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Abstract
Type 2 diabetes mellitus (T2DM) is considered one of the most common disorders worldwide. Although several treatment 
modalities have been developed, the existing interventions have not yielded the desired results. Therefore, researchers have 
focused on finding treatment choices with low toxicity and few adverse effects that could control T2DM efficiently. Various 
types of research on the role of gut microbiota in developing T2DM and its related complications have led to the growing 
interest in probiotic supplementation. Several properties make these organisms unique in terms of human health, including 
their low cost, high reliability, and good safety profile. Emerging evidence has demonstrated that three of the most important 
signaling pathways, including nuclear factor kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), 
and nuclear factor erythroid 2–related factor 2 (Nrf2), which involved in the pathogenesis of T2DM, play key functions in 
the effects of probiotics on this disease. Hence, we will focus on the clinical applications of probiotics in the management of 
T2DM. Then, we will also discuss the roles of the involvement of various probiotics in the regulation of the most important 
signaling pathways (NF-κB, PI3K/Akt, and Nrf2) involved in the pathogenesis of T2DM.

Keywords  Type 2 diabetes mellitus · Probiotic · Nuclear factor kappa B · Phosphatidylinositol 3-kinase/protein kinase B · 
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Introduction

Diabetes mellitus (DM) is generally known as a chronic meta-
bolic disorder triggered by genetic and environmental factors 
and has become one of the major global health problems, 

affecting all main sectors of societies and placing a great 
burden on the global economy [1]. According to a recent 
report, 463 million people are suffering from DM world-
wide; if the trend continues uncontrolled, the numbers are 
anticipated to elevate to 578 million and 700 million by 2030 
and 2045, respectively [2]. DM can be subdivided into three 
main classes: type 1 (T1DM), type 2 (T2DM), and gestational Seyed Davar Siadat and Maryam Tohidi contributed equally to this 
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(GDM); among these, T2DM includes the massive majority 
(approximately 90%) of cases around the world [3]. T2DM is 
mainly characterized by hyperglycemia, low-grade inflam-
mation, insulin resistance (IR), oxidative stress, dysfunction 
of pancreatic β-cells, and gut dysbiosis. These impairments 
can result in macrovascular (coronary heart disease, cardio-
myopathy) and microvascular (retinopathy, nephropathy, 
neuropathy) complications [4]. Nowadays, there are still only 
two common approaches to the medical treatment of diabetes 
including oral anti-diabetic and insulin injection with their 
different adverse effects [5]. As a result, researchers’ attention 
has been paid to finding treatment choices with low toxicity 
and few adverse effects that could control T2DM efficiently.

In more recent years, accumulating evidence has dem-
onstrated that gut microbiota plays a critical role in human 
health [6, 7]. Many studies have indicated that dysbiosis of 
the intestinal flora can result in intestinal problems and met-
abolic diseases, particularly T2DM. Besides, it has been elu-
cidated that the resident microbiota associated with chronic 
inflammation contributes to the development of T2DM [8]. 
Moreover, the gut microbiota is changed in the progression 
of T2DM, and its comorbidities [9]. As a result, alteration 
of microbiota may be helpful for understanding and treat-
ment of T2DM. In this line, it was reported that intestinal 
microbiota is also strongly conducive to increased adipos-
ity, β-cell dysfunction, metabolic endotoxemia, inflamma-
tion, and oxidative stress [10]. Thus, by modifying the host’s 
gene expression and metabolic processes, reverse intestinal 
microbiota dysbiosis may affect the metabolism of diabetes-
related organs and organs impacted by metabolic diseases.

A worldwide epidemic has developed over the past few 
years regarding T2DM management. A variety of therapeu-
tic techniques have been developed, and many drugs have 
been recommended to promote glycemic control by improv-
ing insulin production and intake, reducing glucose produc-
tion and absorption, inhibiting glucose reabsorption, and 
enforcing urinary glucose excretion [11]. Several different 
drugs are used to achieve these goals, such as thiazolidin-
ediones (TZDs), α-glucosidase inhibitors, sulfonylureas, and 
biguanides, which are used in the treatment of hypergly-
cemia. The different anti-diabetic medications are known 
to cause some unpleasant side effects, including gastroin-
testinal problems, liver problems, and lactic acidosis [12]. 
The investigation of alternative methods focused on the gut 
microbiota indicated promising approaches for managing 
T2DM in the future [13]. Many studies have been conducted 
in the last two decades regarding the beneficial effects of gut 
microbiota in metabolic diseases such as T2DM [14].

The beneficial modulation of the intestinal microbiota 
can be achieved by administering probiotics [15]. Probiot-
ics, which are live microorganisms capable of colonizing the 
human intestinal tract, have recently attracted much attention. 
Several properties make these organisms unique in terms of 

human health, including their low cost, high reliability, and 
good safety profile [16]. Nevertheless, the precise mechanisms 
by which probiotics are involved in improving various dis-
eases, especially T2DM, are yet to be thoroughly investigated. 
Emerging data demonstrated that probiotics possess beneficial 
effects for relieving T2DM in the animal model and clinical 
experiments, including reduction of blood glucose levels, 
improvement of IR, modulation of the intestinal microbiota 
[17], amelioration of diabetes-related symptoms, and most 
importantly, regulation of pathways involved in the pathogen-
esis of T2DM, like nuclear factor kappa B (NF-κB), phosphati-
dylinositol 3-kinase (PI3K)/protein kinase B (Akt), and nuclear 
factor (erythroid-derived 2)-like 2 (Nrf2) pathways [18].

NF-κB plays a crucial role in the early pathobiology of 
T2DM, as several cytokines, chemokines, and inflammatory 
molecules are activated when hyperglycemia is present in 
the body. There are certain DNA-binding proteins that are 
members of the NF-κB family that cause pro-inflammatory 
cytokines to be produced. Hence, several studies have pro-
posed that NF-κB can be a candidate target for T2DM treat-
ment [19]. Another important pathway involved in the patho-
genesis of T2DM is the PI3K/AKT signaling pathway which 
mediates growth factor signals that are pivotal to organismal 
growth and various cellular events, such as glucose metabo-
lism, lipid metabolism, and protein synthesis; thus, manipula-
tion of the PI3K/AKT pathway and its downstream mediators 
is a favorable target for the management of T2DM [20]. In 
addition, Nrf2, with its negative regulator, Kelch-like ECH-
associated protein 1 (Keap1), regulates genes in response to 
oxidative stress via the antioxidant response element (ARE). 
Multiple enzymes catalyze antioxidant reactions which 
include glutathione peroxidase (GPx), superoxide dismutase 
(SOD), catalase (CAT), heme oxygenase-1 (HO-1), NADPH-
quinone oxidoreductase-1 (NQO-1), and glutamate cysteine 
ligase (GCL); these enzymes are found to be the downstream 
targets of Nrf2 [21]. By increasing phase II detoxification 
potential via modulating the Nrf2 pathway, the antioxidant 
defenses of the cells are enhanced, providing a novel thera-
peutic strategy for protection against insults like inflamma-
tion and oxidative stress, both as main mediators of T2DM 
[22]. Taken together, we will focus on the clinical applica-
tions of probiotics in managing of T2DM. Then, we will also 
discuss the roles of the involvement of various probiotics 
in regulating of the most important signaling pathways that 
contributed to the pathogenesis of T2DM.

Historical Background of Microbiota

According to its etymology, the word “probiotic” is derived 
from the Greek term “probios,” which means “for life.” The 
history of probiotics started over a century ago when Henry 
Tessler (1899) discovered Bifidobacterium in the intestines of 
breastfed infants and discovered that it could prevent diarrheal 
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episodes in these infants [23]. The hypothesis that microor-
ganisms can be used for health purposes by replacing gut flora 
with beneficial ones was first introduced by Elie Metchnikoff 
(1907) [24]. Shirota reported in the early 1930s that intes-
tinal bacteria can survive in the gut passage and therefore 
developed the fermented milk containing Lactobacillus casei 
strain shirota, still widely referred to today as Yakult [25]. The 
term “probiotic” was first used by Lilly and Stillwell (1965) 
to describe a substance that stimulates the growth of other 
microorganisms [26]. In addition to supporting evidence, a 
new definition of probiotics was proposed by Parker (1974) 
as a group of microorganisms and substances that maintain 
intestinal microbial homeostasis [27]. In the following decade, 
many scientists have widened the definition of probiotics to 
include their host’s health benefits. Following this, both the 
Food and Agriculture Organization of the United Nations/
World Health Organization (FAO/WHO) described probiot-
ics as “living microorganisms that confer a beneficial effect 
on their host when administered in adequate quantities” [28]. 
These recommendations and guidelines have been widely 
embraced and have proved helpful to researchers. Over the 
past few decades, studies in the field of probiotics have grown 
exponentially, and research has focused on understanding the 
role of a variety of probiotics in dealing with chronic diseases.

An Overview of Probiotics: Focus 
on Therapeutic Applications in T2DM

It has been shown that probiotics can maintain glucose 
homeostasis in multiple ways. For instance, altering the 
intestinal microbiota leads to the suppression of inflamma-
tory processes [29]. As a result of altered gut microbiota, 
gut hormones are also released in disorganized manners. In 
maintaining glucose homeostasis, gut hormones are impor-
tant as they control the growth and survival of β-cells. Pro-
biotics can enhance the antioxidant system in the β-cells, 
which will consequently improve glucose homeostasis by 
decreasing IR as well as strengthening the antioxidant sys-
tem [30]. Numerous animal studies have found that supple-
menting gliclazide drugs with probiotics results in increased 
bioavailability of the drugs, which leads to blood glucose 
homeostasis [31]. In addition, maintaining insulin sensitivity 
may also be another effect of probiotics in maintaining glu-
cose homeostasis [32]. In addition, gut microbiota can alter 
glucose metabolism by converting polysaccharides, indigest-
ible to human enzymes, into glucose readily absorbed in the 
gastrointestinal system [33].

Animal Study in Probiotics and T2DM

Numerous animal studies have also confirmed the associa-
tion between gut microbiota and T2DM [34, 35]. The bio-
logical effects of probiotics in diabetic animals have been 

extensively investigated, including the effects of Bifidobacte-
rium and Lactobacillus on glucose tolerance and IR [36, 37]. 
In an experiment done on mice model of T2DM induced by 
high-fat diets (HFDs) and streptozotocin (STZ), Lactobacil-
lus plantarum CCFM0236 was given, and it was found that 
this supplement ameliorated IR, pancreatic beta-cell dysfunc-
tion, and systemic inflammation [38]. The supplementing 
of Lactobacillus plantarum Ln4 to mice fed HFD resulted 
in weight loss and alleviation of IR; this was measured by 
improving the insulin tolerance test (ITT), oral glucose toler-
ance test (OGTT), and IR measure (HOMA-IR) indices [39]. 
In HFD- and STZ-induced diabetic mice, Bifidobacterium 
longum DD98 and Bifidobacterium longum DD98 enriched 
with selenium reduced fasting blood glucose (FBG) levels 
and hemoglobin A1c (HbA1c) levels and improved glucose 
tolerance [40]. In another study, a composite probiotic con-
taining Lactobacillus strains and saccharomycetes was found 
to alleviate the signs and symptoms of T2D in db/db mice by 
improving FBG, OGTT, and HbA1c levels while increasing 
glucagon-like peptide-1 (GLP-1) secretion [41]. It has been 
shown that nano selenium-enriched Bifidobacterium longum 
inhibits the progression of STZ-induced diabetes and ame-
liorates the renal function damage caused by high glucose 
levels [42]. The treatment of HFD-induced diabetic mice 
with Lactobacillus fermentum MTCC 5689 improved IR and 
prevented the development of diabetes [43]. Lactobacillus 
paracasei TD062 was found to improve glucose homeostasis 
and activate insulin signaling pathways, preventing the devel-
opment of T2DM [44]. The effectiveness of multiple probi-
otic formulae, which include Bacillus subtilis, Lactobacillus 
crispatus, and Lactobacillus reuteri, has been investigated 
in STZ-induced diabetic rats, revealing the consumption 
of a probiotics formula daily may alleviate glucose intoler-
ance and impaired insulin secretion [45]. HFD-induced mice 
treated with Liposilactobacillus fermentum MG4295 showed 
improvement in insulin, glucose, and GLP-1 levels [46]. In 
T2DM induced by HFD, Pediococcus acidilactici pA1c 
was protected from body weight gain and IR and improved 
intestinal histology [47]. A study reported that Lactobacillus 
plantarum SHY130 reduced hyperglycemia in HFD-/STZ-
induced diabetic mice via the regulation of the enteroinsular 
axis [48]. It is interesting to note that several bacterial taxa 
were associated with diabetic patients and animal models, 
including Akkermansia muciniphila [49], Lactobacillus [50], 
and Bacteroides [51]. As a result, it is very relevant to investi-
gate the molecular mechanisms through which these bacterial 
taxa participate in the development of diabetes since their 
function does not seem to be well known [52].

Human Study in Probiotics and T2DM

In the following, we reviewed studies on intestinal micro-
biota’s effects on glycemic control in humans with T2DM. 
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Probiotics may have varying strain-specific effects on gly-
cemic control, as revealed by two meta-analyses [53, 54]. 
Several published studies indicated that genes from Bifi-
dobacterium, Akkermannsia, Bacteroides, Roseburia, and 
Faecalibacterium negatively correlate with T2DM. In con-
trast, genes from Fusobacterium, Blautia, and Ruminococcus 
have been observed to be positively correlated with T2DM 
[14, 54]. Although Lactobacillus is still the most frequently 
identified and reported genus, there has not been a consistent 
correlation between Lactobacillus and its effects on T2DM 
[55]. Bifidobacterium has not been used alone as probiotics 
for T2DM. However, nearly all animal studies investigat-
ing several species of Bifidobacterium indicated ameliora-
tion of glucose tolerance [56, 57]. Therefore, research on 
animals supports the notion that Bifidobacterium probiot-
ics have a preventive effect on T2DM [57, 58]. It has been 
revealed that Bacteroides have negative correlations with 
T2DM, whereas few studies that included some medica-
tions indicated positive associations [59, 60]. This apparent 
dispute can be explained by metformin’s previously known 
antibiotic effect and/or putative feedback mechanisms on 
gut microbiota brought on by improved human physiology 
[61]. Roseburia, Faecalibacterium, and Akkermansia were 
illustrated to be negatively associated with T2D in human 
studies. About half of T2D microbiome studies reported a 
decrease in at least one of these five phylogenetically distant 
species in patients, suggesting that they may have a role 
other than as a biomarker. The bulk of these microorgan-
isms have been studied as probiotics for animal metabolic 
disorders, but less frequently in humans, which is crucial 
to highlight [62–65]. Ruminococcus, Fusobacterium, and 
Blautia have been positively associated with T2DM in fewer 
investigations. Studies that looked at these bacteria’s spe-
cies levels found contradicting information. For instance, 
although one study revealed that Ruminococcus sp. SR1/5 
was enriched by the use of metformin [66], another study 
discovered that Ruminococcus bromii and Ruminococcus 
torques reduced following bariatric surgery and the remis-
sion of diabetes [67]. The inconsistent results of these stud-
ies could be caused largely by the various sorts of therapies.

Here are details on recent probiotic clinical trials con-
ducted on T2DM in Supplementary Table 1. There is no 
agreement on the exact mechanism by which probiotics 
achieve their advantages. However, many of their favorable 
effects can be explained by hypothesized processes. Vari-
ous mechanisms contribute to probiotics’ effect on T2DM, 
including modulating inflammation, lipid metabolism, gut 
permeability, and interacting with dietary components [68, 
69]. It is believed that short-chain fatty acids (SCFAs) are 
the major anions in the colon, which are produced largely by 
the probiotic bacteria in the colon from indigestible polysac-
charides. By increasing GLP-1 levels and improving intesti-
nal barrier function, SCFAs improve intestinal health [70]. 

Insulin production from the β-cells is stimulated by GLP-1, 
while glucagon production is inhibited by GLP-1. GLP-1 is 
a gut incretin hormone that contributes to glucose homeo-
stasis [71]. By producing vitamins and hormones, probiotics 
improve gut physiology and promote epithelial cell growth 
[72, 73]. Probiotic supplementation has been found to reduce 
glucose levels in diabetics, improve oxidative stress mark-
ers, lipid profiles, blood pressure, and body mass index, and 
reduce other metabolic abnormalities associated with T2DM 
[74]. Additionally, some studies have shown that probiot-
ics have positive effects on mental health. Studies have not 
reported any hepatotoxic or nephrotoxic effects compared to 
other synthetic drugs [75, 76].

Extracellular Vesicles from Microbiota

Extracellular vesicles (EVs) derived from microbiota carry a 
wide variety of compounds that can affect various pathways 
and affect the host. In biology, EVs refer to structures con-
taining lipid bilayers that range in size from 30 to 400 nm and 
include diverse groups of proteins, lipids, and deoxyribonu-
cleic acid (DNA) [77]. It has been shown that EVs derived 
from gut microbiota and probiotic bacteria can encapsulate 
an extensive range of bioactive molecules which can travel 
long and short distances to modulate specific biological func-
tions affecting the host [78]. In Gram-negative and Gram-
positive bacteria, EVs are typically outer membrane vesi-
cles (OMVs) or membrane vesicles (MVs), respectively. It is 
highly likely that OMVs and MVs play roles as both bacte-
rial survival factors and as hosts about bacterial interactions, 
including intra- and inter-kingdom communications without 
direct contact between cells [79]. Some recent studies have 
reported that some EVs may possess therapeutic potential in 
treating T2DM. The mechanism of action of the EV treat-
ment consists of (a) increased insulin receptor substrate 1 
(IRS-1) phosphorylation and (b) enhanced glucose trans-
porter 4 (GLUT4) translocation in muscle, and (c) increased 
glycogen storage in the liver to sustain glucose homeostasis 
[80]. Based on a study by Chelakkot et al. EVs of Akker-
mansia muciniphila are directly associated with improving 
gut barrier integrity and metabolic profile in mice induced 
with HFD. By treating mice with Akkermansia muciniphila 
EVs orally, the permeability of the gut barrier was decreased, 
body weight gain was reduced, and glucose tolerance was 
improved [81]. However, Choi et al. have demonstrated that 
gut microbiota-derived EVs potentially play a role in the pro-
gression of diet-induced metabolic disorders in the case of 
dysbiosis of the gut microbiota. According to the authors, 
they observed that stool EVs isolated from HFD-fed mice 
lead to a blunting of glucose metabolism in both skeletal 
muscle and adipose tissue as a consequence of promoting 
IR. It was shown that Pseudomonas panacis Lipopolysac-
charides (LPS)-containing EVs were significantly higher in 
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HFD-fed mice. These EVs also contributed to the negative 
effects of HFD on glucose metabolism [82]. The limited data 
available makes it difficult to evaluate the potential of EVs in 
the treatment of T2DM and its complications, which needs 
further investigation.

Most Important Signaling Pathways 
Involved in the Pathogenesis of T2DM

According to generally accepted beliefs, the IR condition in 
T2DM is generally attributed to defects at one or several lev-
els of the insulin-signaling pathway in the liver, the adipose 
tissue, and the skeletal muscles. Therefore, investigating the 
biochemical events involved in the intracellular action of 
insulin has quickly been followed up by studies seeking to 
determine which molecular defects are responsible for the 
onset of the state of IR. Among the most important signaling 
pathways, we review NF-κB, PI3K/Akt, and Nrf2, which are 
the crucial pathways responsible for IR and T2DM.

The Critical Role of NF‑κB in the Pathogenesis of T2DM

Through its regulation of many genes involved in cellular 
functions, NF-κB plays a critical role in a various functions 
related to human health. These functions include the devel-
opment and maintenance of both the innate and adaptive 
immune systems, as well as several other functions [83]. It 
is now widely accepted that the role of NF-κB in the devel-
opment and progression of diabetes and its complications 
is pivotal [84]. There is evidence that NF-κB has both pro-
inflammatory and anti-inflammatory effects. However, it 
seems to be more pro-apoptotic in β-cells. When cells are 
healthy β-cells, NF-κB is suppressed, but when they are 
stressed or inflamed, translocation of NF-κB to the nucleus 
occurs upon activation [85]. NF-κB regulates various 
genes that participate in the β-cells dysfunction and death. 
NF-κB and its target genes have been well documented in 
their ability to contribute to the development of T2DM and 
IR [86]. Studies based on selective transgenic expression 
and a liver IKKβ (IκB kinase β) knockout provide suffi-
cient evidence to support the critical role of NF-κB in IR 
[87, 88]. In experimental models of diabetes, it has been 
reported that HFD and obesity-induced IR are mimicked 
by the overexpression of IKKβ, leading to the activation of 
NF-κB in mice [89]. One of the most well-known inducers 
of NF-κB is tumor necrosis factor-α (TNF-α), a cytokine that 
promotes inflammation and induces IR by phosphorylating 
IRS1 [90]. TNF family members activate NF-κB leading 
to rapid gene transcription linked to cell proliferation, dif-
ferentiation, and inflammation [91]. As well as various evi-
dence for high levels of TNF-α in obese human and animal 
adipose tissues, it has been discovered that neutralization 
of TNF-α can reverse IR, an indication that NF-κB may 

contribute to IR [92, 93]. According to a study by Rom-
zova, the NF-κB polymorphism has been implicated in the 
pathogenesis of T2DM. This is based on the finding that 
the AA genotype of IκBα gene shows an increase in people 
with T2DM [94]. It was shown that two common variants 
of NF-κB1 (− 94 insertion/deletion (indel) polymorphism 
in the promoter, and rs7667496, intronic) were independ-
ent risk factors for developing T2DM in Caucasian elderly 
subjects [84]. Even though most studies have demonstrated 
that NF-κB causes apoptosis in pancreatic β-cells, other 
reports have shown that NF-κB possesses both protective 
and destructive properties, which depend on the pathophysi-
ological condition and the type of tissue involved [95]. When 
the NF-κB gene is blocked or knocked out, the genes asso-
ciated with insulin secretion are reduced, and the pancre-
atic endocrine cells decrease [96]. Moreover, another study 
found that A20 is an anti-apoptotic gene NF-κB dependent 
that prevents the occurrence of apoptosis in β-cells induced 
by TNF-α [97]. By affecting the expression of glucose trans-
porter 2 (GLUT2), NF-κB plays a role in insulin secretion 
[98]. Numerous studies have indicated that inhibition of 
GLUT2 transcription factor in pancreatic β-cells, liver, and 
kidney can affect IR and the development of T2DM [99, 
100]. Although NF-κB plays an imperative role in regulating 
insulin levels, the mechanism by which it contributes to the 
pathogenesis of T2DM in humans is not well understood at 
present (Fig. 1).

The Critical Role of PI3K/Akt in the Pathogenesis 
of T2DM

PI3K/Akt signaling plays a crucial role in the regulation of 
cellular functions during growth and development by medi-
ating growth factor signals to different parts of the organism 
and regulating critical cellular processes, including glucose 
homeostasis, protein synthesis, proliferation, and survival of 
cells and lipid metabolism [101]. Activated Akt contributes 
to insulin metabolic function in at least three specific ways: 
(a) GLUTs’ translocation is responsible for the transporta-
tion of certain molecules, particularly GLUT4, the main 
transporter in the lipocyte and the skeletal muscles. (b) It 
is known that glycogen synthase kinase 3 (GSK3) inhib-
its glycogen synthase (GS) activity by phosphorylation, a 
central step in hepatic glucose metabolism [102]. Its two 
isomers, GSK3α and GSK3β, also contain Akt phospho-
rylation sites, making GSK3 an important substrate of Akt/
PKB. An increase in the expression of GSK3β was found in 
mice with IR and obesity, which shows that GSK3 and Akt/
PKB work reciprocally [103]. (c) The lipid-induced IR is 
accompanied by a decrease in the peroxisome proliferator-
activated receptor coactivator (PGC-1α) pathway in indi-
viduals with (pre)diabetes [104]. As a result, any undesir-
able interference in any part of this pathway may have a 
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detrimental effect on insulin transduction and, consequently, 
could negatively affect glucose uptake. During this condi-
tion, IR may be characterized as a problem with the trans-
duction of the insulin signal [105]. Insulin and insulin-like 
growth factor 1 are believed to exert their metabolic and 
mitogenic actions through the PI3K/AKT/mTOR pathway 

[106]. Insulin-induced glucose and lipid metabolism could 
be improved by activating the PI3K/AKT/mTOR pathway. 
Glucose uptake, glycogen synthesis, glucose transporter 
type 4 translocation, and insulin-induced mitogenesis are all 
part of this process [107, 108]. DM and hyperglycemia may 
result from either PI3K/AKT/mTOR pathway node blockage 

Fig. 1   NF-κB signaling pathways, canonical and non-canonical. IL-1R, 
TLRs, and TNFRs trigger the canonical pathway. In the non-canonical 
pathway, the activation of the NF-B2 (p100)/RelB complex is depend-
ent on the activation of RANK, CD40, and BAFFR. By targeting the 

expression of certain genes, such as cytokines, chemokines, and other 
molecules, the activation of NF-SB signaling regulates various cellular 
processes
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in pancreatic β-cells and peripheral tissues [109]. A serine/
threonine kinase downstream of AKT known as PKB has 
been identified as a key mediator of insulin action [107]. In 
T2DM skeletal muscle, IR is related to both upstream and 
downstream defects of Akt/PKB with reduced activity of 
the PI3 kinase pathway and dephosphorylation of the Akt/
PKB substrate AS160 in the studies [110]. Moreover, mice 
with the Akt2/PKBβ isoform knocked down or depleted suf-
fer from IR and diabetic-like symptoms, with rodents with 
the Akt2/PKBβ isoform knocked out exhibiting hepatic IR 
as well [111]. Besides IR, decreased insulin secretion and 
diminished β-cell mass are crucial factors contributing to 
the development of T2DM. Studies involving autopsies have 
revealed a 50–65% reduction in β-cell mass in individuals 
with impaired fasting glucose. This indicates that the reduc-
tion of β-cell mass in T2DM subjects occurs early [112]. 
PI3K/AKT pathway is involved in the β-cell function and 
insulin secretion in pancreatic cells, which insulin regulates. 
Previously, there was no thought insulin affected pancreatic 
cell synthesis, differentiation, and secretion. There has been 
consistent evidence that insulin plays an important role in 
pancreatic cells, mainly through the PI3K/AKT signaling 
pathway [113]. Insulin secretion from pancreatic β-cells is 
promoted by activation of the PI3K/AKT pathway [114]. 
AKT activation constitutive and overexpression in pancre-
atic β-cells leads to an increase in the number of cells, their 
growth rate, and their size, mediated by signal transduction 
intermediates downstream of AKT, such as FoxO1, GSK3, 
and mTOR1. These experimental results provide further evi-
dence for AKT’s role in pancreatic cells [115]. On the other 
hand, overexpressing a kinase-dead mutant in β-cells had an 
80% reduction in AKT activity, resulting in no insulin secre-
tion. As a result of IR, the number of β-cells is increased, 
causing additional insulin to be released to maintain a nor-
mal glucose tolerance, leading to hyperinsulinemia [116]. 
T2DM results from impaired glucose tolerance due to β-cell 
dysfunction in IR (Fig. 2).

The Critical Role of Nrf2/Keap1 in the Pathogenesis 
of T2DM

NRF2 gene encodes for a transcription factor that mod-
ulates a population of several antioxidant responses 
involved in the control of inflammation, environmental 
stress, metabolic enzymes, injury, and detoxification 
enzymes by producing a variety of free radicals. Kelch-
like ECH protein 1, also known as Keap1, is located in the 
cytoplasm and prevents the translocation of Nrf2 into the 
nucleus [117]. A major challenge of T2DM can be found 
in the associated macrovascular and microvascular issues 
resulting from its resistance to insulin. According to stud-
ies by Uruno et al. using both genetic knockdown of Keap1 
and pharmacological induction of Nrf2 in murine models, 

the activation of Nrf2 could improve insulin sensitivity in 
diabetes, as well as obesity and diabetes, which are abro-
gated in mice [118]. Additionally, increasing Nrf2 sign-
aling may reduce IR, a phenomenon that could also pre-
vent oxidative stress from occurring in the hypothalamus, 
which could affect the regulation of the body’s metabolism 
more generally [119]. In Chinese populations, Nrf2 mol-
ecule distribution was linked closely with complications 
of T2DM, including nephropathy, neuropathy, and retin-
opathy [120]. The absence of Nrf2-induced antioxidants 
and cytoprotection contributes to IR, which is thought to 
be aggravated in Nrf2KO mice. Liu et al. showed that Nrf2 
deficiency-induced hepatic IR in mice fed HFD by activat-
ing NF-κB. Furthermore, malondialdehyde is increased in 
Nrf2KO mice, which indicates oxidative stress, and glu-
tathione levels are decreased [121]. In the development of 
T2DM, as well as its complications, in some studies, the 
Keap1-NRF2 pathway has been found to play an important 
protective role. Multiple aspects and mechanisms appear 
to protect pancreatic β-cells via the Keap1-Nrf2 pathway 
[122, 123]. Further studies have shown that genetically 
modified upregulation of Nrf2 via the Keap1 knockout 
preserves β-cell mass and function in diabetic mice [118]. 
It appears that the Nrf2/Keap1 system protects pancreatic 
β-cells by scavenging free radicals and reducing inflam-
mation via the NF-κB pathway [124]. Furthermore, the 
Nrf2/Keap1 pathway is also controversial about its role in 
insulin secretion. The pancreatic islets of Nrf2 knockout 
mice have decreased insulin content and secretion, and 
Nrf2 upregulation seems to improve the insulin-releasing 
ability of β-cells [125, 126]. At the same time, the Nrf2 
knockout mouse models have also shown decreased fat and 
body weight, reduced blood glucose, and increased insulin 
signaling [127–130]. MIN6 β-cells and the islets of mice 
with stable knockdown of Nrf2 and mice with conditional 
knockouts of Nrf2 in β-cells significantly decreased anti-
oxidant enzymes in response to diverse stimuli [131, 132]. 
Nrf2 regulates autophagy in pancreatic β-cells in response 
to reactive oxygen species (ROS) stimulation, and pancre-
atic β-cells are suppressed from the inflammatory response 
[133]. In addition, there is also evidence that the Keap1-
Nrf2 pathway exhibits beneficial effects. Among the many 
functions of Nrf2, one of the most important is to speed 
up wound healing by inhibiting oxidative DNA damage, 
matrix metalloproteinase 9 (MMP9), and transforming 
growth factor-β1 (TGF-β1) [134]. In diabetic mice, Nrf2 
has been shown to possess altered macrophage pheno-
types and promote autophagy, in addition to promoting the 
protective effects of atheroprotection on oxidative stress 
[135]. By reducing oxidative stress, apoptosis, inflam-
mation, and fibrosis in kidney cells and improving their 
proliferation, the Keap1-Nrf2 pathway showed significant 
benefits against diabetic kidney disease [136] (Fig. 3).
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Crosstalk Between Signaling Pathways 
and Probiotics in T2DM

Three signaling pathways (NF-κB, PI3K/Akt, and Nrf2) 
are the crucial pathways that contribute to the pathogen-
esis of T2DM. Evidence from multiple investigations 
reveals that several probiotics can improve T2DM via 
modulation or regulation of these three pathways. Target-
ing different components of these pathways may intensify 
their effects directly or indirectly. Supplementary Table 2 
represents the interplay between different probiotics with 
NF-κB, PI3K/Akt, and Nrf2 signaling pathways involved 
in T2DM pathogenesis.

NF‑κB and Probiotics

It has been reported that NF-κB activation may activate 
either pro-inflammatory or anti-inflammatory cascades 
[137], but in β-cells, this activity appears to be mostly 
pro-apoptotic [138]. On the other hand, NF-κB activity 
is inhibited in healthy β-cells; however, it becomes active 
in response to inflammation and oxidative stress. Emerg-
ing data proposes that probiotic strains play a vital role 
in modulating the immune and redox system by affecting 
the NF-κB pathway in the T2DM host [139]. Additionally, 
experimental in vivo models have demonstrated the effec-
tiveness of probiotics in impotent T2DM. It was reported 

Fig. 2   An illustration of the PI3K/AKT signaling pathway. Receptor 
tyrosine kinase (RTK) recruits phosphatidylinositol 3 kinase (PI3K) fol-
lowing activation and phosphorylation and phosphorylates phosphati-
dylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-tri-

sphosphate (PIP3) which activates AKT (protein kinase B) by recruiting 
pyruvate dehydrogenase kinase 1 (PDK1) to the PH domain of AKT 
thereby activating the entire pathway and regulating different mechanisms



837Probiotics and Antimicrobial Proteins (2024) 16:829–844	

1 3

that oral administration of Lactobacillus paracasei HII01 led 
to reduce the expression levels of NF-κB in the T2DM mice 
induced by HFD and STZ [140]. Moreover, SCFAs have 
also been reported to be produced by probiotics in the large 
intestine, indicating the probiotics’ effect. In addition to 
their ability to inhibit histone deacetylase, SCFAs affect 
various genes that are either directly or indirectly involved 
in glucose metabolism and T2DM pathogenesis [141]. In 
line with this concept, SCFA generated by probiotics sup-
presses NF-κB activity by repressing cullin-1 neddylation, 
a vital step in the ubiquitination system [142]. Recently, 

Liu and colleagues found that treatment with Lactobacil-
lus Plantarum Y15 improved the lipid profiles, decreased 
pro-inflammatory cytokines (IL-6, IL-8, and TNF-a), and 
increased IL-4, as an anti-inflammatory cytokine. In addi-
tion, this probiotic reshaped the structure of gut microbiota 
and reduced the abundance of LPS-producing and elevated 
SCFA-producing bacteria, which consequently declined the 
levels of LPS and pro-inflammatory cytokines. Besides, L. 
Plantarum Y15 led to upregulation of IκBα, whereas the 
mRNA expression of TLR4, IKKβ, and NF-κB was sig-
nificantly downregulated, and it was concluded that L. 

Fig. 3   The signaling pathway involving Nrf2-Keap1-ARE is shown 
in a schematic diagram. Kelch-like ECH-associated protein1 (Keap1) 
ubiquitinates nuclear erythroid-2 like factor-2 (Nrf2) constantly and 
degrades it in the proteasome under normal circumstances. In the 

presence of oxidative stress (ROS), Keap1 inactivates, and Nrf2 phos-
phorylates. Heme oxygenase-1 (HO-1) and NAD(P)H quinone dehy-
drogenase 1 (NQO1) are activated by phosphorylated Nrf2 (p-Nrf2), 
which accumulates in the nucleus and binds to ARE sites



838	 Probiotics and Antimicrobial Proteins (2024) 16:829–844

1 3

plantarum Y15 was involved in the amelioration T2DM by 
regulating NF-κB pathway [143]. A study has suggested that 
transplanting SCFA (butyrate)-producing probiotic Faecali-
bacterium prausnitzii can alleviate symptoms of T2DM via 
NF-κB signaling [144]. Ample evidence has indicated that 
various pathogens activate NF-κB through their interaction 
with toll-like receptors (TLRs), especially TLR4. Mechanis-
tically, signal transduction processes triggered by activated 
TLR4 include phosphorylation of IKKαβ and IκBα, which 
lead to the activation of NF-κB and subsequent nuclear 
translocation [145]. Taken together, accumulating lines of 
evidence reveal that probiotics exert their positive effect by 
producing SCFAs and modulating TLR4/NF-κB pathway in 
T2DM. Probiotics are recommended as add-on therapies for 
T2DM, due to the strong preclinical evidence, alongside the 
clinical evidence, that they improve the condition without 
compromising their tolerability. To achieve optimum results, 
further research must determine the exact strain, therapeutic 
dose, and study duration.

PI3K/AKT and Probiotics

In T2DM, insulin regulates several pathways associated 
with lipid and glucose metabolism; of these, PI3K/AKT 
pathway has been considered the vital pathway of insulin. 
This key signaling pathway is needed for the body’s nor-
mal metabolism due to its functions and the impairment 
caused to the development of T2DM. Emerging evidence 
has demonstrated that targeting PI3K/AKT signaling and 
its downstream mediators can be a good candidate for treat-
ing T2DM [146]. Regarding probiotics’ unique features and 
functions, compelling evidence indicates that these micro-
organisms could reverse the dysfunction in the PI3K/AKT 
pathway in T2DM. For instance, the potential therapeutic 
effects of Lactobacillus plantarum HAC01 on hyperglyce-
mia and T2DM and their potential mechanisms using mice 
with HFD- and STZ-induced diabetes were investigated. 
The results showed that L. plantarum HAC01 remarkably 
reduced blood glucose levels and HbA1c and improved glu-
cose tolerance and HOMA-IR. Meanwhile, this probiotic 
elevated the phosphorylation of AMPK and Akt [147]. It 
has been revealed that administration of L. casei CCFM419 
regulated blood glucose balance and protected islets in the 
T2DM mice, accompanied by improved lipid metabolism. 
The homeostasis model of IR, insulin level and insulin tol-
erance test, and mRNA expression of PI3K/Akt signaling 
pathway indexes demonstrated that L. casei CCFM419 posi-
tively affected IR [148]. In T2DM diabetic mice, Lactobacil-
lus paracasei TD062 improves IR and glucose homeostasis 
by lowering GSK-3β and enhancing IRS-2, PI3K, and Akt, 
thereby preventing T2DM [44]. Moreover, Zhang et al. 
revealed that two strains of Lactobacillus paracasei 1F-20 
and Lactobacillus fermentum F40-4 enhanced the glucose 

uptake of oleic acid-treated HepG2 cells and elevated the 
phosphorylation of AKT and the expression of PI3K protein 
[149]. Similarly, the administration of Lactiplantibacillus 
plantarum MG4296 (MG4296) and Lacticaseibacillus para-
casei MG5012 (MG5012) to palmitic acid-induced HepG2 
cells and HFD-induced mice led to the downregulation of 
p-IRS-1 and upregulation of p-PI3k and p-Akt, thereby, pre-
venting HFD-induced glucose tolerance and hyperglycemia 
by reversing the IR [150]. As a result of hyperglycemia, the 
PI3K/AKT pathway is impaired, resulting in apoptosis or 
cell death, accompanied by cytochrome C release from mito-
chondria and caspase-3 activity being augmented [151]. It 
was reported that by reducing caspase-3 levels, Clostridium 
butyricum had been shown to lessen apoptosis in diabetic 
type 2 cerebral ischemia/reperfusion injury via activation 
of the PI3K/Akt signaling pathway [152]. Ample evidence 
has shown that supplementation with Bifidobacterium spe-
cies could improve IR and treat T2DM [153]. Oral admin-
istration of Bifidobacterium animalis 01 attenuated T2DM 
symptoms by modulation of IRS-2/PI3K/AKT. So, upon 
induction of diabetes, the expression of IRS-2, PI3K, and 
Akt was decreased, whereas their expression was remark-
ably elevated following treatment with Bifidobacterium 
animalis 01 [154]. Another study assessed the anti-diabetic 
effects of isolated 14 probiotics from fermented camel milk. 
The authors found that protein expression of p-PI3K/t-p-
PI3K and p-AKT/t-AKT in the T2DM mice group was 
lower than in non-diabetic mice. At the same time, these 14 
probiotics increased protein levels of p-PI3K/t-p-PI3K and 
p-AKT/t-AKT, thus improving β-cell function [155]. LE and 
co-workers indicated that oral administration of Bifidobac-
terium spp. increased IR-β, IRS-1, and Akt protein levels 
in diabetic mice, thus improving glucose uptake and symp-
toms of T2DM [156]. According to recent in vivo results, 
probiotics protect the pancreas from β-cell apoptosis via 
activation of the PI3K/Akt/mTOR pathway [157]. Huang 
et al. conducted an in vitro study, which indicated a nega-
tive correlation between the Akt/mTOR pathway and sur-
face components of probiotics during diabetes onset. They 
proposed that by upregulating Akt-2, AMPK, and GLUT-4 
expression, EPS of Lactobacillus plantarum H31 exerts anti-
diabetic properties and has a key role in glucose metabolism 
affecting the pancreatic α-amylase activity [158]. Overall, 
the PI3K/Akt signaling pathway is one of the most vital 
signal transduction pathways with multiple physiological 
functions. The aberrant activation and/or dysregulation in 
the main mediators of the PI3K/Akt signaling are detect-
able in various disorders, especially T2DM. Recently, the 
modulatory function of probiotics on the PI3K/Akt path-
way and their promising effects on managing T2DM have 
been considered. We summarized several in vitro and in 
vivo studies that used various probiotic strains to summa-
rize their mechanisms of action on the PI3K/Akt network. 



839Probiotics and Antimicrobial Proteins (2024) 16:829–844	

1 3

Despite the efforts of numerous researchers, practically, all 
of the investigations have been carried out in vitro or using 
animal models. As a result, definitive proof of their positive 
effects on human disease is still absent, and more research 
on human subjects and clinical samples is required. Such 
studies, particularly those concentrating on probiotic strains 
with documented effects on components of the PI3K/Akt 
pathway, would be likely to provide more conclusive out-
comes and support further exploration for new therapeutic 
candidates for the treatment of various highly prevalent dis-
orders. Such investigations, particularly those focusing on 
probiotic strains with established effects on components of 
the PI3K/Akt pathway, are likely to yield more definitive 
results, paving the way for further research into potential 
therapeutic candidates for T2DM.

Nrf2/Keap1 and Probiotics

The onset of T2DM is associated with cellular distress, 
and Nrf2 plays a critical role in enhancing cytoprotective 
responses. In recent years, probiotic bacteria have been 
shown to protect against oxidative stress by regulating the 
Nrf2/Keap1 signaling pathway in vivo and in vitro studies. 
Hence, by activating Nrf2, probiotics can involve in the ame-
lioration of T2DM. In this road map, Zhang et al. explored 
the effect of oral administration of B. animalis 01 on T2DM 
and the associated metabolic syndrome using a T2DM rat 
model. Their findings elucidated that, as compared to nor-
mal rats, the T2DM rats expressed a significantly higher 
level of Keap1, whereas it was remarkably reduced after 
administration of B.animalis 01. Additionally, after B. ani-
malis 01 administration, Nrf2 expression was significantly 
higher in diabetic rats than non-diabetic. Therefore, they 
concluded that B. animalis 01 is implicated in lowering 
hepatic oxidative stress via activating the Keap1/Nrf2 path-
way, thereby attenuating T2DM-related symptoms [154]. It 
has been revealed that treatment of hyperlipidemic and nor-
mal mice with Lactobacillus plantarum CAI6 and Lactoba-
cillus plantarum SC4 increased the levels of Nrf2 in the liver 
and kidneys [159]. In accordance with this study, Gao and 
colleagues observed that Lactobacillus Plantarum FC225 
increased the radical scavenging activities of superoxide 
anion radicals. Meanwhile, this probiotic substantially ele-
vated the expression and translocation of Nrf2 in the hepato-
cytes of mice and prevented the inhibition of antioxidant 
enzymes by HFD [160]. Moreover, the probiotic Bacillus 
amyloliquefaciens SC06 reduced ROS levels and enhanced 
Nrf2 expression in intestinal porcine epithelial cell 1–1) -1 
cells undergoing oxidative stress induced by H2O2 [161]. 
Furthermore, Maherian et al. assessed whether the combi-
nation of 4 weeks of aerobic exercise training with probi-
otic supplementation affects expression levels of Nrf-2 and 

caspase-3 in T2DM rats. They reported that aerobic exercise 
training in combination with probiotic treatment had a low-
ering effect on the expression of caspase-3, and an increas-
ing impact on the levels of the Nrf-2 gene, ameliorating the 
antioxidant defense and protecting risk factors of diabetic 
cardiomyocytes [18]. Putting these data together, although 
there are a few studies focused on the effect of different 
probiotics on the Nrf2/Keap1 signaling pathway in T2DM, 
further in vitro, in vivo, and clinical trial investigations are 
required to understand the mechanism exactly.

Conclusion Remarks

The dynamic interactions between diet and gut microbiota 
play a key role in the pathogenesis of T2DM. Several clinical 
trials and animal studies have demonstrated that probiotics 
can be helpful in the management of T2DM. Improvement 
in glucose metabolism and IR may be achieved by modify-
ing gut microbiota with probiotic strains, especially Lacto-
bacillus and Bifidobacterium. According to the review, the 
positive effects of probiotics on diabetes can be attributed 
to their ability to influence signal pathways such as NF-κB, 
PI3K/Akt, and Nrf2, which might contribute to their ben-
efits in the treatment and management of T2DM. It will take 
more research to determine the actual effects of probiotic 
intervention for T2DM, as the results of this study have been 
controversial. Interventions with broad strains of probiotics 
are more acceptable in clinics, but it must be determined 
first what strain to use and whether it should be in either 
single or multiple forms. To pave the way for the use of 
probiotics in T2DM, we have to conduct multicenter clini-
cal studies in a standard manner to establish a standardized 
framework. To establish clinical validity, these studies must 
be based on the use of a certain strain of probiotics or a cer-
tain combination of probiotics that have already been shown 
to be effective in animal studies and can therefore be used 
in human studies as well. It is important to note that even 
though experimental and clinical studies have uncovered the 
significant potential of these probiotic strains to help man-
age diabetes, further investigations are still needed to clarify 
the molecular mechanisms that are involved in being able to 
develop more effective strategies to manage T2DM and its 
complications.
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