sources [54, 55]. The primary 
sources of gamma rays are radioisotopes, such as Cobalt 60, 
which has a half-life of 5.27 years, and Cesium 137, which 
has a half-life of 30.17 years. The dose of irradiation applied 
is an essential factor to be considered in the irradiation pro-
cess, which is measured in Grays (Gy). The radioresistance 
of bacterial species must be looked upon while opting for 
this process. In a study conducted by Sychev et al. [56], 

Fig. 5   Scanning electron microscope (SEM) images of L. delbrueckii ssp. bulgaricus 11842 a before sonication treatment and b after sonication 
for 6 min [52]
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Bifidobacterium bifidum (5 × 108 CFU/ml in powder form) 
was dissolved in water and irradiated with 60Co gamma rays, 
with doses in the range of 1 to 20 Gy, using an Issledo-
vatel IN-1 irradiator. The optimal dose of gamma rays of 
12 to 14 Gy was determined by measuring the concentra-
tion of superoxide dismutase, an antioxidant enzyme, in the 
medium. DNA is the principal cellular target that governs 
the loss of viability in this process; double-strand breaks 
are induced in the DNA due to the action of ionizing radia-
tions. These radiations also generate reactive oxygen species 
(ROS), which further damage the DNA, eventually leading 
to cell death [56].

Apart from the radioresistance of the target organism, 
the dose of irradiation also depends on several other factors 
including the source of radiation, the penetration depth, the 
approved safety limits of irradiation, the cell components 
that need to be preserved, and the intended use of the para-
probiotic. An important parameter while deciding the dose 
is the decimal reduction dose or D10 value which is the irra-
diation dose that reduces the total cell viability to 10% of 
the original value when all other conditions including time, 
temperature, type of radiation, and microbial strain, are kept 
constant [57]. Gamma radiation is generally preferred for 
inactivation due to its established use in the preservation 
of food products such as vegetables, pulses, and fruits for 
human consumption [58]. A recent study published in 2022 
by Porfiri et al. [57] using different strains of lactic acid bac-
teria demonstrated strain-specific differences in the probi-
otic responses to gamma irradiation. Strains showing higher 
resistance to gamma irradiation were seen to better preserve 
the beneficial properties of the live probiotics. The pres-
ence of a surface layer (S-layer) in the microbial cell wall of 
certain strains could potentially play a role in absorbing the 

radiation, thereby preserving the immunomodulatory cell 
wall components [57].

The effect of irradiation on paraprobiotics is examined 
post-treatment using different techniques. Cell viability is 
generally assessed through colorimetric assays like MTT and 
spectrofluorometric analyses [59]. The reproductive capa-
bility is evaluated via plate counting, colony-forming unit 
(CFU) assays, and growth curve analyses [60, 61]. Confocal 
laser scanning microscopy (CLSM) is generally employed to 
observe cell growth and assess structural integrity. Several 
approaches such as comet assays as well as polymerase chain 
reaction (PCR) methods like quantitative PCR and entero-
bacterial repetitive intergenic consensus PCR (ERIC-PCR) 
are employed to analyze DNA damage in inactive microbes 
[62]. Flow cytometry is an especially viable technique for 
the post-inactivation examination of paraprobiotics since 
several parameters including DNA content, cell size, and 
mitochondrial function can be measured parallelly by using 
specific fluorescent dyes. Table 2 contains a list of com-
monly used fluorescent dyes and the specific cell functions 
that they are used to assess [19].

Pulsed Electric Field (PEF)

The pulsed electric field is a non-thermal technology that can 
be used for the purpose of inactivating microorganisms. It is 
achieved by placing the target microbes between two elec-
trodes that constitute a treatment chamber gap followed by 
the employment of short-duration pulses with high-voltage 
electric fields in the range of 5 to 90 kV/cm [70, 71]. The pre-
cise mechanisms underlying PEF-induced microbial inactiva-
tion are not fully explicated, but it has been shown that per-
meabilization of microbial membranes, i.e., electroporation, 

Table 2   Main dyes used in flow cytometry and their functions. Reproduced with permission [19]

Dye Function(s) Refer-
ences

TOTO-1
1,19 (4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-

methyl-2,3-dihydro (benzo-1,3-oxazole)-2-methylidene]-1-(39-
trimethylammonium propyl)-pyridinium tetraiodide

To assess membrane integrity [63]

DioC6 (3)
3,3′-dihexyloxacarbocyanine iodide

To show respiration and membrane potential [64]

DiBAC4(3)
bis-(1,3-dibutylbarbituric acid) trimethine oxonol

To assess bacterial susceptibility to antibiotics and cell viability [65]

cFDA
Carboxyfluorescein diacetate

To evaluate cell esterase activity [66]

FDA
Fluorescein diacetate

To indicate enzyme activity of intracellular esterase [67]

HE
Hydroethidide

To measure reactive oxygen species (ROS) [64]

PI
Propidium iodide

To indicate cytoplasmic membrane integrity [68]

SYTO-9 To assess membrane integrity [69]
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occurs due to the application of PEF. Under minimal pulsa-
tion conditions, the membrane damage would be reversible, 
whereas more severe conditions would lead to irreversible 
damage, ultimately resulting in cell death [70, 72, 73].

In order to optimize PEF parameters such as pulse dura-
tion, treatment duration, and electric field strength for 
achieving necessary inactivation levels, heat resistance 
mechanisms of the target microorganism must be stud-
ied, and the kinetics of PEF-induced inactivation must be 
understood. These kinetics can be assessed by measuring the 
microbial cell viability at varying strengths of the electric 
field with a uniform increase in the duration of treatment 
which is the product of the pulse width in µs and the total 
number of pulses. However, pulse application generates a 
Joule heating effect which, in turn, increases the electrical 
conductivity, thus altering the pulse width and electrical 
field strength [74]. Therefore, Heinz et al. [75] proposed 
the determination of optimal PEF parameters based on the 
total specific energy, which is influenced by the treatment 
duration, electrical field strength, and the treatment cham-
ber’s electrical resistance properties. In the case of Listeria 
monocytogenes, the total specific energy and the treatment 
duration required for a specific inactivation level were seen 
to decrease upon increasing the electric field strength [74].

Ultraviolet (UV) Rays

Ultraviolet (UV) rays are electromagnetic rays having wave-
lengths between 200 and 400 nm. They are non-ionizing rays 
that can be used for sterilization purposes. Damage to the 
DNA is considered the key lethal effect of UV on bacterial 
strains, the inactivation of probiotics results from the forma-
tion of pyrimidine dimers in DNA and RNA, which would 
lead to microbial death due to affected metabolic functions 
or mutations in key genes [19, 76]. Other lethal or sub-lethal 
damages include the formation of ROS, which react with 
DNA and cellular proteins [77]. Membrane permeability 
and molecular transport can also be affected by damage to 
the cell membrane which may lead to cell inactivation [78].

Generally, the process of UV inactivation includes expos-
ing the live probiotics suspended in culture media to the UV 
source emitting light of a particular wavelength for a speci-
fied time period. The effectiveness of the treatment is then 
tested by plating the culture on an agar plate and checking 
for cell growth as well as colony formation after 72 h of 
incubation. The absence of detectable cell growth indicates 
that the inactivation procedure was successful. Currently, 
flow cytometry is a more commonly used technique to check 
for cell viability. In one study, Lactobacillus rhamnosus GG 
was inactivated by subjecting the cell suspension to UV radi-
ation from a 39-W germicidal UV lamp placed at a distance 
of 10 cm for a duration of 5 min. Though the treated culture 
did not show any growth on the agar medium, it was able 

to reduce IL-8 levels in Caco-2 cells, as effectively as live 
Lactobacillus rhamnosus GG probiotics [79].

UV treatment is very effective in inactivating a variety 
of microorganisms while preserving their beneficial immu-
nomodulatory properties. Studies have demonstrated negli-
gible differences in the beneficial effects of certain microbes 
when administered in their live form, as probiotics, and in 
their UV-inactivated form, as paraprobiotics [22]. Being  
a non-thermal method, it does not damage cell wall com-
ponents like peptidoglycans and lipoteichoic acid which 
interact with immune cells to regulate the immune system  
[80]. Since UV treatment does not use any toxic chemicals 
or reagents, there is no risk of harmful residues being left 
behind in the paraprobiotics. Additionally, UV treatment 
is currently used in several industries to treat products for 
human consumption like food and pharmaceuticals, making it 
a reliable and generally accepted method of inactivation. One 
common example is the UV-based sterilization of drinking 
water before its consumption and use for cooking purposes 
[81]. Furthermore, as thermal methods such as pasteurization 
may not kill spore-forming species, irradiation methods using 
UV and gamma rays provide a viable alternative. However, 
the effect of UV radiation on specific probiotic organisms 
remains unclear due to the influence of external parameters 
such as the germicidal wavelength, the duration of exposure, 
the target microorganism, and the specific strain used [78].

Techniques such as heat, ionizing radiation, and ultra-
sound can be combined with UV to produce a synergistic 
effect which would increase the efficiency of inactivation. 
In order to efficiently combine different treatments, the 
inactivation mechanisms involved in each technique must 
be understood [49, 82, 83].

Other inactivation methods include lyophilization, 
spray drying, and pH modification [19]. Lyophilization is 
achieved by freezing the target microorganisms, applying 
a high vacuum, and finally warming the microbes under a 
vacuum thus leading to the sublimation of water. In spray 
drying, the feed solution, containing probiotic cells and dis-
solved or suspended protectant solids, undergoes atomiza-
tion to form small droplets that are rapidly dried in a hot air-
flow to convert them into particles [84]. The pH sensitivity 
of microorganisms can also be exploited to make them non-
viable. As previously mentioned, the inactivation method 
used, its intensity and conditions, as well as the strain used 
may affect the properties of paraprobiotics. For instance, 
a study conducted by Ouwehand et al. [85] evaluated the 
inactivation of nine probiotic strains to assess the effect of 
heat, UV, and gamma irradiation on the adhesive property 
of probiotics using which they attach to the immobilized 
intestinal mucus. Inactivation by heat and gamma rays 
showed a decrease in the adhesive ability of the probiotics 
with the exception of Propionibacterium freudenreichii and 
Lactobacillus casei Shirota, respectively, where an opposite 
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effect was observed. Inactivation by UV did not cause any 
difference in the adhesion properties.

Various inactivation parameters including intensity, dura-
tion, and frequency need to be tuned individually for spe-
cific applications. These parameters differ according to the 
strain used, microbial resistance patterns, initial microbial 
population, and environmental factors such as growth media. 
Hence, dose–response studies are necessary to optimize the 
treatment parameters and to choose a dosage that provides 
specific advantages.

Gut‑Brain Axis (GBA)

The gut microbiota has an essential role in human health 
and physiology, and gut dysbiosis, i.e., imbalance in the 
gut microbial populations, can have severe neuropsychiat-
ric repercussions. Symptoms of anxiety and depression are 
explicitly correlated to alterations in the microbiota. Gut 
dysbiosis can occur due to various reasons such as eating 
habits, sleep patterns, diseased states, and medications such 

as antibiotics. Probiotics and paraprobiotics offer a viable 
solution for the restoration of a healthy, balanced gut micro-
biome [86, 87].

This relationship between the gut microbes and the 
brain is mediated by a bidirectional communication termed 
the “Gut-Brain axis” that occurs through multiple differ-
ent pathways which are regulated by various components as 
illustrated in Fig. 6.

Vagus Nerve

The vagus nerve, the tenth cranial nerve in the autonomic 
nervous system, plays a critical role in gut-brain signaling 
[88]. It is a major constituent of the parasympathetic division 
and coordinates several physiological functions such as res-
piration, heart rate, and gut motility [89]. As demonstrated in 
Fig. 7, the sensory components of the vagus nerve transmit 
various sensory gut signals, including nutrient availability, 
microbial activity, and gut health, to the brain, thus affect-
ing the host response [88]. This is primarily accomplished 
through vagal terminals formed along the gut epithelium by 

Fig. 6   Pathways involved in the gut-brain axis (GBA)
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the vagal nerves which form two main detectors of mechani-
cal signals—intra-ganglionic laminar endings (IGLEs) in 
combination with enteric neurons and intramuscular array 
endings (IMAs) in the muscle layers [90, 91]. The vagal 
afferent nerves that pass through the intestinal and antral 
glands as well as the taste buds in the proximal esopha-
geal tract express specific receptors to detect serotonin, 
gastro-intestinal neurohormones, peptides, and other spe-
cific signaling molecules released by enteroendocrine cells 
in response to intestinal nutrient levels for the regulation of 
nutrient absorption and digestion. Special enteroendocrine 
cells that form synapses with vagal terminals are termed 
neuropods [88]. Enteroendocrine cells generally express 
receptors to detect fatty acids, glucose, and amino acids in 
the gut. Several microbial metabolites produced by the gut 

microbiota like lipopolysaccharides (LPS) are also detected 
by the enteroendocrine cells through toll-like receptors 
(TLRs) located on their surface [92]. Pathogenic microbes 
directly communicate with the vagus nerve through leaky 
gut barriers while beneficial microbes generally affect 
enteroendocrine signaling, potentially through a serotonin-
dependent mechanism. These messages regarding food 
intake, digestion, gut microbial activity, nutrient absorption, 
and ultimately, gut health, are transmitted to specific regions 
of the brain, including the hypothalamus, the locus coer-
uleus, and the hippocampus through the nucleus tractus soli-
tarius (NTS) which is the main processor of sensory signals 
from the gut [88]. Vagal efferent nerve fibers originate from 
the dorsal motor nucleus of the vagus in the brainstem and 
transmit motor signals from the brain to the enteric nervous 

Fig. 7   Diverse gut-brain connections through the vagus nerve [88]
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system. The enteric neurons are triggered by vagal effer-
ent nerves by the release of acetylcholine, thus regulating 
smooth muscle contractions that control peristalsis and food 
propulsion as well as the secretion of gastric acid, digestive 
enzymes, alkalis, mucus, and other substances necessary for 
digestion and nutrient absorption [93].

However, since neurotransmitters like serotonin, acetyl-
choline, and gamma-aminobutyric acid (GABA), as well 
as neuropeptides such as substance P, neuropeptide Y, and 
oxytocin, are produced by the endocrine nervous system, 
the vagal gut-brain signaling pathway also mediates stress 
response, mood, cognition, and overall brain function [94]. 
The excitation of the vagal afferent nerves in the gut has 
been associated with neuropsychiatric disorders like depres-
sion and anxiety [95]. In an experimental study, vagoto-
mized mice were seen to be insensitive to probiotic treatment 
for anxiety-like behaviors, implying the imperative role of 
the vagus nerve in anxiolytic effects and gut-brain commu-
nication [96, 97]. Further, vagus nerve stimulation (VNS) 
therapy using electrical impulses was successful in reduc-
ing the symptoms of treatment-resistant depression (TRD). 
More specifically, the administration of the probiotic Lac-
tobacillus rhamnosus (JB-1) led to increased levels of the 
neurotransmitter GABA in mice, which has implications for 
the treatment of anxiety and MDD [98].

Immunological Activity

The immune system plays a crucial role in regulating the 
bidirectional interaction between the gut microbiota and the 
CNS, thus influencing the pathophysiology of neuropsychi-
atric disorders. Cytokines, produced by immune cells, are 
important messengers in the gut-immune-brain communica-
tion. They have two main types—proinflammatory cytokines 
that increase inflammation and anti-inflammatory cytokines 
that decrease inflammation. Gut bacteria can interfere with 
the balance between the two types of cytokines by upregulat-
ing the expression of one type of cytokines while downregu-
lating the other. Increase in the expression of proinflamma-
tory cytokines, such as IFNγ and TNFα, have been shown 
to cause central neuroinflammation, ultimately leading to 
psychological stress and depressive symptoms [99]. For 
instance, a study conducted on mouse models showed that 
the oral administration of heat-killed wild-type Lactobacil-
lus casei as a paraprobiotic caused the suppression of IFNγ 
and TNFα. This immunomodulatory property can potentially 
be used in ameliorating the symptoms of neuropsychiatric 
disorders [100].

Interleukins are a subset of cytokines and specific 
interleukins are involved in the regulation of inflamma-
tion. During certain neuropsychiatric disorders like MDD, 
the  NLRP3 inflammasome stimulates proinflammatory 

pathways by activating IL-1b signaling which is critical in 
the gut–immune–brain association [101]. Other proinflam-
matory interleukins include IL-2, IL-6, IL-8, IL-12p70, and 
IL-17A. As mentioned previously, it has been experimen-
tally shown that UV-inactivated Lactobacillus rhamnosus 
GG (LGG) suppresses IL-8 production to the same extent 
as live LGG that is administered as a probiotic [79]. This 
introduces the possibility of using UV-inactivated LGG as 
an immunomodulatory paraprobiotic for certain psychologi-
cal imbalances.

Microbial-associated molecular patterns (MAMPs) like 
flagellin and LPS are conserved, class-specific molecular 
structures present on the surface of microbes that are iden-
tified by pattern recognition receptors (PRRs) including 
Toll-like receptors (TLRs) and NOD-like receptors (NLRs) 
which are present on the surface of host cells and bind to 
specific MAMPs. However, since these MAMPs are pro-
duced by both pathogenic invaders and commensal gut 
microbes, several mechanisms are employed to prevent the 
destruction of the gut microbiota by the intestinal epithe-
lial cells while also maintaining immune homeostasis. One 
particular mechanism is stratification, i.e., minimization of 
contact between gut microbes and intestinal epithelia which 
is accomplished by the mucus layers coating the inner wall 
of the intestine. Another strategy is compartmentalization 
in which gut microbiota are contained within specific zones 
to reduce their exposure to the systemic immune response. 
This is achieved by the epithelial production of antibacterial 
molecules like RegIIIγ which prevent gut microbes from 
reaching the small intestine as well as reduced gut micro-
bial colonization in the stomach and duodenum due to their 
highly acidic environments [102, 103].

Inflammatory Reflex and Neuroinflammation

The inflammatory reflex is a neurophysiological mechanism by 
which the vagus nerve mediates cytokine production, tinflam-
mation, and overall immune function. The afferent vagus nerve 
fibers regulate immune-to-brain communication by detecting 
peripheral inflammatory molecules and subsequently sending 
signals to specific regions of the brain, including the hypothal-
amus. The efferent vagus nerve is involved in cholinergic sign-
aling from the brain to the immune system which suppresses 
cytokine production. Inflammatory mediators including bacte-
rial peptides, lipopolysaccharides, and cytokines activate the 
afferent vagal nerves which ultimately leads to an increased 
production of the adrenocorticotropic hormone (ACTH) that 
has an anti-inflammatory effect. Afferent signals also hinder 
cytokine production by increasing glucocorticoid levels and 
stimulating the release of the melanocyte-stimulating hormone 
(MSH), an anti-inflammatory protein. Once these signals are  
transmitted to the brain, the efferent motor signals stimulate  
the release of acetylcholine (Ach), a neurotransmitter that 
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binds to α7 nicotinic acetylcholine receptors (α7nAChR) on  
the surface of immune cells like macrophages, thus sup-
pressing cytokine production [104–106]. A preclinical study 
observed increased inflammation due to high levels of TNF-α 
and IL-1β cytokines as well as depressive symptoms possi-
bly due to BDNF-TrkB signaling by the brain-derived neu-
rotrophic factor (BDNF) and its receptor, tropomycin recep-
tor kinase B (TrkB) specifically in the nucleus accumbens  
region of the brain [107]. This is supported by experimen-
tal data that correlates inflammation-induced BDNF activity  
with the onset of depression in rat models [108].

Neuropsychiatric disorders like depression are known 
to be triggered by poor lifestyle and unhealthy diet which 
cause gut dysbiosis as well as stress which interferes with 
the hypothalamic–pituitary–adrenal (HPA) axis, thus elicit-
ing a proinflammatory immune response [109]. The stress-
induced immune response, coupled with the over-production 
of proinflammatory cytokines due to gut dysbiosis, can lead 
to neuroinflammation, i.e., inflammation in the central nerv-
ous system (CNS), through the gut-brain axis, which in turn 
dysregulates neurotransmitter metabolism, neural synaptic 
plasticity, and neuroendocrine function, ultimately affect-
ing emotional regulation and overall behavior [110]. This 
is further supported by a clinical trial in which the use of 
2 × 109 CFU/g each of probiotics including Bifidobacte-
rium bifidum, Lactobacillus acidophilus, and Lactobacillus 
casei was shown to have anti-depressive effects in MDD 
patients [111]. Microglia are immune effector cells that 
control neuroinflammation by releasing immune mediators  
and maintaining neuronal connectivity in the CNS. How-
ever, microglial activation by bacterial LPS and IFNγ could 
lead to the release of proinflammatory factors like IL-6, 
thus causing neurotoxicity due to increased neuroinflam-
mation. Dysfunction of microglia has been associated with 
the onset of depression due to neuroinflammation in coor-
dination with the disruption of the HPA axis [112, 113].  
Studies have shown that specific microglial activation in certain  
parts of the brain like the prefrontal cortex plays a major 
role in MDD. A direct correlation has also been established 
between the severity of depression and the level of micro-
glial activation in the anterior cingulate [114].

Microbial Metabolites

Chemical compounds produced during microbe-mediated 
metabolic reactions are known as microbial metabolites. 
They include short-chain fatty acids (SCFAs), bile acids, 
phenols, thiols, and amino acids. Gut microbial metabolites 
affect the central nervous system, either directly or indi-
rectly due to which gut dysbiosis can critically impact the 

pathophysiology of various CNS disorders, such as ASD. 
It has been observed that microbial metabolites can regu-
late ASD-like symptoms both positively and negatively. A 
decrease in levels of SCFAs like butyrate has been noted 
in the fecal samples obtained from ASD patients [115]. It 
has been experimentally shown using a mouse model that 
the administration of C4 fatty acids like sodium butyrate 
can attenuate ASD symptoms and improve social behavior 
by regulating the expression of ASD-related genes [116].

SCFAs are organic compounds formed as end-products 
of microbial fermentation, especially in the caecum and 
proximal colon of the gastrointestinal tract. The major 
SCFAs in the gut include propionate, acetate, and butyrate. 
SCFAs help in the maintenance of gut barrier integrity via 
the regulation of tight-junction proteins and the stimula-
tion of increased production of mucin, a constituent of the 
mucus lining, by the gut epithelium [117]. In vitro studies 
have demonstrated the ability of SCFAs to improve intes-
tinal permeability and epithelial barrier function in a con-
centration-dependent manner [118, 119]. SCFAs mediate 
immune homeostasis in the gut by regulating inflammation. 
Preclinical trials have shown the ability of SCFAs to upregu-
late the production of IL-10-producing regulatory T-cells, 
thus increasing the levels of IL-10, an anti-inflammatory 
cytokine [120]. They also interact with the gut-brain-axis 
by binding to G-protein coupled receptors (GPCRs) on the 
surface of enteroendocrine cells and triggering the produc-
tion of neuropeptides like glucagon-like peptide 1 (GLP-1), 
ghrelin, and peptide YY [121]. The role of SCFAs in energy 
metabolism is primarily through butyrate oxidation which 
accounts for up to 70% of the energy supply to colonocytes 
[122]. SCFAs play a role in regulating the metabolism of 
glucose and lipids by binding to specific GPCRs. They 
activate the oxidation of fatty acids while inhibiting fatty 
acid synthesis and lipolysis through an AMPK-mediated 
pathway [123]. Moreover, SCFAs also influence the pro-
duction of neurotransmitters in the brain. Acetate has been 
shown to increase the hypothalamic levels of GABA and 
lactate in vivo, possibly via anorectic signaling in the arcu-
ate nucleus [124]. In vitro studies have demonstrated that 
SCFAs like butyrate and acetate modulate serotonin levels 
by regulating the expression of tph1 which encodes trypto-
phan 5-hydroxylase 1, the enzyme necessary for serotonin 
production [125]. Similarly, propionic acid and butyric acid 
regulate the expression of tyrosine hydroxylase which is 
required for the production of major neurotransmitters such 
as epinephrine, norepinephrine, and dopamine [121, 126]. 
Thus, the use of microbial metabolites, especially particular 
types of SCFAs, as paraprobiotics in disorders like ASD is  
currently being explored, but their clinical application remains  
challenging due to the heterogeneity of the results.
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Neuroactive Compounds

Neuroactive compounds include a variety of substances 
like neurohormones, neuropeptides, neurohormones, 
neuromodulators, mediators, and metabolites from vari-
ous sources that influence the neural system and thereby 
affect brain function as well as other CNS-related activi-
ties. Since they play a vital role in mediating and regulat-
ing the microbiota-gut-brain signaling pathways, abnor-
mal levels of these compounds are associated with the 
pathogenesis of neuropsychiatric disorders such as ASD 
and MDD [127].

Tryptophan metabolism is an important component  
of the GBA. The metabolism of tryptophan, a derivative  
of indole, to kynurenine, can be either upregulated 
or downregulated depending on the gut microbes involved. 
Kynurenine can either be metabolized into kynurenic acid 
which is a neuroprotective metabolite or into quinolinic 
acid. It has been experimentally observed that MDD 
patients have lower kynurenic acid levels even though 
tryptophan metabolism occurs at a fast rate, possibly due 
to the preferential conversion of tryptophan into quino-
linic acid [128]. This reduction in kynurenic acid levels 
causes a disruption in the neuroprotective and neurodegen-
erative cascades, thus contributing to the development of 
depressive symptoms. Thus, in order to manage the patho-
physiology of MDD, kynurenine levels must be controlled. 
Experimental evidence indicates that treatment with Bifi-
dobacterium spp., in combination with an improved diet, 
can reduce kynurenine levels and improve depressive 
symptoms due to which it is a promising probiotic that 
can be used to manage symptoms in MDD patients [129].

Additionally, several neuroactive indole derivatives like 
serotonin, indole-3-propionic acid (IPA), and melatonin are 
produced by the gut microbiota during tryptophan metabo-
lism. The overproduction of indole has been linked to symp-
toms of anxiety and depression in preclinical trials, thus 
implicating individuals with gut microbiota that produce 
higher levels of indole in the development of neuropsychiat-
ric problems [130]. Indole alkaloids influence neural trans-
mission by interacting with GABA receptors and serotonin 
receptors, thus exhibiting an anti-depressive effect that can 
potentially be used in neuropsychiatric therapy [131]. Fur-
ther, indole derivatives like IPA and melatonin have been 
shown to act as neuroprotectants via their antioxidant and 
anti-inflammatory activities, thus regulating neural signal-
ing [132]. Indole derivatives exhibit these neuroprotective 
effects both in vitro and in vivo by increasing dopamine 
levels and enhancing dopamine uptake, scavenging ROS to 
alleviate oxidative stress, and modulating cytokine produc-
tion, including the downregulation of TNF-α, IL-1β, and 
IL-6, in order to control neuroinflammation [133].

Applications

Several studies have established the viability of probiotics 
and paraprobiotics in the management of neuropsychiatric 
disorders including MDD, ASD, and anxiety.

Clinical and preclinical studies indicating the health 
benefits of probiotics are summarized in Table 3.

Though research is still in the nascent stage as compared 
to probiotics, several preclinical and clinical studies have 
demonstrated the favorable neuropsychiatric effects of dif-
ferent paraprobiotics as well. The studies, along with their 
results, have been encapsulated in Table 4. Unlike probiot-
ics, paraprobiotics cannot multiply, making the dose size 
an important consideration. In one particular study, Murata 
et al. [151] employed 2 different dosage forms—1 × 1010 
(10 LP) and 3 × 1010 (30 LP)—on human subjects. The 
study found that the supplementation had a greater positive 
impact on both common cold and mood in the 10 LP group 
compared to the 30 LP group. The researchers believe that 
this may be due to the dose-independent nature of the treat-
ment since probiotics generally exert immunomodulatory 
effects in a dose-dependent manner [152]. However, this 
difference in positive impact may also be due to the fact 
that the 30-LP group had a smaller sample size, as more 
participants dropped out before the intervention in this 
group. In contrast, another study testing the efficacy of 
Bacillus sp. NP5 paraprobiotic at different density levels 
on the resistance of Nile tilapia fish to Streptococcus aga-
lactiae infection showed that maximum immune response 
and disease resistance was observed at the highest dose of 
1010 CFU/mL [153]. The dependency of health benefits 
on the dosage size is yet to be conclusively determined 
since many studies assessing the effect of paraprobiotics 
on neuropsychiatric symptoms have not considered possi-
ble changes in the observed effects upon altering the dos-
age while keeping all other factors constant. Additionally, 
comparative trials between probiotics and paraprobiotics at 
different concentrations on the same subjects help to eluci-
date the required change in dosage upon inactivation. For 
instance, a recent study conducted by Elham et al. [154] 
revealed that the cytotoxic effect of live L. casei probiotic 
on CaCo2 cells was much higher than that of the heat-
inactivated paraprobiotic from the same microbial strain at 
each concentration that was tested, indicating that the inac-
tivated paraprobiotic must be administered in higher doses 
to elicit a similar effect as compared to the viable probiotic. 
Further, both treatments showed a dose-dependent increase 
in their cytotoxic potential. It is important to note, how-
ever, that these results are specific to the microbial species 
and cell line in question and cannot be generalized for all 
probiotics and paraprobiotics. Research into this particu-
lar aspect in the context of neuropsychiatric disorders is 
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critical to determine whether a similar increase in dosage 
will be required for inactivating probiotics that have the 
ability to alleviate neuropsychiatric symptoms.

Conclusion

There exists a paradoxical relationship between neuropsy-
chiatric disorders and gut dysbiosis. The GBA mediates a 
two-way communication between the gut microbiota and the 
brain, thus facilitating the involvement of the gut microbes 
in the development and regulation of the nervous system. 
Thus, gut dysbiosis plays a major role in the pathogene-
sis of neuropsychiatric disorders such as ASD and MDD. 
Evidence suggests that both probiotics and paraprobiotics 
possess the ability to ameliorate neuropsychiatric symp-
toms and disorders through the GBA due to their potential 
to optimize the gut microbiome through interactions with 
the gut microbes. However, probiotics pose several safety 
concerns including susceptibility of immunocompromised 
patients and development of antibiotic resistance. Despite 
the advantages of paraprobiotics over probiotics in terms of 
safety and shelf life, they are not without limitations. The  
main disadvantage of paraprobiotics is the lack of standard-
ized inactivation protocols which are necessary for their  
commercial production and quality control. Further research 
is required to compare and establish standard param-
eters for paraprobiotic production since the inactivation  
of probiotics by different methods may lead to variations 
in the properties of the paraprobiotics obtained and their 
conferred health benefits. Moreover, the mechanism of 
action of paraprobiotics and the role of specific cellular 
components must be elucidated. Research into this aspect is 
hindered by the difficulty in accurately determining the cell 
viability of probiotics, resulting in the erroneous attribution  
of the beneficial effects of paraprobiotics to their viable 
counterpart. Additionally, specific criteria must be estab-
lished for choosing the target microorganisms, and defini-
tive tests are required for determining the biological activity 
of inactivated microbes. Most importantly, the efficacy and 
sustainability of paraprobiotics in the gut must be assessed, 
given their inability to reproduce. Reports suggest that gut 
mucosal colonization resistance to probiotics may nullify 
their potential health benefits [161]. Therefore, time-point 
assays need to be performed to determine the optimal treat-
ment duration and the prolongation of health benefits after 
the treatment period. In order to translate the potential 
advantages of paraprobiotics into health benefits, the opti-
mum dosage, frequency and the total duration of consump-
tion need to be evaluated [162]. Unless paraprobiotics are  
able to induce lasting changes in the gut microbiota, their health 
benefits will be limited to the time period of administration, 
unlike probiotics which proliferate and colonize in the gut, 

leading to long-term beneficial effects. While paraprobiotics  
may be able to rectify gut dysbiosis by regulating the growth  
of different microbial populations thereby producing long-
term health benefits, it is difficult to reach a definitive con-
clusion due to the lack of sufficient experimental evidence, 
thus highlighting the exigent need for further research. In 
conclusion, though further work is necessary to optimally 
channel their beneficial properties, probiotics and parapro-
biotics are highly viable natural therapeutic agents for the 
management of neuropsychiatric disorders.
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