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Abstract
Mastitis is the most economically important disease affecting the dairy industry worldwide. Lactobacillus plantarum, an 
important probiotic with a wide range of applications, has potential anti-inflammatory properties and has become a currently 
strong candidate for mastitis therapies. In the current study, we evaluated the prevention effect of Lactobacillus plantarum 
17–5 on Escherichia coli-induced mastitis in mice. The results showed that pretreatment with L. plantarum 17–5 maintained 
the integrity of tight junctions; improved inflammatory injury; decreased MPO activity and the mRNA expression levels of 
IL1β, IL6, and TNFα; and inhibited the NF-κB and MAPK signaling pathways in mice mammary tissue. The results indicated 
that Lactobacillus plantarum 17–5 had excellent anti-inflammatory activities and could be developed into microecological 
preparation for clinical use to prevent mastitis.
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Introduction

Dairy cow mastitis is an inflammatory disease worldwide 
and causes severe economic losses in the dairy industry due 
to decreased milk production, higher veterinary care costs, 
and increased culling of dairy cows [1, 2]. Escherichia coli 
is one of the main pathogens in dairy cow mastitis and is 
widely present in bovine feces, humid soil, and composts 
[3]. Recent studies revealed that E. coli often causes acute 
inflammatory responses and might contribute to extensive 
mammary tissue damage [4]. There are currently no medi-
cations or other prophylactic methods effective against this 
disease, and common treatments are antibiotic treatment [5]. 
However, misuse of antibiotics inevitably leads to multi-
antibiotic resistance and antibiotic residue, which causes 

threats to human and animal health globally [6]. Therefore, 
there is an urgent need to find effective and safe alternative 
antimicrobial agents for conventional antibiotics.

Lactobacillus plantarum is one of the most widely used 
probiotics with great beneficial effects on human and ani-
mal health [7]. Existing studies have shown that L. plan-
tarum can produce lactic acid and various metabolites 
during colonization, which can effectively abrogate patho-
genic bacteria growth and modulate immune functions [8]. 
In addition, some metabolites of L. plantarum may have 
anti-inflammatory properties in addition to their antimi-
crobial effects; this feature provides its therapeutic poten-
tial for various inflammatory diseases [9]. Fernsndez et al. 
found that oral administration of L. salivarius PS2 posi-
tively affected the prevention of infectious mastitis in late 
pregnancy [10]. Frola et al. have stated that intramammary 
infusion of L. plantarum CRL 1716 was an effective way 
of treating dairy cow mastitis [11]. Previous studies per-
formed by our research team showed that L. plantarum 17–5 
could attenuate E. coli-induced inflammatory responses in 
bovine mammary epithelial cells [12]. However, the effect 
of intramammary infusion of L. plantarum 17–5 on mice 
mastitis and its mechanism of action remains unclear. Here, 
our study establishes the murine model of mastitis using E. 
coli. The aim is to determine whether L. plantarum 17–5 has 
prevention effects on mastitis in vivo and provide a basis for 
developing and utilizing microecological agents.
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Materials and Methods

Bacteria and the Culture Conditions

The Lactobacillus plantarum 17–5 strain (ATCC 8014, 
provided by American Type Culture Collection, Manas-
sas, VA, USA) was cultivated statically in de Man, Rogosa, 
and Sharpe (MRS) broth (Aobox, Beijing, China) at 37 ℃ 
under microaerobic conditions. Escherichia coli O111:K58 
(CVCC1450, provided by China Constitute of Veterinary 
Drug Centre, Beijing, China) was grown overnight in Luria 
Broth (LB) medium (Aobox, Beijing, China) at 37 ℃ with 
shaking. The number of colony-forming units (CFUs) was 
counted after three generations.

Animals and Experiment Design

SPF-grade male and female Kunming mice (8 weeks old) 
were purchased from Liaoning Changsheng Biotechnology 
Corporation (Benxi, China). Females and males were placed 
in the same microisolator cage at a ratio of 2:1 until the 
females were pregnant, and water and food were provided 
ad libitum. Animal assays were approved by the Animal Eth-
ics Committee of Hebei Agricultural University (protocol 
number 2020044). The mouse mastitis model was estab-
lished by referring to previous studies [13, 14]. Briefly, 
after ether anesthesia, the tip of the L4 and R4 abdomi-
nal mammary glands was carefully snipped, and bacteria 
or PBS was injected into the mammary ducts 7 days after 
delivery. The lactating mice were randomly divided into six 
groups (n = 8): the control group (PBS), the E. coli group 
(107 CFU/100 µL), L. plantarum (105, 106, and 107 CFU/100 
µL) + E. coli and the L. plantarum group (107 CFU/100 µL). 
The L. plantarum or PBS was injected into each side of the 
nipple for 3 h prior to adding E. coli and then injected with 
E. coli using the same method. At 24 h after the last injec-
tion, mice were sacrificed, and the mammary gland tissues 
were collected and stored at − 80 ℃ until further analysis.

Histopathological Evaluation

The mammary tissues of the mice were observed for general 
condition and scored using a clinical scoring system ranging 
from 1 to 5, with higher scores indicating greater tissue dam-
age. Specifically, 1 represents no damage, 2 represents slight 
redness, 3 represents slight redness and minor bleeding, 4 
represents moderate redness and bleeding, and 5 represents 
severe redness and bleeding. Subsequently, tissue samples 
were fixed in 4% paraformaldehyde solution, dehydrated 
with gradient ethanol, and then embedded in paraffin.

The paraffin-embedded tissue sections were cut into 5 µm 
thickness, stained with hematoxylin and eosin (HE), and examined 

under an optical microscope. The same histological score (1 to 5) 
previously described was used for evaluating the degrees of tissue 
damage (necrosis and neutrophil and macrophage infiltration). 
The higher the score, the more serious the injury.

Immunofluorescence Staining

Paraffin sections were dewaxed with water, antigen repaired 
with sodium citrate, and blocked with 5% BSA (Solarbio, Bei-
jing, China). Then, slides were incubated with primary anti-
body against claudin-3 (1:500; Bioss, Beijing, China) over-
night at 4 ℃, then in FITC-labeled secondary antibody (1:200; 
Solarbio, Beijing, China) for 1 h at room temperature. After 
counterstaining with DAPI (Solarbio, Beijing, China), the 
fluorescence was observed under a fluorescence microscope.

MPO Activity Determination

The mammary tissues were homogenized, and the homoge-
nates were centrifuged at 2500 rpm for 10 min at 4 ℃ to 
obtain supernatants. The activity of MPO in mammary 
tissue homogenates was assayed using MPO Detection 
Kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China) according to the manufacturer’s protocol.

qRT–PCR Analysis

Total RNA was extracted from mammary tissue using the 
Ultrapure RNA extraction kit (CWBio, Beijing, China). The 
concentration and purity of RNA samples were measured 
by NanoDrop-2000 (Thermo Scientific, DE, USA), and the 
integrity was detected by agarose gel electrophoresis. Then, 
RNA was reversely transcribed into cDNA using a reverse 
transcription kit (US Everbright Inc, CA, USA), and quantita-
tive real-time PCR was performed according to the following 
procedures: 300 s at 95 ℃ followed by 45 cycles of 5 s at  
95 ℃, 30 s at 57 ℃ and 15 s at 72 ℃. The efficiency of 
the amplification was evaluated by establishing the standard 

Table 1   The primer sequences used for qRT-PCR

Gene Primer sequence (5′-3′)

IL1β TGA​AAT​GCC​ACC​TTT​TGA​CAG​
CCA​CAG​CCA​CAA​TGA​GTG​ATAC​

IL6 TGC​CTT​CTT​GGG​ACT​GAT​
CTG​GCT​TTG​TCT​TTC​TTG​TT

TNFα GCC​TCC​CTC​TCA​TCA​GTT​CTA​
GGC​AGC​CTT​GTC​CCTTG​

GAPDH AGG​TCG​GTG​TGA​ACG​GAT​TTG​
GGG​GTC​GTT​GAT​GGC​AAC​A

β-actin TGC​TGT​CCC​TGT​A TGC​CTC​T
GGT​CTT​TAC​GGA​ TGT​CAA​CG
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curve. Gene relative expression levels were calculated using 
the 2−ΔΔCt method and normalized to the expression of 
GAPDH and β-actin. Primer sequences were listed in Table 1.

Western Blot Analysis

Total protein from mammary tissue was extracted using 
RIPA lysis buffer (Solarbio, Beijing, China), and its con-
centration was quantified by BCA protein assay kit (Solar-
bio, Beijing, China). A total of 30 µg of protein from each 
sample were separated by 10% SDS-PAGE gels, electro-
transferred onto nitrocellulose membranes (Beyotime, 
Shanghai, China) and then blocked with 5% skim milk. 
The membranes were incubated with primary antibod-
ies against claudin-3 (1:1000), occludin (1:1000), NF-κB 
p65 (1:1000), NF-κB phospho-p65 (1:1000), phospho-
IκBα (1:500), and β-actin (1:1000) from Bioss Biotech 
Limited Company (Beijing, China) and antibodies against 

p38 (1:1000), phospho-p38 (1:1000), ERK (1:1000), 
phospho-ERK (1:2000), JNK (1:1000), phospho-JNK 
(1:1000), and IκBα (1:1000) from Cell Signaling Technol-
ogy (MA, USA). After incubation with a secondary anti-
body (1:2000; Zhongshan Golden Bridge, Beijing, China), 
the NBT/BCIP color development kit (Solarbio, Beijing, 
China) was used to visualize the stainings, and ImageJ 
software (ImageJ Software Inc., MD, USA) was used for 
densitometric analyses of western blot bands.

Statistical Analysis

All data in this study was shown as means ± standard error 
of the mean (SEM). Comparisons between multiple inde-
pendent groups were performed by one-way ANOVA and 
Tukey’s or Dunnett’s T3 tests. P values < 0.05 were consid-
ered significantly different.

Fig. 1   Effect of L. plantarum 17–5 on the histopathological impair-
ment in the mice mammary tissue. A The control group. B The E. 
coli group. C–E 105, 106, and 107 CFU/100 µL L. plantarum + E. coli 
group. F The L. plantarum group. The injury score from each group 

ranged from 1 to 5 with higher scores indicating greater tissue dam-
age. Data shown as means ± SEM (n = 5) and different letters indicate 
significance at P < 0.05. The same as the following figures

Fig. 2   Effect of L. plantarum 17–5 on the histopathological changes in 
the mice mammary tissue (H&E 100 ×). A The control group. B The E. 
coli group. C–E 105, 106, and 107 CFU/100 µL L. plantarum + E. coli 

group. F The L. plantarum group. Scale bars: 100 µm. The histological 
score from each group ranged from 1 to 5 with higher scores indicating 
greater tissue damage. Data were the mean ± SEM (n = 5)
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Results

Effect of L. plantarum 17–5 on Histopathological 
Changes in Mice Mammary Tissue

No visible redness, swelling, or bleeding were seen in the 
mammary tissues in the control group, high dose of L. plan-
tarum pretreatment group, and the L. plantarum group, and 
the tissue injury scores were significantly lower (P < 0.05) 
in three doses of L. plantarum pretreatment groups com-
pared with the E. coli group (Fig. 1). Obvious inflammatory 
changes were observed in the mammary tissues of the E. coli 
group with infiltration of neutrophils and macrophages in 
the mammary acini, ducts, and connective tissue. However, 
these histopathological changes were ameliorated in the L. 
plantarum pretreatment group, with a significant reduction 
(P < 0.05) in histological scores among medium and high 
doses of L. plantarum pretreatment groups (Fig. 2).

Effect of L. plantarum 17–5 on the MPO Activity 
in the Mammary Glands

As shown in Fig. 3, the MPO activity in the E. coli group 
increased significantly (P < 0.05) compared with the control 
group. Pretreatment with different doses of L. plantarum 
17–5 significantly (P < 0.05) reduced these increases.

Effect of L. plantarum 17–5 on Tight Junction 
Proteins in the Mammary Glands

Immunofluorescence staining for the claudin-3 was per-
formed in mammary gland sections (Fig. 4A). In control 
and L. Plantarum groups, claudin-3 was localized to the 

cell membrane at cell–cell contacts and showed a complete 
and continuous structure. In the E. coli group, the claudin-3 
positive signals were intermittent and markedly weaker 
than the above groups showing that the tight junctions were 
disrupted. Pretreatment with L. plantarum alleviated the E. 
coli-induced damage in tight junction proteins.

To further evaluate the effect of L. plantarum 17–5 
on tight junction protein level, we examined the levels 
of claudin-3 and occludin by western blot (Fig. 4B). As 
expected, the protein levels of claudin-3 and occludin 
in the E. coli group were significantly (P < 0.05) lower 
than those in the control group. However, the reduction 
of claudin-3 and occludin levels was alleviated in the L. 
plantarum pretreatment group.

Effect of L. plantarum 17–5 on the mRNA Expression 
of Inflammatory Cytokines in the Mammary Glands

The results in Fig. 5 showed that the expression levels of 
IL1β, IL6, and TNFα in the E. coli group were signifi-
cantly (P < 0.05) enhanced. However, these E. coli-induced 
expression alterations were partially inhibited (P < 0.05) by 
pretreatment with L. plantarum 17–5.

Protein Expression of the NF‑κB and MAPK Signaling 
Pathways in the Mammary Glands

The western blot analysis of NF-κB and MAPK signaling 
pathway protein expression is shown in Figs. 6 and 7. The 
results showed that compared with the control group, the 
phosphorylation levels of p65, IκBα, p38, ERK, and JNK 
increased significantly (P < 0.05) after E. coli stimulation. 
However, the L. Plantarum pretreatment group suppressed 
these increases to varying degrees.

Discussion

E. coli is the most common environmental pathogen caus-
ing dairy cow mastitis in dairy herds [3]. Coliform mas-
titis is often characterized by a severe local and systemic 
inflammatory response, which causes huge economic 

Fig. 3   MPO activity in mammary tissue from the control group, the 
E. coli group, and pretreatment with 105, 106, and 107 CFU/100 µL L. 
plantarum (LP) and 107 CFU/100 µL L. plantarum group. Data were 
expressed as means ± SEM (n = 5)

Fig. 4   Effects of L. plantarum 17–5 on the structure and protein 
expression in the tight junction proteins. A Representative images of 
the FITC albumin staining in each group. Green shows the claudin-3 
signal and blue shows the DAPI signal. (a) The control group. (b) The 
E. coli group. (c-e) 105, 106, and 107 CFU/100 µL L. plantarum + E. 
coli group. (f) The L. plantarum group. Scale bars: 100 µm. B Repre-
sentative western blots showed expression of claudin-3 and occludin 
in each group. Data were expressed as means ± SEM from three inde-
pendent experiments

◂
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losses for dairy farmers due to reduced milk production and 
premature culling [15]. Lactobacillus plantarum has been 
continuously studied as a potential novel anti-inflammatory  
agent. The current studies show that L. plantarum can 
produce organic acids and bacteriocins, inhibit the growth 
of different pathogens, and exert an anti-inflammatory 
effect during the proliferation process [16]. At present, 
the management of dairy cow mastitis is predominantly 
accomplished through intramammary infusion [17, 18]. 
Although some scholars have expressed concerns about 
the intramammary infusion of active probiotics [19], more 
and more studies have shown that intramammary injection 
of Lactococcus not induces inflammation but enhances the 
expression of immune proteins in the mammary glands of 
healthy cows [20, 21]. Thus, this study explores the preven-
tive effect of intramammary infusion of L. plantarum 17–5 
on mice mastitis and sets the L. plantarum group to verify 
the safety of this method.

Mastitis is characterized by the destruction of the aci-
nar structure and neutrophil infiltration in mammary tis-
sue, accompanied by the secretion of pro-inflammatory 
factors [22, 23]. We next performed the histological eval-
uation of mice mammary glands to evaluate the effect of 
L. plantarum 17–5 on histological changes in mice mam-
mary tissue. The results showed that the mammary gland 
tissue in the E. coli group had obvious redness, swelling 

and bleeding, and massive infiltration of inflammatory 
cells in the mammary tissue. However, these character-
istics were significantly attenuated in the L. plantarum 
pretreatment group. This indicated that L. plantarum 
17–5 might protect against inflammation and was con-
sistent with the report by Chen et al. that Lactobacillus 
plantarum can alleviate the inflammatory response of 
LPS-induced murine mastitis [7]. Notably, there were no 
obvious pathological changes in the mammary gland tis-
sue in the L. plantarum 17–5 group, indicating that Lacto-
bacillus plantarum 17–5 does not cause an inflammatory 
response in mice mammary tissue; this is coincident with 
previously reported results [20].

The blood–milk barrier is an important physical bar-
rier in organisms, which maintains normal lactation func-
tion and is an important barrier against pathogen invasion 
[24, 25]. The integrity of the blood–milk barrier primarily 
depends on mammary epithelial tight junctions (TJs) [26]. 
There are studies indicating that inflammation can disrupt 
the integrity of TJs and increase its permeability [27, 28]. 
To investigate the effect of Lactobacillus plantarum 17–5 
on TJs in mice mammary tissue, we focused on changes 
in the transmembrane protein family claudin-3 and occlu-
din closely related to TJs. Immunofluorescence staining 
showed that the claudin-3 signal in the E. coli group was 
significantly weakened, and the tight junction structure 

Fig. 5   The mRNA expression levels of IL1β (A), IL6 (B), and TNFα (C) in the mammary tissue from each group. Data were expressed as 
means ± SEM (n = 3)

Fig. 6   Effects of L. plantarum 17–5 on NF-κB signaling pathway in the mammary tissue. Data were expressed as means ± SEM from three inde-
pendent experiments
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was disrupted. In contrast, the claudin-3 signal in the L. 
plantarum 17–5 pretreatment group appeared stronger, and 
the tight junction structure was improved to some extent. 
Subsequently, we further detected the protein levels of 
claudin-3 and occludin in mice mammary tissue by west-
ern blot. As expected, claudin-3 and occludin levels were 
lower in the E. coli group and higher in the L. plantarum 
17–5 pretreatment group, this suggests that the loss of 
aforementioned proteins led to the decrease in claudin-3 
and occludin levels seen in the E. coli group. Similar find-
ings were yielded by Zheng et al. [29].

MPO plays an important role in the process of inflam-
matory cells resisting microbial infection and is an impor-
tant indicator for assessing neutrophil infiltration and dam-
age in tissues [30]. In the present study, MPO activity was 
significantly higher in the E. coli group, indicating that 
inflammatory cells clustered around the injection site; this 
also validates the histopathological changes in mammary 
gland sections. Pretreatment with L. plantarum 17–5 could 
decrease the elevation of MPO activity, further ameliorat-
ing the aggregation of inflammatory cells and inflamma-
tory injury in mice mammary tissue; this corresponds to 
previous reports [31]. Moreover, some pro-inflammatory 
cytokines such as IL1β, IL6, and TNFα are involved in the 
induction, amplification, and regulation of other inflamma-
tory factors and play an important role in the development 
of inflammation and pathological processes [32–34]. Previ-
ous studies have shown that L. plantarum can reduce the 
secretion of IL1β, IL6, and TNFα in the mammary tissue 
[7]. Our results also indicated that L. plantarum 17–5 could 
inhibit the expression of the above cytokines and alleviate 
the inflammatory process in E. coli-induced mastitis.

To further clarify the mechanism of L. plantarum anti-
inflammatory, we next detected the NF-κB and MAPK sign-
aling pathways. NF-κB is a transcription factor with various 
biological activities involved in cell differentiation, inflam-
mation, and immunomodulation [35, 36]. NF-κB normally 
exists in the cytoplasm in the inactive state; when stimulated 
by upstream signals, IκBα is rapidly degraded, and NF-κB is  

released into the nucleus to regulate downstream genes. Simul-
taneously, this effect is accompanied by increases in NF-κB  
and IκB phosphorylation [37]. In addition, the MAPK signal-
ing pathways, which include p38 MAPK, ERK1/2, and JNK, 
are regulated by diverse transduction cascades [38]. It regu-
lates inflammatory genes via phosphorylation of ERK, JNK, 
and p38 [39, 40]. In this study, we demonstrated that E. coli 
activated the NF-κB and MAPK signaling pathways in mice 
mammary tissue. However, pretreatment with L. plantarum 
17–5 inhibited the phosphorylation levels of key proteins 
in these pathways. We speculate that the anti-inflammatory 
effect of L. plantarum 17–5 may involve inhibiting the NF-κB 
and MAPK signaling pathways.

Conclusion

In summary, our study indicated that pretreatment with 
L. plantarum 17–5 could alleviate inflammatory damage 
to the mammary tissue, decrease the expression of pro-
inflammatory genes, and inhibit the activation of the NF-κB 
and MAPK signaling pathways in mice mammary tissue. 
Therefore, we believe that L. plantarum 17–5 has protective 
effects against E. coli-induced mastitis in mice and may be 
useful as a potential therapeutic agent for mastitis. Finally, a 
more comprehensive model evaluation should be conducted 
in vivo to advance their clinical applications further.
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