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Abstract
Probiotic bacteria are known to have ability to tolerate inhospitable conditions experienced during food preparation, food storage, 
and gastrointestinal tract of consumer. As probiotics are living cells, they are adversely affected by the harsh environment of the 
carrier matrix as well as low pH, bile salts, oxidative stress, osmotic pressure, and commensal microflora of the host. To overcome  
the unfavorable environments, many probiotics switch on the cell-mediated protection mechanisms, which helps them to survive, 
acclimatize and remain operational in the harsh circumstances. In this review, we provide comprehensive understanding on the 
different stresses experienced by the probiotic when added in carrier food as well as during human gastrointestinal tract transit. 
Under such situation how these health beneficial bacteria protect themselves by activation of several defense systems and get 
adapted to the lethal environments.
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Introduction

Elie Metchnikoff, a Nobel Award winner, is credited with 
developing the initial notion of probiotics. In 1908, he 
postulated that the bacteria in fermented milk might be 
reason for the Balkan population’s high life expectancy. 
Metchnikoff’s theory, however, was ignored for almost a 
century. The potential health advantages of probiotic lactic 
acid bacteria have revived interest in them during the past 
two decades, and as a result, probiotics are now considered 
essential to human [1]. Probiotics are projected to have a 
USD 57.8 billion market value in 2022. With an expected 
CAGR of 8.1% by 2027, it will likely reach USD 85.4 billion 
[2]. Live microorganisms known as “probiotics” are said to 
have health advantage when taken in sufficient amounts [3], 
mainly includes lactic acid bacteria (LAB), Propionibacteria 
and Bifidobacteria. Many probiotics which belong to gen-
era such as Enterococcus, Bacillus, Escherichia, etc., do not 

have GRAS status and not included in qualified presump-
tion of safety (QPS), in addition to that they are compara-
tively less popular probiotic than LAB, Bifidobacteria and 
Propionibacteria. Hence, most of the studies discussed in 
this review are related to these three genera. LAB are rod or 
spherical, gram-positive, acid-tolerant, typically nonsporu-
lating, low-GC bacteria that have similar physiological and 
metabolic traits [4]. Propionibacterium is a gram-positive, 
mesophilic, aerotolerant, non-motile, and non-spore-forming 
bacterium that has a high GC content. It has low nutritional 
needs and can persist in unfavorable conditions [5]. Bifi-
dobacterium is a genus of gram-positive, nonmotile, often 
branched rod, anaerobic bacteria [6]. While Lactobacilli are 
widely regarded as helpful microbes and some strains, such 
as probiotics, are even thought to promote wellness, their 
broad historical use has helped them gain approval as gener-
ally recognized as safe (GRAS) for human [7].

The human digestive tract has been found to benefit 
greatly from probiotic microbes and milk-based foods rec-
ognized as an effective delivery system since long time. 
Probiotic products are also growing in popularity using 
other non-dairy alternatives, such as plant-based foods 
including grains, fruits and vegetables that have low aller-
gic response rates [8]. Probiotics or products containing 
probiotics can be helpful in intestinal illnesses, inflamma-
tory bowel disease, diabetes, allergy, inability to digest milk 
sugar [9], vitamin production [10, 11], tightening of gut 
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barrier [12–14], boosts immunity [15, 16], intestinal motil-
ity [17, 18], gut microbiome [19–21], and lifestyle-related 
diseases by reducing their clinical symptoms [22–25]. To 
obtain the claimed health benefits from the commercial 
probiotic strain, they should be in the active physiological 
state because under stressful environment they utilize its 
energy toward the self-survival and do not provide men-
tioned health benefit to the host [26, 27].

Nowadays, commercially available probiotics are taken 
orally as nutritional supplements, such as sachets, pills, cap-
sules, or as one of the ingredients of foods like milk-based 
products and/or plant-based products. Primary target site 
of probiotic bacteria is the human intestine; thus, they must 
reach there in active physiological state to obtain claimed 
therapeutic benefits. Probiotic bacteria differ in their ability 
to remain alive and multiply in various carrier matrices as a 
result of stressors associated with various food processing  
methods, storage environments and gastrointestinal tract 
(GIT) [22]. Any alteration to the bacterial DNA, protein, or 
vital component that reduces viability of cell is known as 
stress. A cell will strive to re-establish its metabolic pattern 
in an effort to either survive or grow more quickly as a result 
of such modifications [28]. As probiotics are live entity, they 
would face various stresses like presence of organic acids, 
heating injury, ice crystals piercing, high osmotic pressure 
in surrounding, antimicrobial compounds, dissolved oxygen 
in food, and low water activity, either in the carrier matrix or 
GIT [29]. The metabolic pathways of LAB may be greatly 
affected by certain stressful situations, hence, limiting their 
therapeutic efficacy in terms of inhibiting pathogen through 
secretion of antimicrobial compounds, competing with 
pathogens for adherence to the intestinal epithelium, boosts 
immunity by interacting with the intestinal cell line, enhance 
gut barrier function, produces bioactive compounds, etc. [12, 
15, 22, 30]. In fact, a stressed carrier matrix alters the physi-
ology of microbial cell, which may impair the effectiveness 
of probiotic bacteria [26, 27]. Probiotics may find it difficult 
to survive in the food, which could hinder their delivery to 
the target site. On the contrary, many LAB are equipped 
with adaptation mechanisms and counteract these stresses 
by multiple responses, e.g., acid neutralization under acid 
stress, secretion of heat shock proteins during heat stress, 
rerouting metabolic pathways during bile and acid stress, 
and modification of cell envelope under osmotic stress. They 
are safeguarded from severe environmental shocks by these 
adaption techniques.

It is crucial to have a strong knowledge of how probiotic 
bacteria respond to external factors to choose strains that 
will work better as starter cultures and probiotics [31, 32]. 
It is also crucial to fully comprehend the parameters that 
enable bacterial viability and the mechanism that enables 
them to endure inhospitable environments while maintaining 
a normal physiological state [33, 34]. The objectives of this 

review were to discuss the various response strategies used 
by the bacteria to combat the stressful conditions encoun-
tered during food preparation as well as the GIT transit and 
to give an insight to application of stress-adapted probiotics 
in a customized food preparation such as low-pH food (fer-
mented milk or fruit juices), food stored at very low tem-
perature (ice cream and frozen dessert), and freeze-dried 
probiotic cells.

Factors Affecting the Viability of Probiotics

Probiotics experiences the different stresses at different 
stages of food manufacturing, i.e., probiotic preservation 
(freeze dried, DVS), fermentation in food matrix, refriger-
ated storage, and human GIT (digestive enzymes, stomach 
pH, bile, osmotic constraints, commensal microbes, etc.). 
Following are the stress factors which hampers the growth 
of probiotic microorganisms [35] such as moisture/water 
activity, low pH, high bile concentration, oxygen perme-
ability through packaging, osmotic stress (due to sugar and 
salt addition), metabolites of other bacteria, nutrient deple-
tion/competition for nutrients, post-acidification, pres-
ence of harmful microbes, storage condition (temperature, 
humidity), mechanical stress (pressing, vigorous shaking/
centrifuge), heat stress, and chilling injuries. For probiot-
ics to remain alive, become widely distributed, and provide 
their health advantages, they must adapt to this challenging 
environment and be protected. When probiotic bacteria are 
subjected to different stressful environments, they are known 
to activate number of defense mechanisms in order to over-
come the stress and remain viable.

General and Common Stress Responses

When probiotics are under stress, they try to safeguard 
themselves by expressing numerous coping strategies in 
the matrix. These coping strategies are more or less same 
and common for environmental stresses like acid stress, 
bile stress, heat stress, cold stress, osmotic stress, oxidative 
stress, etc. The most common defence mechanisms exhib-
ited by probiotics in the stressful conditions are discussed 
below [36]. General and common stress responses exhibited 
by probiotic bacteria are shown in Fig. 1.

Accumulation of Compatible Solutes and Energy 
Storage Compounds

A smaller organic molecule which is polar, water solu-
ble, and having neutral isoelectric point is known as a 
compatible solute. It acts as an osmolyte and helps bacte-
rial cells to acclimatize to osmotic stress [37]. To increase 



1034 Probiotics and Antimicrobial Proteins (2023) 15:1032–1048

1 3

the proliferation of cells and re-establish original pressure 
during osmotic stress, bacteria increase the concentration 
of compatible solutes [37], which the cell either transports 
from the surrounding or produces itself [38]. There are 
two groups of compatible solutes: the first group includes 
sugars and polyols (trehalose, glycerol), while the second 
group includes amino acids [39].

Trehalose assists in refolding of protein, inhibits pro-
tein aggregation, and safeguards cellular proteins from 
reactive oxygen species (ROS) damage [40]. Trehalose 
may also help keep plasma membranes intact [41]. After 
the external carbon supply has been used up, trehalose 
can serve as an internal source of carbon [40]. Bacte-
ria were known to accumulate trehalose in their sur-
rounding medium when exposed to high sugar content. 
It was reported that trehalose concentration is increased 
by Propionibacterium freudenreichii and Lactobacil-
lus casei under osmotic stress [40, 42]. In contrast to 
a chemically defined medium, the solutes accumulate 
more readily. Some challenging conditions may also 
cause P. freudenreichii to increase the concentration 
of trehalose such as very low temperature [43], presence 
of oxygen, and low pH [40, 41]. Moreover, trehalose 
also helps in reducing viability loss of freeze-dried cells 
during storage [44].

Glutamate and lysin accumulations help the lactobacilli 
cell under many adverse environment [34]. Propionibacte-
rium acidopropionicii concentrated arginine and aspartate 
following acid stress [45]. Under acidic environments, L. 
plantarum activates the lysine degradation pathway [46]. 
Phosphates and glycogen are found to be used as energy 
storage compound by several probiotic bacteria.

Regulation of Energy Production

During stressful conditions, a cell regulates the various 
metabolic pathways and substrate conversion to counter-
act the stress and maintain the homeostasis. Under normal 
condition, ATPase synthesize ATP by proton motive force 
and stores energy. But under stressful conditions like acid 
and bile stress, this protein works in reversible fashion, it 
expulses the proton from the cytoplasm by hydrolysing ATP 
[47, 48]. Adenosine triphosphatase (ATPase) activity was 
regulated at transcriptional level [49] and ATPase expres-
sion was correlated with bile stress and acid tolerance [45]. 
When grown in MRS medium at 37 °C with constant pH 
4.8 for 14 h, L. rhamnosus GG overexpressed F0F1-ATP 
synthase genes while proteins taking part in DNA and RNA 
synthesis were significantly reduced [50]. Similar results 
were observed in the following study. Increased production 
of F0F1-ATPase was reported at pH 4.8 than pH 7 by a pro-
biotic strain, B. longum NCIMB 8809 [51].

Even substrate conversion is also redirected under 
stresses. For example, during acid stress Lactobacilli 
decreases lactic acid production by rerouting the glucose 
metabolic pathway [34]. Under cold stress, Propionibacte-
ria restrict the production of propionate and acetate from 
lactate by diverting pyruvate toward other pathways [43]. 
The arginine deaminase (ADI) pathway is about five times 
more active in P. acidopropionici and Lactobacilli to prevent 
pHi from dropping too much. By this way, arginine can be 
broken down to produce ATP, ammonia, and carbon dioxide 
[45, 52, 53]. The pH homeostasis is achieved by the release 
of ammonia and carbon dioxide [45] and energy generated 
used by the ATPase to get rid of protons from the cell.

Fig. 1  General stress responses 
exhibited by probiotic bacteria 
[36]
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Impact on Bacterial Envelope

Probiotic bacteria experience cell envelope injury during 
harsh environment [34]. The cell membrane acts as a first 
line of protection shield against any hurdle. The stressors, 
such as presence of organic acids, freezing temperature, high 
temperature, and bile salts, can have an impact on the cell 
membrane. Moreover, cell envelop plays an extremely cru-
cial role in maintaining cell intact and reducing the osmotic 
pressure under osmotic stress [34]. Different adaptive strate-
gies are employed by bacteria to restore the integrity of the 
membrane and cell wall.

Variations in fluidity tend to be countered by modifica-
tion of membrane constituents as a defense strategy that 
take place in stressful situations to maintain intact bilayer 
structure. As a result of acid stress, L. casei is found to pro-
duce more cyclopropane fatty acids and less unsaturated to 
saturated fat. It helps the cell to prevent inflow of proton 
by making cytoplasmic membrane stiffer and more com-
pact [49]. It was also reported that unsaturated fatty acids 
in cytoplasmic membranes of L. helveticus increased when 
it was under heat stress, which reduced membrane fluidity 
[54]. P. freudenreichii produces branched chain fatty acids 
through degradation of branched amino acids using a variety 
of enzymes [55], helping to keep the membrane fluid to fend 
off cold stress.

Increase in hydrophobicity of cell wall is one of the 
response mechanisms adopted by many probiotics against 
different stresses. Many Lactobacilli were found to over-
produce S-layer proteins during bile, acid, heat, and osmotic 
stress [56, 57]. Such S-layer proteins function as a coating of 
insulation, thereby, protecting the cell from any injury and 
lethal effect. It was also observed that exopolysaccharides 
(EPS) defend bacteria from stress like heat, bile, low pH, and 
osmotic. Such EPS can be either tightly or weakly linked to 
the cell surface [58–60].

Production of Chaperones and Stress 
Responsive Proteases

Under extreme stress, the expression of chaperones and 
proteases is rapidly accelerated by the bacteria. They either 
refold the denatured protein to correct configuration or 
degrade them. When damage is irreparable, proteases serve 
as the ultimate line of defense by promoting recycling of 
amino acids of denatured protein. By destroying proteins 
whose activities are no longer necessary as a result of 
changes to environment, the process of proteolysis of cel-
lular proteins can significantly contribute to homeostasis 
[34]. Proteins that have been damaged were correctly folded 
by chaperones and DnaK (heat shock protein) is a widely 

recognized cellular chaperone which bring damaged proteins 
to correct configuration [34].

When L. rhamnosus is exposed to pH 4.8, the ClpE chap-
erone concentration was two times greater in the late lag 
phase of growth, demonstrating its defensive function in 
acidic stress [50]. In a study, S. thermophilus produced 
higher amount of elongation factor G (EF-G) and Tuf pro-
teins after 3 h of exposure to acidic pH 5 than at normal 
physiological pH 6.8 [61]. EF-G promotes the transloca-
tion step in bacterial protein synthesis and Tuf involved 
in molecular chaperone activity. Various stress responsive 
proteins such as small heat shock proteins (HSP), cold 
shock proteins, antifreeze proteins, mRNA binding pro-
teins, moonlight protein (possess adhesive property), etc., 
are overproduced during heat, cold, osmotic, bile, and acid 
stress. Main stress response mechanisms of bacteria under 
various stresses like osmotic, acid, oxidative, heat, cold and 
bile are shown in Fig. 2.

Individual Stress: Impact and Response 
by Probiotics

Acid Stress

Lactic acid production during fermentation by lactic acid 
bacteria causes acidification of carrier matrix. This undis-
sociated organic acid enters the cell through simple diffusion 
and dissociate inside the cell due to high pH. This leads to 
cause acidic cytoplasm and damages DNA, proteins, and 
many vital biomolecules which are necessary for the cell’s 
viability [62]. Low pH in gastric conditions also prevents the 
microbial colonization in GIT [63]. Many bacteria activated 
the defense mechanism during acid stress; such studies are 
discussed below.

Neutralization of cytoplasm by metabolism of amino 
acid is one of the mechanisms activated during acid stress 
by the probiotic bacteria. Amino acid decarboxylation pro-
duces ATP as well as neutralize acid by producing alkaline 
metabolites. Overexpression of glutamic acid decarboxylase 
(GAD) genes of L. reuteri strain 100–23 in mouse stomach 
shows the activation of protection system against acid stress 
[64]. In a study, histidine decarboxylation pathway from Str. 
thermophilus CHCC1524 introduced to L. lactis NZ9000 
showed tenfold higher acid stress survival at acid stress, 2.5 
pH for 2 h compared to wild type [65]. Such Lactobacilli 
have potential to be utilized in low-pH carrier matrix like 
fermented foods.

Malate decarboxylation is called malolactic fermentation 
(MLF). It releases  CO2 which neutralizes the protons [66]. 
When 30 mM malate added to the carrier matrix, it improved 
the low pH 2.5 survival of the L. casei ATCC 334 [49]. 
Many probiotic bacteria are found to produce EPS, which 
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shield themselves against low pH. The L. helveticus ATCC 
15807 secreted greater EPS at pH 4.5 than normal physi-
ological pH. EPS prevent the penetration of free  H+ into the 
cell cytoplasm [67].

Probiotics can boost the functioning of the F0F1 ATPase 
that utilizes ATP to propel the evacuation of  H+ from the 
cell and so maintain pHi homeostasis [63]. L. rhamnosus GG 
increased F0F1-ATP synthase production, when grown in 
whey broth (5% hydrolyzed whey, 0.6% casein hydrolysate 
and 0.0015%  MnSO4, and water, pH 5.8). Various other acid 
stress responses such as cell signaling by LuxS (involved in 
quorum sensing), ClpE (degradation of misfolded proteins 
during stress responses), and peptidoglycan biosynthesis 
along with F0F1-ATP synthase were upregulated in whey 
broth having pH 4.8 compared to pH 5.8 [50].

Probiotics fight against low pH stress through over pro-
duction of common stress proteins and chaperones such 
as GroEL, GroES, DnaK, and Clp [68]. It was reported 
that the HSP and chaperones (DnaK, GrpE, GroEL, and 
GroES) were abundant in L. plantarum 423 under acid 
stress, i.e., in MRS at 2.5 pH for 2 h [46]. Alteration in 
cell membrane composition is another protection strategy 
in probiotics during acid stress. The composition of fatty 
acids in cell membrane of previously acid exposed cells 

of L. casei ATCC 334 was checked in a study. The higher 
contents of saturated fatty acid (SFA) and cyclopropane 
fatty acid (CFA) were reported [49]. These SFA and CFA 
play functional role in modulation of membrane features 
like fluidity, hydrophobicity, and proton permeability 
under adverse environment.

In one study, L. plantarum 423 was added to MRS broth 
with 2.5 pH for 2 h. By analyzing proteomic profile, it was 
found that proteins involved in transcription, translation, and 
cell division were decreased under stress conditions. These 
proteins are not vital for cell’s viability but they are involved 
in cell growth and divisions. Further they studied glucose 
consumed and lactic acid produced in MRS broth under low 
pH and normal physiological environment. Under control 
condition 12.9 g/L glucose was consumed and 2.7 g/L lac-
tic acid was produced, whereas in stress condition 19.0 g/L 
glucose was consumed and 0.7 g/L lactic acid was produced 
[46]. Increased glucose consumption and reduced lactic acid 
production during acid stress mean that cell is utilizing glu-
cose as a source of energy to cope with stressful condition. 
It channelizes the metabolic pathway of glucose in such a 
way that end product is not acid but some other neutral and /
or alkaline substances under acid stress. Figure 3 presents an 
overview of the many modes of acid resistance in lactic acid 

Fig. 2  Main stress response mechanisms of bacteria under various 
stresses like osmotic, acid, oxidative, heat, cold, and bile [36]. Pep-
tidoglycan is represented in blue. Membrane lipids under normal 
growth are represented in gray. Amounts of saturated (blue), unsat-
urated (red), and cyclic (yellow) fatty acids are modulated by treat-
ments. S-layer proteins, which may be involved in adaptation, are 
represented in yellow and red outside the peptidoglycan. Lipoteichoic 

acids, whose length is modulated, are presented in green. Induc-
ible transmembrane ATPase and Osmoprotectant uptake systems are 
represented in pink and blue, respectively. In the cytoplasm, general 
stress proteins are represented by different colors. Colored circles 
represent different osmoprotectant and energy storage compounds. 
Crosses on circles mean the conversion of the molecule. The chromo-
some is represented in black
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bacteria. Acid stress response in various beneficial bacteria 
is given in Table 1.

Bile Stress

In order to move through the host’ GI system, probiotic 
bacteria must overcome many key obstacles and one such 
obstacle is bile in the human intestine. The natural level of 
bile in the human gut is around 0.05 to 2%. Bile acid serves 
as a biological detergent and exhibits variety of negative 
consequences, such as DNA damage, protein misfolding 
or denaturation, formation of secondary structure of RNA, 
reducing pH of cell cytoplasm, and dissolving cellular lipids 
[69, 70]. Research findings have shown that probiotic bacte-
ria respond to bile hurdle by increasing the level of chaper-
ones, proteases, proteins involved in bile detoxification and 
export, redox enzymes, and cell wall– and membrane-bound 
constituents, which consistently alters cell envelope charac-
teristics [71–73].

Many probiotics possess enzyme, bile salt hydrolase 
which provides protection against bile stress. Moreover, 
probiotic LAB cleans the cellular environment from bile 
employing export mechanisms. In both Lactobacilli and 
Bifidobacteria, many transporter proteins and potential bile 

efflux systems were characterized as well as located using 
transcriptome method [68, 71, 74–76]. When L. fermen-
tum NCDC 605 was exposed to 1.2% bile in MRS broth 
for 6 h, the following changes were observed: alterations 
in the energy metabolism, such as a rise in ATP synthesis; 
alterations in glycolytic end product concentrations; altera-
tion in shape and size of L. fermentum NCDC 605 cells; 
molecular chaperones and proteases genes upregulated. All 
these alterations in L. fermentum NCDC 605 tend to help 
the cell to survive under bile stress [77]. The morphological 
changes may be due to alteration in cell surface by (a) excre-
tion of EPS, (b) modifications to the cell membrane’s fatty 
acid makeup, and (c) changes in surface-associated proteins.

One of the enzymes called bile salt hydrolase (BSH) is 
involved in deconjugation of primary bile salt and releases 
free insoluble cholic acid (unconjugated acid) and a residue 
of taurine or glycine. Other commensal microbes could then 
disintegrate the unconjugated acids or excreted out by host 
[78]. When L. plantarum Lp91 was exposed to 2% bile for 
3 h in MRS broth, the expression of bsh gene increased six 
times compared to control [79]. The multidrug transport-
ers and bile efflux pumps are the primary mechanisms in 
Bifidobacterium breve UCC2003 for bile acid detoxifica-
tion during gastrointestinal transit. When bile efflux pump 

Fig. 3  Mechanisms of acid tolerance in lactic acid bacteria [adopted 
from  141]. ADP adenosine diphosphate, AI-2 auto-inducer 2, ATP 
adenosine triphosphate, CFA cyclopropane fatty acids, Dnak molecu-
lar chaperone protein, GABA γ-aminobutyrate, GAD glutamate decar-

boxylase, LuxS S-ribosylhomocysteinelyase, Nth endonuclease, RecA 
DNA repair protein, RecO DNA repair protein, Shsp small heat shock 
protein, SmnA AP endonuclease, TCS two-component signal system, 
and UvrA ultraviolet excinuclease
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Bbr_0838 in B. breve UCC2003 has been inactivated, 
through insertional mutation, the capacity of the genetically 
modified cells to grow in the presence of cholic acid (0.05%) 
has been reduced significantly (p < 0.05) than the unmodi-
fied, original cells [76].

In another study, B. breve UCC2003 was allowed to form 
biofilms in reinforced clostridial medium for 24 h during 
many stressful conditions like acidic environment at pH 
4, pH 4.5, pH 5, and pH 5.8; bile stress at porcine 0.05%, 
0.1%, 0.5%, 1%, and 2%; salt stress at NaCl 94.5 mM, 
103 mM, 171 mM, 256 mM, and 426 mM; osmotic stress 
at sucrose 1.46 mM, 2.92 mM, 14.6 mM, 29.2 mM, and 
58 mM. They found that at 2% porcine concentration sig-
nificantly (p < 0.05) increased the higher biofilm formation 
as compared to other. Also, among all the stress conditions, 
bile stress at various concentration produced highest bio-
film [80]. That shows that the biofilm formation is one of 
the important mechanisms of B. breve UCC2003 activated 
against bile stress in the GIT transit. In another study on bile 
stress, when probiotic L. salivarius Ren exposed to MRS 
containing 0.75 g/L bile for 14 h, various changes such as 
maltose and glycerol were utilized in carbohydrate metabo-
lism to produce additional energy, overproduction of the 
enzymes involved in cell surface charge modification, secre-
tion of cell envelope bound haemolysin-like protein (hinder 
bile penetration), overexpression of ATP-binding cassette 

(ABC) transporters (for expulsion of toxic intracellular bile), 
and overexpression of proteolytic system (to give additional 
amino acids to repair damaged proteins) were recorded [81]. 
Figure 4 shows various bile response mechanisms discov-
ered and defined in Lactobacilli. Bile stress responses in 
various beneficial bacteria are given in Table 2.

Cold Stress

Probiotic may be exposed to low temperatures during the 
storage of bacterial formulations before they are utilized 
in food production and during refrigerated storage of food 
products. Moreover, freezing and freeze drying are general 
techniques to preserve and concentrated probiotics lead to 
cold stress to the cells.

Low storage temperatures of probiotics can cause 
stiffening of the cell membranes, reducing vital enzyme 
functionality and lower down RNA transcription and pro-
tein translation rate, which may lead to growth arrest in 
a cell. Moreover, the ice crystals generated during freez-
ing can permanently injure the bacterial cell envelope 
by punching and piercing. Furthermore, solutes begin to 
accumulate inside the cell during refrigerated storage due 
to conversion of liquid water into solid ice. Hence, cells 
experience desiccation and osmotic pressure gradient 
under cold environment. Since most probiotics are sold 

Table 1  Acid stress response in 
various beneficial bacteria

Response mechanism Name of bacteria References

Prevent protein aggregation and promote correct folding
Upregulation of chaperones

L. delbrueckii [68]

Regulation of cytoplasmic pH
Proton extrusion by increased activity and amount of F0F1-ATPase

L. kefiranofaciens [90]

F0F1-ATPase upregulated
Arginine conversion
Aspartate conversion
Glutamate conversion

P. acidopropionici [45]

Alkalization of the cytoplasm by the ADI pathway
Arginine conversion
Glutamate conversion

L. reuteri [53]

Amino acid decarboxylation L. lactis [65]
L-lactate deshydrogenase downregulated
Glutamine conversion

L. rhamnosus [50]

Modulation of membrane fatty acids composition: decrease in unsatu-
rated/saturated fatty acid ratio, Increase in the number of cyclopor-
pane fatty acids

L. casei ATCC 334 [49]

Modulation of membrane fatty acids composition L. johnsonii [26]
Increase in S-layer production L. acidophilus [56]
ClpB, ClpE, and ClpP overproduction L. plantarum [88]
DnaJ1 overproduction B. longum [116]
Over-production of proteins involved in metabolic pathways of pro-

teins and carbohydrates, energy production, and stress responses
L. pentosus
AP2-15, AP2-18,
and LP-1

[63]
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Fig. 4  Bile response mechanisms identified and characterized in Lactobacilli [69]

Table 2  Bile stress response in various beneficial bacteria

Response mechanism Name of bacteria References

Bile detoxification mechanisms Lactococcus lactis, [117]
Bile detoxification mechanisms various Lactobacilli, and Bifidobacteria [118]
Bile export systems and efflux pumps L. lactis [71]
EPS production B. breve [119]
Bile export systems and efflux pumps L

acidophilus NCFM
[120]

Bile export systems and efflux pumps L. reuteri ATCC 55730 [121]
Bile export systems and efflux pumps: Bbr_0838 B. breve [76]
Changes in fatty acid composition of cell envelop B. animalis [122]
Biofilm formation and modulation of
adhesion properties: luxS/AI-2 system

L. plantarum KLDS1.0391 [123]

Biofilm formation and modulation of
adhesion properties

L. plantarum NA7 [124]

Upregulation of H + -transporting ATPase, Molecular chaperone DnaK, 
Protein GrpE, ClpE, ClpL, amino acid, glutamine transport system, and 
multidrug transporter

L. casei BL23 [72]

Modulation of cell surface physical
chemical properties, biofilm formation

L. crispatus 12,005, L. paracasei F8, L. plantarum 
F44, L. paracasei F19 and L. rhamnosus GG

[73]

Increase in S-layer production L. acidophilus [57, 125]
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in freeze-dried form, the ability of probiotic to remain 
alive in cold environments is extremely important. It was 
reported that P. freudenreichii elevate the concentration 
of branched chain fatty acids in cytoplasmic membrane 
by synthesizing from branched amino acids, eventually 
maintaining required fluidity under the cold stress [55]. 
In probiotic Lactobacilli, cold stress stimulates many 
antifreeze and cold shock proteins (CSP) that bind to 
RNA, which prevent secondary structure generation and 
bolster transcription, translation, and ribosomal activ-
ity to keep the cell active under stress [82, 83]. Freez-
ing resistant enzymes secreted by lactic bacteria are also 
capable of supporting both RNA and protein synthesis at 
extremely low temperatures [83].

The damage and piercing caused by the ice crystal forma-
tion during freezing were prevented by expression of anti-
freeze proteins by the probiotic Lactobacilli [84]. Osmotic 
pressure gradient formed during low temperature storage 
was found to balance by bacteria through secretion and accu-
mulation of compatible solutes such as glycerol, trehalose, 
and amino acids like glycine, glutamate, lysine, arginine, 
betaine, and proline [85]. In a study, L. delbrueckii subsp. 
bulgaricus LBB.B5 were exposed to milk at 4 °C for 5 days 
and 37 °C for 16 h. Increased levels of many stress tolerance 
proteins like AddB, UvrC, RecA, and DnaJ were observed at 
lower temperature of exposure [86]. The cold-stress response 
of probiotic L. plantarum K25 was measured by comparing 
differentially expressed (DE) protein profiles after incuba-
tion at 10 °C for 72 h and 37 °C for 14 h. Various proteins 
upregulated after exposure to 10 °C compared to 37 °C were 
DNA repair, transcription, translation, quorum sensing, and 
ABC transporters [87]. Cold stress response in various ben-
eficial bacteria is given in Table 3.

Heat Stress

Heat is a common technological stress because probiotics 
frequently have to deal with it at different phases of food 
production. Probiotics may encounter high temperatures 
like 60 °C during various stages of food preparation. Even 
immensely high temperature during spray drying can result 
in brief heat shocks of up to 200 °C. When biomolecules like 
DNA, RNA, and protein are subjected to elevated tempera-
tures, they denature and loses their native property, which 
hampers metabolic activity [88]. Additionally, heat stress 
increases cell membrane flexibility, affecting the vital activ-
ity of cell, and may irreversibly damage cells and causes cell 
death [89]. Bacterial cells can tolerate milder heat challenges 
up to 65 °C, but it may reduce the stability of non-covalent 
bonds, causes cell envelope disruption, affecting function of 
ribosome, and leads to proteins denaturation [34].

Promoting the synthesis of particular proteins is one of 
the adaptive methods found in L. kefiranofaciens M1 to pre-
vent cell damage [90]. These proteins were HSP, phosphoe-
nolpyruvate-protein phosphotransferase, chaperone, chaper-
onins, and cofactors. They are crucial for facilitating proper 
packing and eventual transport of nascent polypeptides 
[91]. The GroEL/GroES chaperonin is one of the chaper-
one proteins that probiotic Lactobacilli use to deal with heat 
stress [92]. It was observed that B. longum synthesize HSP 
in heat stress and also adapt to higher temperature [93]. 
Interestingly, several HSP from lactic bacteria have capac-
ity to attach and stabilize cell membranes. Such HSP is also 
known as lipochaperone [94, 95]. Saturated and straight-
chain fatty acids that contribute to optimal liquidity neces-
sary for normal membrane function were found in LAB that 
grew under heat stress [96].

Table 3  Cold stress response in 
various beneficial bacteria

Response mechanism Name of bacteria References

Prevent and repair protein damage
Induction of HSP

L. plantarum [126]

Prevent and repair protein damage
Induction of HSP

S. thermophilus [127]

Glycogen accumulation
PolyP accumulation
Trehalose accumulation

P. freudenreichii [43]

Trehalose accumulation
CspA overproduction
CspB overproduction

P. freudenreichii [128]

Induction of cold-shock proteins (cspC,
cspL, and cspP) and ATPase
activities

L. plantarum L67 [82]

Induction of enzymes that activate membrane fluidity and 
membrane phospholipids

L. delbrueckii
subsp. bulgaricus
(ATCC 11842 and
CFL1)

[129]

Induction of antifreeze and ice nucleation proteins L. paracasei and L. mali [84]
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The effect of heat adaptation (pre-exposure to sub-suble-
thal stress) on production of EPS by B. bifidum was checked 
in a study. The cells were exposed to 42 °C for 5 min and 
then grown in MRS containing 0.5 g/L of L-cysteine at 
37  °C for 24 h anaerobically. L-cystein acts as oxygen 
remover and addition of this creates anaerobic conditions in 
the media, thus, enhancing the growth of anaerobic bacteria, 
B. bifidum. The EPS production was significantly higher 
in pre-exposed cells than the non-heat-exposed cells [97]. 
This finding shows the crucial role of EPS in protecting B. 
bifidum during heat stress. The SDS PAGE analysis of intra-
cellular proteins of L. casei, heat stressed at 45 °C, 50 °C, 
55 °C, and 60 °C for 60 min, was carried out. In all heat-
stressed cells, variations in protein content at 40–55 kDa, 
60 kDa, and 70 kDa were linked to overexpression of DnaJ, 
GroEL, and DnaK [98].

Adherence to HeLa cells and fatty acid composition of 
L. casei introduce to two heat treatments such as 37 °C for 
10 min and 45 °C for 10 min were measured. HeLa cells 
adherence and ratio of unsaturated fatty acids (USFA) to 
SFA in 45 °C for 10 min treatment were 31.33% and 0.36, 
respectively, whereas in 37 °C for 10 min treatment were 
28.66% and 0.40, respectively [96]. In case of 45 °C for 
10 min treatment, the significant (p < 0.05) rise in adherence 
ability indicates the L. casei cell attaches to other cells to get 
away from the stressful condition, whereas significant reduc-
tion in the ratio of USFA to SFA means there is increase in 
concentration of SFA which prevents melting of cell mem-
brane at high temperature and maintains the proper fluidity 
required for the normal functioning of the cell.

In one of the studies, cells of probiotic Enterococcus fae-
cium HL7 were kept at 52 °C and 47 °C for 15 min for heat 
adaptation. Then % survival was calculated for the control 
and heat-adapted cells at 60 °C after every 10 min up to 
40 min. Complete death of all the cells occurred in con-
trol, while heat-adapted cell survival was found to reduce 
at the end of 60 min. Cells adapted to 52  °C exhibited 
greater survival than 47 °C. Cells heat adapted to 52 °C 
had comparatively higher SFA and lower USFA than the 

remaining treatments. Cells with a reduced level of USF 
or with increased level of SFA have a reduced cytoplasmic 
membrane flexibility which is correlated to greater heat 
resistance [99]. Viability of heat-treated (52 °C/15 min) 
and non-heat-treated E. faecium HL7 cells after subjected 
to different stress, such as 0.01% hydrogen peroxide (oxi-
dative stress), 20% ethanol, 3 pH (acid stress), and 12 pH, 
was evaluated. It was discovered that the heat-adapted cells 
managed to survive at significantly (p < 0.05) higher number 
than the non-adapted cells [99]. When cells are exposed to a 
particular stress, it activated various general stress response 
mechanisms that help the cell to survive and fight against 
other stressful conditions. This mechanism is also known as 
cross protection. In the above study, when E. faecium HL7 
cells were previously treated with sublethal heat stress, it 
improved the survival rate under various stresses. It indi-
cated the cross protection in the heat-adapted cells. Heat 
stress response in various beneficial bacteria is given in 
Table 4.

Osmotic Stress

Osmotic stress is experienced by probiotic bacteria in the 
growth medium, in the course of food production and in the 
GIT. Probiotic bacteria undergo osmotic stress when sol-
ute contents in food preparation were changed like salt in 
cheese, high sugary foods, pickle, etc. [100]. Water moves 
out of the cell as osmotic pressure rise, triggering cell con-
traction, loss of cell turgor pressure, and altering cytoplas-
mic solute content. All of which have a negative impact on 
bacterial survival [101]. Compatible solutes either from the 
surrounding medium or secreted by the cell were extremely 
helpful to combat the osmotic stress. Most of the compat-
ible solutes do not have any charge at pH 7; hence, without 
interfering with the metabolism, uncharged compatible sol-
utes can be collected in large concentrations. Compatible 
solutes were observed to preserve proteins in their correct 
conformation during osmotic pressure.

Table 4  Heat stress response in 
various beneficial bacteria

Response mechanism Name of bacteria References

Induction of small heat shock proteins (sHSP) B. longum [93]
Degrade misfolded and aggregated proteins
Synthesis/upregulation of HSPs with protease activity

L. plantarum [92]

Increase in S-layer production L. acidophilus [56, 57]
Induction of small heat shock proteins (sHSP) and chaperonins L. plantarum (Lp 813 

and Lp 998)
[89]

Chaperone complexes,
such as GroEL and
GroES

L. casei ATCC393 [96]

HSP1,
HSP2, and HSP3

Lactobacillus [130]
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Osmotic stress could stimulate the secretion of trehalose in 
P. freudenreichii and L. casei [42]. Lactobacilli were reported 
to modulate the cytoplasmic level of amino acids such as 
proline and glutamate during osmotic adaptation [34]. The 
osmotically induced OpuABC (or Bus ABC) transporter accu-
mulates glycine betaine in P. freudenreichii during osmotic 
stress [42]. The high levels of sugar in the carrier matrix of 
LAB allow formation of metabolites such as mannitol (non-
fermentable carbohydrate). The non-fermentable carbohy-
drates were found to boost cell survival during spray drying 
by raising osmotic pressure and causing cells to osmotically 
adapt [102]. The LAB cells activated several defence mecha-
nisms when pre-exposed to sub-lethal osmotic stress, could 
have increased survival after spray drying [42]. The LAB pro-
duced EPS in the surrounding medium, thereby prevented cell 
damage due to dehydration in osmotic stress. The hydroxyl 
group present on the polysaccharides of EPS was responsible 
for the water binding ability [103]. The Leu. mesenteroides 406 
produced 25.83 g/L EPS in MRS broth containing 5% NaCl 
compared to 16.02 g/L EPS in control after 48 h at 28 °C [104].

Osmotic stress triggers production or import of  K+ or 
compatible solute in probiotics, which protect cell against 
lethal damage. L. acidophilus and L. casei secrete protective 
molecules like DnaK and HtrS operon proteins that safe-
guard the bacteria against damage caused by high salt con-
centration in medium [105]. The impact of osmoadaptation 
of B. bifidum CCFM16 cells on multiplication rate during 
osmotic stress was determined in a study. Medium added 
with 0.3% NaCl gives osmotic stress of 100 mOsm/kg. In 
MRS containing 1 g/L L-cysteine, B. bifidum CCFM16 was 
exposed to an osmotic environment that increased stead-
ily over the course of 1000 generations. Then the hyper-
osmotic-tolerance mutant and parent strains were exposed 
to 1300 mOsm/kg osmotic stress. The generation time of 
extremely high osmotic pressure–resistant mutant B. bifidum 
CCFM16m is 1/3 of its parent strain B. bifidum CCFM16 
[106]. The finding of this study suggests that the B. bifi-
dum CCFM16 develops various defense mechanisms to 
cope against harsh osmotic stress when gradually grown in 
increasing level of osmotic pressure. Such mutant strain has 
potential to survive in higher number during freeze dying 
and refrigerated storage in food matrix.

Lactobacillus rhamnosus GG was previously exposed to 
4% NaCl and 4.5 pH in MRS for 24 h for stress adaptation. 
The cell count reduction of stress-adapted L. rhamnosus GG 
(0.2 log reduction) was comparatively lesser than non-stress-
adapted L. rhamnosus GG (0.5 log reduction) in yoghurt 
matrix during refrigerated storage [107]. This indicates the 
adaptive response of L. rhamnosus GG to sublethal osmotic 
and pH stress had improved the survival in the carrier matrix 
during low-temperature storage.

Osmotic stress response in various beneficial bacteria is 
given in Table 5.

Oxidative Stress

Aerobic conditions experienced by probiotics during 
food processing as well as GIT transit lead to oxidative 
stress to the sensitive bacterial strain. The oxygen acts as 
toxic compound by reacting with iron of heme-dependent 
cytochrome oxidase in electron transport chain to create 
ROS [108]. Metabolic conversion of oxygen generates 
ROS like superoxide  (O2

−), hydroxyl radicals  (HO•), and 
hydrogen peroxide  (H2O2). These ROS are highly unsta-
ble entities and are responsible for the oxidative chain 
reaction which damages several critical biomolecules 
like proteins, DNA, RNA, and lipids, which affects cells 
viability. ROS can freely pass through the semiperme-
able membrane and greater amount of ROS ceases LAB 
cell multiplication. Since many LAB and bifidobac-
teria lack catalase and superoxide dismutase (SOD) 
enzyme activity, they were unable to neutralize hydro-
gen peroxide and ROS, which made them vulnerable 
to oxygen [109].

Certain LAB like L. plantarum does not have ROS-
neutralizing enzymes such as SOD. They defend them-
selves by other strategies, i.e., concentration of manganese 
inside the cell and utilizing Mn-dependent mechanisms 
of superoxide neutralization [110]. Aerotolerant anaerobe 
LAB Leu. mesenteroides, which lacks SOD, neutralized 
ROS by encouraging EPS production and cellular aggrega-
tion. EPS expel dissolved oxygen from medium to relieve 
oxidative stress [111]; EPS also neutralizes the ROS by 
binding with them and cellular aggregation protects the 
inner cells from the ROS. The fatty acid constituents in 
bifidobacterial cell membrane were found to alter in oxida-
tive stress [112], suggesting that such modifications might 
strengthen tolerance to ROS.

Table 5  Osmotic stress response in various beneficial bacteria

Response mechanism Name of bacteria References

Glycine betaine accumulation
Glycogen accumulation
PolyP accumulation
Trehalose accumulation
ClpB overproduction

P. freudenreichii [42]

Increase in S-layer production
Reduction of lipoteichoic acid
Increase in the negative charge of 

the cell wall
Reduction of the lipoteichoic 

chain

L. casei BL23 [131]

Increase in S-layer production
Increase in SlpA/SlpX ratio

L. acidophilus [105]

Increase in S-layer production L. acidophilus [57]
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The redox mechanisms of Lactobacillus spp. may con-
tribute to the downregulation of ROS-forming enzymes. In 
addition, nuclear factor erythroid 2 (NFE2)-related factor 
2 (Nrf-2) and nuclear factor kappa B (NF-κB) were two 
common transcription factors, through which Lactobacillus 
spp. modulated oxidative stress [113]. The active cells of L. 
plantarum CAUH2 were suspended in MRS supplemented 
with 3 mM, 4 mM, 5 mM, 6 mM, and 7 mM  H2O2 to study 
the oxidative stress response. The concentrations 6 mM and 
7 mM  H2O2 inhibited L. plantarum CAUH2 growth, but 
cells were able to survive up to 5 mM  H2O2 stress. It was 
also observed that L. plantarum CAUH2 changed its carbon 
source utilizing profile and modified glycolytic pathway to 
produce more ATP under 5 mM  H2O2 stress. At transcrip-
tion level, the antioxidant enzymes like NADH peroxidase, 
thioredoxin reductase, and glutathione peroxidase were 6.11, 
36.76, and 6.23 times upregulated under 5 mM  H2O2 stress 
[114]. The surviving cell numbers of L. rhamnosus hsryfm 
1301 increased from 3.7 log CFU in non-adapted cells to 
7.8 log CFU in pre-adapted (5 mM  H2O2 for 1 h) cells in 
the presence of 0.5 mM  H2O2 [115]. Since oxidative stress 
improved the survival rate of adapted cells, pre-adaptation to 
oxidative stress has potential to ameliorate the aerotolerance 
in probiotic bacteria during food processing.

Oxidative stress response in various beneficial bacteria 
is given in Table 6.

Conclusion

Various environmental stresses are encountered by probiot-
ics during food preparation and passage through the GIT. 
All the response mechanisms used by probiotics to various 
stresses are species and strain dependent. While under stress, 
probiotics respond by triggering a number of regulatory 

functions, such as control gene expression, modification 
in cell membrane composition, and alteration in metabolic 
pathways. Exposure of probiotic bacteria to sublethal stress 
activates the multiple stress tolerance mechanisms in the 
stress-adapted cell. This review will be helpful to the people 
involved in development of a new/novel probiotic food, i.e., 
selection of the carrier matrix with most effective probiotic 
strain in active physiological state giving maximum thera-
peutic benefit during GIT transit. Furthermore, this infor-
mation lays the path for the development of biological and 
technology strategies to enhance probiotic robustness. It is 
required to conduct more genomic studies for better under-
standing of bacterial cell’s behavior under stress. Addition-
ally, there is also requirement to perform animal studies for 
the stressed cells to check for any pathogenicity, efficacy, 
and effectiveness. Trials can be conducted to prepare cus-
tomized foods by utilizing stress-adapted probiotics.
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