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Abstract
This study evaluated the effects of simulated gastrointestinal conditions (SGIC) on combined potentially probiotic Limosilac-
tobacillus fermentum 296 (~ 10 log CFU/mL), quercetin (QUE, 160 mg), and/or resveratrol (RES, 150 mg) as the bioactive 
components of novel nutraceuticals. Four different nutraceuticals were evaluated during exposure to SGIC and analyzed the 
plate counts and physiological status of L. fermentum 296, contents and bioaccessibility of QUE and RES, and antioxidant 
capacity. Nutraceuticals with QUE and RES had the highest plate counts (4.94 ± 0.32 log CFU/mL) and sizes of live cell 
subpopulations (28.40 ± 0.28%) of L. fermentum 296 after SGIC exposure. An index of injured cells (Gmean index, arbitrary 
unit defined as above 0.5) indicated that part of L. fermentum 296 cells could be entered the viable but nonculturable state 
when the nutraceuticals were exposed to gastric and intestinal conditions while maintaining vitality. The nutraceuticals 
maintained high contents (QUE ~ 29.17 ± 0.62 and RES ~ 23.05 mg/100 g) and bioaccessibility (QUE ~ 41.0 ± 0.09% and 
RES ~ 67.4 ± 0.17%) of QUE and RES, as well as high antioxidant capacity (ABTS assay ~ 88.18 ± 1.16% and DPPH assay 
75.54 ± 0.65%) during SGIC exposure, which could be linked to the protective effects on L. fermentum 296 cells. The devel-
oped nutraceuticals could cross along the gastrointestinal tract with high concentrations of functioning potentially probiotic 
cells and bioavailable phenolic compounds to exert their beneficial impacts on consumer health, being an innovative strategy 
for the co-ingestion of these bioactive components.
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Introduction

Probiotics are live microorganisms capable of conferring a 
health benefit on the host when consumed in adequate doses [1]. 
These benefits are beyond gastrointestinal health and include 
improvements in immune and neurological functions [2, 3]. 
Probiotics must survive the adverse conditions encountered 
in the human gastrointestinal tract to reach and colonize the 
intestine and exert the claimed effects on the host [4]. Gastric 
acidity, bile acids, and digestive enzymes are among the adverse 
conditions found in the gastrointestinal tract that can damage 
the integrity of probiotic cells [5]. The combined ingestion of 
phenolic compounds, such as quercetin (QUE) and resveratrol 
(RES), has been cited as a strategy to maintain the viability of 
probiotics through gastrointestinal tract passage [6].

QUE and RES belong to the flavanols and stilbenes fami-
lies, respectively, being found in various fruit and vegetables 
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[7]. These phenolic compounds are commonly used as die-
tary supplements primarily due to their strong antioxidant 
capacity and associated anti-inflammatory and anticancer 
properties, and protection from cardiovascular and neuro-
degenerative diseases [8–10]. Additionally, QUE and RES 
have been shown to protect probiotic lactobacilli when chal-
lenged with low pH and high concentrations of bile salts in 
the human gastrointestinal tract, besides improving some 
in vitro properties related to their probiotic functionality [6].

Nutraceuticals are natural products that provide beneficial 
health effects, including disease prevention and treatment 
[11]. An early study showed that nutraceuticals were suit-
able vehicles for the co-ingestion of the potentially probi-
otic Limosilactobacillus fermentum 296, QUE, and/or RES. 
These formulations maintained high viable cell counts of L. 
fermentum 296, high contents of QUE and RES, and anti-
oxidant capacity during long-term storage [12, 13], besides 
causing beneficial alterations in the composition and meta-
bolic activity of human intestinal microbiota during in vitro 
colonic fermentation [14]. However, investigations on the 
capability of these nutraceuticals to maintain their bioactive 
components up to reaching the final part of the gastrointesti-
nal tract and exert the expected functionality on the consum-
ers’ health are still lacking.

This study has hypothesized that these novel nutraceuti-
cals combining L. fermentum 296, QUE, and/or RES main-
tain high concentrations of their bioactive components and, 
consequently, the potential functionalities during exposure to 
human gastrointestinal tract conditions. To test this hypoth-
esis, the effects of conditions mimicking the human gastro-
intestinal tract on the viable cell counts and physiological 
status of L. fermentum 296, the contents and bioaccessibil-
ity of QUE and RES, and the antioxidant capacity of these 
nutraceuticals were evaluated.

Material and Methods

Potentially Probiotic Strain and Preparation 
of Nutraceuticals

Limosilactobacillus fermentum 296 was isolated from 
strawberry pulp processing by-product composed of 
mashed seed, peel, and pulp remnants and characterized 
as a potential probiotic strain [15, 16], as well as a can-
didate for the prevention of diet-induced hypercholester-
olemia and hypertriglyceridemia [17, 18]. L. fermentum 
296 stocks were kept at − 20 °C in de Mann, Rogosa, and 
Sharpe (MRS) broth (HiMedia, Mumbai, India) with 
glycerol (20% v/v; Sigma-Aldrich, St. Louis, MA, USA). 
Previous to the use, the strain was anaerobically culti-
vated (AnaeroGen, Oxoid Anaerogen Anaerobic System, 

Hampshire, UK) in MRS broth (37 °C, 20–24 h), harvested 
(4000 × g, 10 min, 4 °C), and washed two times with ster-
ile saline solution (NaCl 0.85 g/100 mL, 4000 × g, 10 min, 
4 °C), and resuspended in sterile distilled water to obtain 
a cell suspension with an optical density reading (625 nm) 
of 2.0 and viable cell counts of approximately 10 log CFU/
mL.

Freshly prepared suspensions of L. fermentum 296 
(1 mL) were mixed with commercial fructooligosaccha-
rides (FOS, 20% w/v; F8052, Sigma-Aldrich, St. Louis, MA, 
USA) [12, 14] as a cryoprotectant. The suspensions were 
frozen (− 80 °C, 24 h) and freeze-dried (vacuum pressure 
of < 138 μHG, freeze-drying rate of 1 mm/h, and tempera-
ture of − 55 °C ± 2 °C) for 40 h with a bench-top lyophilizer 
(Liotop, Model L-101, São Carlos, SP, Brazil) (LfF). Other 
three different nutraceuticals were prepared from LfF: (i) 
LfF + QUE (160 mg; Sigma-Aldrich) (LfFQ); ii) LfF + RES 
(150  mg; Sigma-Aldrich) (LfFR); and (iii) LfF + QUE 
(160 mg) + RES (150 mg) (LfFQR). The concentrations of 
QUE and RES used to prepare the nutraceuticals were cho-
sen considering their safety and efficacy in promoting health 
benefits [19, 20]. The nutraceuticals were stored (4 ± 0.5 °C) 
in sterile amber screw-capped vials and maintained in des-
iccators with silica gel for relative humidity control [12]. 
The different nutraceuticals were tested separately in the 
experiments.

Exposure of Nutraceuticals to Simulated 
Gastrointestinal Conditions

Immediately after freeze-drying, the nutraceuticals were 
rehydrated with 10 mL of sterile distilled water for 15 min 
(25 ± 0.5 °C) in glass flasks (50 mL) under aerobic condi-
tions. The simulations of gastrointestinal tract conditions 
were done in continuous steps mimicking the oral, gastric, 
and intestinal phases under aerobic conditions. The oral 
phase was simulated with α-amylase (100 U/mL) diluted 
in 1 mM CaCl2, pH 6.9 adjusted with 1 M NaHCO3, and 
exposure of 2 min with mechanical agitation (200 rpm, 
37 °C ± 1 °C). The gastric phase was simulated with pH 2.0 
adjusted with 1 M HCl. Gastric juice was simulated with a 
pepsin solution (25 mg/mL) prepared in 0.1 M HCl added 
in a proportion of 0.05 mL/mL of sample and incubated 
with mechanical agitation (130 rpm, 37 ± 1 °C, 90 min). The 
intestinal phase was simulated with pH 6.0 adjusted with 
1 M NaHCO3. Intestinal juice was simulated with pancrea-
tin (2 g/L) and bile salts (12 g/L) diluted in 1 M NaHCO3. 
The mixture was added at a rate of 0.25 mL/mL of sam-
ple and incubated under orbital stirring (37 ± 1 °C, 90 min, 
45 rpm) [16]. Enzymes and reagents were obtained from 
Sigma-Aldrich.



310	 Probiotics and Antimicrobial Proteins (2024) 16:308–319

1 3

Enumeration of Viable Cell Counts 
and Measurements of the Physiological Status of L. 
fermentum 296 Cells During Exposure to Simulated 
Gastrointestinal Conditions

After the exposure to each simulated gastrointestinal phase, 
an aliquot (100 μL) of the different nutraceuticals was serially 
diluted (1:9 v/v, 10−1–10−5) in sterile saline solution (NaCl 
8.5 g/L) and plated on MRS agar. After 48 h of anaerobic 
incubation (AnaeroGen) at 37 ± 1 °C, the visible colonies were 
enumerated, and the results were expressed as CFU/mL. The 
detection limit of the plate count test was 2 log CFU/mL.

In parallel, after exposure to each phase of the simulated 
gastrointestinal conditions, an aliquot (1 mL) of the nutra-
ceuticals was filtered (1.0 μm pore size filter), centrifuged 
(4500 × g, 10 min, 4 °C) and washed two times with PBS 
(4500 × g, 10 min, 4 °C), and incubated (15 min) under room 
temperature (25 ± 1 °C) in the dark for double-staining with 
propidium iodide (PI, Sigma-Aldrich, 10 μg/mL) to indicate 
membrane integrity and carboxyfluorescein diacetate (cFDA, 
Sigma-Aldrich, 2.5 μg/mL) to indicate cell enzymatic/meta-
bolic activity [21, 22]. After the staining, the cell suspensions 
were washed (4500 × g, 10 min, 4 °C) with an equal volume 
of PBS to remove excess dye [23].

For dual staining with PI and cFDA, the cell subpopulations 
characterized as PI-cFDA + (upper left quadrant) were consid-
ered non-permeabilized with enzymatic activity (live cells); 
PI + cFDA + (upper right quadrant) were considered permea-
bilized with enzymatic activity (damage cells); PI + cFDA- 
(lower right quadrant; LR) were considered permeabilized 
without enzymatic activity (dead cells); and PI-cFDA- (lower 
left quadrant) were considered artifacts or non-stained cells 
[24]. A flow cytometer with an argon ion laser emitting at 
488 nm (BD Accuri C6, Becton Dickinson, Franklin Lakes, 
NJ, USA) operating with previously described analytical con-
ditions was used to perform the analysis [23]. Data were ana-
lyzed with statistical tables indicating the numbers (log/mL), 
percentage of stained cells in each detector, and fluorescence 
intensity of each fluorescent signal. An index of injured cells, 
named GMean index, was calculated using the ratio of fluo-
rescence index means of FL3 (red fluorescence, PI) and FL1 
(green fluorescence, cFDA) [25]:

Determination of the Contents and Bioaccessibility 
of QUE and RES During Exposure to Simulated 
Gastrointestinal Conditions

QUE and RES were extracted in triplicate from the nutra-
ceuticals (1 mg) for 5 min with 2 mL of methanol and cen-
trifuged (2500 × g, 5 min, 10 °C). The supernatant was 

(1)GMean index = mean of FL3∕mean of FL1

collected and filtered with a 0.22 µm PVDF (Analítica, 
São Paulo, SP, Brazil). A liquid chromatography system 
(Shimadzu, Kyoto, Japan) with two parallel pumps LC-
20AD, automatic injector SIL-20AHT, system controller 
CBM-20A, degasser DGU-20A5, a diode-array detector 
(DAD) SPD-M20A, and a quadrupole mass spectrometer 
LCMS-2020 with electrospray ionization (ESI) was used to 
the analysis. An N2 generator (NM32LA, Peak Scientific, 
Glasgow, UK) was coupled to the LC–MS. Chromatographic 
separation of compounds was achieved using a Poroshell 
120 EC-C18 column (2.7 μm, 100 × 3.0 mm, Agilent Tech-
nologies, St. Clara, CA, USA) coupled to a Poroshell 120 
EC-C18 guard column (2.7 μm, 5 × 2.1 mm, Agilent Tech-
nologies) using previously described analytical conditions 
[26]. Identification of QUE and RES was done by compari-
son with retention time, absorption spectra, and pseudomo-
lecular ions of standards (Sigma-Aldrich). Quantification 
was done using DAD data for the peak area of each standard 
by external calibration at 360 nm for QUE and 306 nm for 
RES. Data were acquired by LabSolutions software (Shi-
madzu Corporation, version 5.82 SP1, 2008–2015).

Determination of the Antioxidant Capacity During 
Exposure to Simulated Gastrointestinal Conditions

The antioxidant capacity of the nutraceuticals after exposure 
to each phase of the simulated gastrointestinal conditions 
was evaluated with DPPH (2,2-diphenyl-1-picrylhydrazyl) 
and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic 
acid) assays.

DPPH solution in methanol (0.1 mL) was reacted with 
aliquots (0.05 mL) of the nutraceuticals and kept in the dark 
(30 min). DPPH scavenging activity was determined at a 
wavelength of 517 nm. Controls consisted of water instead 
of a sample. DPPH radical-scavenging activity (%) was cal-
culated with the equation [27]:

where ABScontrol is the absorbance of the DPPH radi-
cal + water and ABSsample is the absorbance of the DPPH 
radical + tested sample.

The ABTS radical cation (ABTS• +) was generated with 
the reaction of 5 mL of aqueous ABTS solution (7 mM) + 88 
μL of potassium persulfate solution (140 mM). The mixture 
was kept in the dark (14 h, 28 ± 15 °C) before use and diluted 
with ethanol to obtain an absorbance of 0.7 ± 0.02 units at 
734 nm. Aliquots (0.05 mL) of the samples were allowed to 
react with 0.1 mL of the resulting blue-green ABTS radi-
cal solution, kept in the dark (6 min), and the decrease of 
absorbance at 734 nm was measured. The percentage inhibi-
tion was calculated with the equation [28]:

(2)

DPPH radical scavenging activity (%) = [(ABScontrol − ABSsample)]

∕(ABScontrol)] × 100
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where ABScontrol is the absorbance of ABTS radi-
cal + water and ABSsample is the absorbance of ABTS 
radical + tested sample.

Statistical Analysis

The experiments were done in triplicate in three independ-
ent repetitions. Data were expressed as average ± standard 
deviation. The normal data distribution was evaluated with 
the Kolmogorov–Smirnov normality test. ANOVA followed 
by post hoc Tukey’s test was used to determine significant 
differences among the results. A p-value of < 0.05 was con-
sidered statistically significant. The results were submitted 
to a Pearson’s correlation to verify the relationship between 
the plate counts, counts of cells in different physiological 
states (live, injured, and dead), GMean index, and antioxi-
dant capacity (ABTS and DPPH assays). Statistical analysis 
was done with R software (Version 2.15.3, Ross Ihaka & 
Robert Gentleman, University of Auckland, Auckland, New 
Zealand).

(3)

ABTS radical scavenging activity (%) = [(ABScontrol − ABSsample)]

∕(ABScontrol)] × 100

Results

Plate Counts of L. fermentum 296 
in the Nutraceuticals During Exposure to Simulated 
Gastrointestinal Conditions 

The plate counts of L. fermentum 296 in LfF, LfFQ, LfFR, 
and LfFQR exposed to simulated gastrointestinal condi-
tions are shown in Fig. 1. Before exposure to simulated 
gastrointestinal conditions, i.e., immediately after freeze-
drying (time zero), the plate counts of L. fermentum 296 
in LfF, LfFQ, LfFR, and LfFQR were around 8 log CFU/
mL, without significant differences between the examined 
nutraceuticals (p > 0.05). The exposure to oral conditions 
did not affect (p ≤ 0.05) L. fermentum 296 plate counts, 
which ranged from 8.05 ± 0.05 to 8.16 ± 0.16 log CFU/mL. 
However, the plate counts of L. fermentum 296 decreased 
(p ≤ 0.05) in the examined nutraceuticals after exposure 
to gastric conditions (pH 2.0), with counts ranging from 
4.37 ± 0.27 to 6.48 ± 0.26 log CFU/mL. LfF had the low-
est plate counts (4.37 ± 0.27 log CFU/mL) after exposure 
to gastric conditions (p ≤ 0.05), while LfFQR (6.26 ± 0.24 
log CFU/mL) and LfFR (6.48 ± 0.26 log CFU/mL) had 
the highest plate counts (p ≤ 0.05). The plate counts of L. 

Fig. 1   Plate counts (Log CFU/
mL) of Limosilactobacillus fer-
mentum 296 in the nutraceuticals 
exposed to simulated gastroin-

testinal conditions. LfF (( )
), L. fermentum 296 + fructooli-

gosaccharides; LfFQ (( )), 
L. fermentum 296 + FOS + QUE; 

LfFR (( )), L. fermen-

tum 296 + FOS + RES; LfFQR 

(( )), L. fermentum 

296 + FOS + QUE + RES. FOS, 
200 mg; QUE, 160 mg; RES, 
150 mg. Results are expressed as 
average ± standard deviation (n 3)
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fermentum 296 did not change in LfF (3.97 ± 0.24 log CFU/
mL) and LfFQ (5.25 ± 0.25 log CFU/mL) after exposure to 
intestinal conditions, while decreased (p ≤ 0.05) in LfFR 
(2.27 ± 0.25 log CFU/mL) and LfFQR (4.94 ± 0.32 log CFU/
mL). As a result, LfFQ and LfFQR had the highest plate 
counts (p ≤ 0.05), while LfF and LfFR had the lowest plate 
counts (p ≤ 0.05) at the end of the simulated gastrointestinal 
conditions.

Physiological Status of L. fermentum 296 
in the Nutraceuticals During Exposure to Simulated 
Gastrointestinal Conditions

The measurements of the physiological status of L. fermen-
tum 296 cells in LfF, LfFQ, LfFR, and LfFQR exposed to 
simulated gastrointestinal conditions are shown in Fig. 2 
and Table 1. Before exposure to simulated gastrointestinal 
conditions, the examined nutraceuticals had sizes of PI-
cFDA + (live) cell subpopulations ranging from 18.21 ± 0.15 
to 72.21 ± 0.13%. After exposure to gastric conditions, the 
nutraceuticals had sizes of PI + cFDA + (injured) cell sub-
populations ranging from 42.53 ± 0.61 to 57.24 ± 0.09%, 
while the sizes of PI + cFDA‐ (dead) cell subpopulations 
ranged from 15.62 ± 0.3 to 48.18 ± 0.11%. LfFQR had the 
highest size of live cell subpopulation (21.24 ± 0.19%) and 
the lowest size of dead cell subpopulation (15.62 ± 0.30%) 
after exposure to gastric conditions. LfF had the high-
est size of dead cell subpopulation after exposure to gas-
tric conditions (48.18 ± 0.11%) and the lowest size of 

live cell subpopulation after exposure to intestinal condi-
tions (2.31 ± 0.43%). LfFQR had the highest size of live 
cell subpopulation after exposure to intestinal conditions 
(28.40 ± 0.28%). LfFQ and LfFR had 15.16 ± 0.08% and 
8.54 ± 0.37% of cells characterized as live, 41.24 ± 0.09% 
and 44.59 ± 0.41% of cells characterized as injured, and 
31.52 ± 0.59% and 37.47 ± 0.23% of cells characterized as 
dead after exposure to intestinal conditions, respectively.

The plate counts (log CFU/mL) of L. fermentum 296 were 
close to the sum (log/mL) of the cell subpopulations char-
acterized as viable and injured in all nutraceuticals before 
exposure to simulated gastrointestinal conditions and when 
exposed to oral conditions. Otherwise, the plate counts of L. 
fermentum 296 were lower than the sum of the cell subpopu-
lations characterized as viable and injured in LfF, LfFQ, and 
LfFQR after exposure to gastric and intestinal conditions, 
as well as in LfFR after exposure to intestinal conditions 
(Table 1).

The GMean index allowed to indicate the rising of 
the physiological status of viable but nonculturable cells 
(VBNC) in L. fermentum 296 in the nutraceuticals when 
exposed to simulated gastrointestinal conditions (Table 1). 
The GMean index for L. fermentum 296 remained low 
(0.07–0.38 arbitrary unit) in LfF, LfFQ, LfFR, and LfFQR 
before exposure to simulated gastrointestinal conditions 
and when exposed to oral conditions. However, the GMean 
index increased for L. fermentum 296 cells in LfF, LfFQ, 
and LfFQR after exposure to gastric and intestinal condi-
tions (0.61–1.25), and in LfFR after exposure to intestinal 

Fig. 2   Physiological status of 
Limosilactobacillus fermentum 
296 cells in the nutraceuticals 
exposed to simulated gastroin-
testinal conditions (B, before 
digestion; M, oral phase; G, 
gastric phase; I, intestinal 
phase). LfF, L. fermentum 
296 + fructooligosaccharide-
sarides (FOS); LfFQ, L. fermen-
tum 296 + FOS + QUE; LfFR, 
L. fermentum 296 + FOS + RES; 
LfFQR, L. fermentum 
296 + FOS + QUE + RES. FOS, 
200 mg; QUE, 160 mg; RES, 
150 mg. Results are expressed 
as average ± standard deviation 
(n 3)
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conditions (0.62). The comparison of the alterations in 
GMean index for L. fermentum 296 cells and the propor-
tion (subpopulation size) of viable cells in a cultivable state 
considering the double-stained strand (PI-cFDA +) indicated 
that part of the viable cells became nonculturable when the 
GMean index reached 0.5 (arbitrary unit), which increased 
up to 1.25 in LfF, LfFQ, and LfFQR after exposure to gastric 
and intestinal conditions, as well as in LfFR after exposure 
to intestinal conditions.

Contents and Bioaccessibility of QUE and RES 
in the Nutraceuticals During Exposure to Simulated 
Gastrointestinal Conditions

The contents of QUE and RES in LfFQ, LfFR, and 
LfFQR exposed to simulated gastrointestinal conditions 
are shown in Table 2. QUE and RES were detected after 
exposure to oral, gastric, and intestinal conditions. QUE 
and RES contents did not change (p > 0.05) in the nutra-
ceuticals after exposure to oral and gastric conditions. 
After exposure to these conditions, QUE contents ranged 
from 41.49 ± 3.20 to 42.95 ± 2.71 g/100 g in LfFQ; RES 

contents ranged from 41.93 ± 1.51 to 39.37 ± 3.75 g/100 g 
in LfFR, and QUE and RES contents ranged from 
20.62 ± 0.15 to 20.06 ± 0.89 g/100 g and from 27.79 ± 0.74 
to 27.54 ± 0.92  g/100  g in LfFQR, respectively. After 
exposure to intestinal conditions, QUE and RES con-
tents decreased in the nutraceuticals, which ranged from 
12.85 ± 0.86 to 29.17 ± 0.62 g/100 g and 19.83 ± 0.66 to 
23.05 ± 0.33 g/100 g, respectively. LfFQ and LfFR had the 
highest contents of QUE (29.17 ± 0.62 g/100 g) and RES 
(23.05 ± 0.33 g/100 g) after exposure to intestinal condi-
tions, respectively.

The nutraceuticals showed high bioaccessibility of 
QUE and RES after exposure to oral, gastric, and intesti-
nal conditions (Table 2). LfFQ had the highest bioacces-
sibility (96.6 ± 0.03%) of QUE and it was observed after 
exposure to gastric conditions, while LfFQR had the lowest 
bioaccessibility (63.9 ± 0.12%). Similarly, after exposure to 
intestinal conditions, LfFQ had higher QUE bioaccessibil-
ity (65.6 ± 0.01%) than LfFQR (41.0 ± 0.09%). LfFQR had 
higher bioaccessibility of RES than LfFR after exposure to 
gastric (93.6 ± 0.21 vs. 91.9 ± 0.07%, respectively) and intes-
tinal conditions (67.4 ± 0.17 vs. 53.8 ± 0.02%, respectively).

Table 1   Plate count, physiological status, and GMean index of Limosilactobacillus fermentum 296 in the nutraceuticals exposed to simulated 
gastrointestinal conditions (results expressed as average ± standard deviation, n 3)

LfF L. fermentum 296 + fructooligosaccharides (FOS), LfFQ L. fermentum 296 + FOS + QUE, LfFR L. fermentum 296 + FOS + RES; LfFQR, L. 
fermentum 296 + FOS + QUE + RES. FOS, 200 mg, QUE 160 mg, RES 150 mg
* Result obtained from enumeration of viable cell counts in agar
** GMean index of injured cells
*** Before exposure to simulated gastrointestinal conditions

Sample/phase Plate count (log/mL)* Physiological status
(size of cell subpopulations)

GMean index**

Live cell count
(log/mL)

Injured cell count 
(log/mL)

Live + injured cell 
count (log/mL)

LfF before*** 8.08 ± 0.08 4.43 ± 0.12 3.95 ± 0.24 8.38 0.33
LfF oral 8.06 ± 0.06 3.86 ± 0.17 4.63 ± 0.20 8.48 0.28
LfF gastric 4.37 ± 0.27 1.53 ± 0.10 2.67 ± 0.15 4.20 1.25
LfF intestinal 3.97 ± 0.24 1.31 ± 0.24 2.74 ± 0.12 4.05 1.18
LfFR before*** 8.07 ± 0.07 4.03 ± 0,09 4.53 ± 0.15 8.56 0.07
LfFR oral 8.13 ± 0.13 4.38 ± 0.07 4.01 ± 0.18 8.38 0.25
LfFR gastric 6.48 ± 0.26 2.72 ± 0.20 3.32 ± 0.09 6.04 0.20
LfFR intestinal 2.27 ± 0.25 2.72 ± 0.13 3.32 ± 0.18 6.04 0.62
LfFQ before*** 8.74 ± 0.16 4.45 ± 0.11 3.88 ± 0.28 8.33 0.28
LfFQ oral 8.05 ± 0.05 4.66 ± 0.09 4.06 ± 0.26 8.72 0.31
LfFQ gastric 5.29 ± 0.27 3.53 ± 0.10 4.07 ± 0.04 7.60 0.61
LfFQ intestinal 5.25 ± 0.25 3.53 ± 0.15 4.07 ± 0.24 7.60 1.20
LfFQR before*** 8.5 ± 0.10 4.20 ± 0.14 4.56 ± 0.23 8.76 0.29
LfFQR oral 8.16 ± 0.16 4.78 ± 0.10 4.16 ± 0.10 8.94 0.38
LfFQR gastric 6.26 ± 0.24 4.04 ± 0.09 4.47 ± 0.08 8.52 0.68
LfFQR intestinal 4.94 ± 0.32 4.04 ± 0,17 4.47 ± 0,12 8.52 0.51
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Antioxidant Capacity of the Nutraceuticals During 
Exposure to Simulated Gastrointestinal Conditions

The antioxidant capacity of LfF, LfFQ, LfFR, and LfFQR 
exposed to simulated gastrointestinal conditions was evaluated 
by ABTS and DPPH assays (Fig. 3). To remove the impact of 
the enzymes on the measured antioxidant capacity, a control 
experiment without enzymes was evaluated on each phase 
simulating the gastrointestinal conditions and the obtained 
values were reduced from those measured for the simulation 
with enzymes. LfF, LfFQ, LfFR, and LfFQR maintained their 
antioxidant capacity when exposed to simulated gastrointes-
tinal conditions in either ABTS or DPPH assay, although dif-
ferences between both assays were observed.

After exposure to gastric conditions, the lowest 
and highest antioxidant capacity evaluated by ABTS 
assay was observed in LfF (13.59 ± 0.58%) and LfFQR 
(79.26 ± 1.05%), respectively. In the ABTS assay, the anti-
oxidant capacity of all examined nutraceuticals increased 
(p < 0.05) after exposure to intestinal conditions compared 
to gastric conditions, where the highest and lowest anti-
oxidant capacity were found in LfFQR (88.18 ± 1.16%) 
and LfF (50.21 ± 1.12%), respectively. In the DPPH assay, 
the antioxidant capacity of the nutraceutical formulations 
increased and decreased after exposure to gastric and intes-
tinal conditions, respectively. LfFQR (75.54 ± 0.65%) and 
LfF (25.00 ± 0.70%) had the highest and lowest antioxidant 
capacity after exposure to gastric conditions, respectively 
(p < 0.05).

Pearson’s correlation results showed that L. fermentum 
296 plate counts correlated positively with the live cell 
counts measured by flow cytometry (p < 0.001; R = 0.76) and 
antioxidant capacity measured by DPPH assay (p < 0.001; 
R = 0.56), while L. fermentum 296 plate counts correlated 
negatively with GMean index (p < 0.001; R =  − 0.72) (Fig. 4).

Discussion

Viability is a key factor in probiotics to confer the claimed 
health benefits on the host [29]. Before exposure to simu-
lated gastrointestinal conditions, L. fermentum 296 had plate 
counts of around 8 log CFU/mL in LfF, LfFQ, LfFR, and 
LfFQR. There is no standard recommendation regarding the 
plate counts (viable bacterial cell concentration) of a probi-
otic to be consumed to reach a health benefit. However, it is 
generally accepted that a probiotic must have a concentration 
of at least 6 log CFU/g or mL of the delivery product [30]. 
During the exposure to simulated gastrointestinal conditions, 
the plate counts of L. fermentum 296 in LfF, LfFQ, LfFR, 
and LfFQR decreased, especially after exposure to gastric 
conditions. The acidic environment and presence of pepsin 
in the stomach may account for damage to the cell mem-
brane, DNA, and cell proteins, leading to bacterial viability 
loss [31–33]. The nutraceuticals with QUE and RES in their 
composition, i.e., LfFQ, LfFR, and LfFQR, had higher plate 
counts of L. fermentum 296 after exposure to gastric condi-
tions, indicating that QUE and RES exert protective effects 
on L. fermentum 296 cells when challenged with an acidic 
environment. The capacity of QUE and RES to increase pro-
biotic lactobacilli survival when exposed to pH 2 or 3 was 
previously reported, suggesting that polyphenols could act 
as buffers to protect probiotics against low pH values [7].

Although the plate counts of L. fermentum 296 continued 
to decrease when exposed to intestinal conditions, LfFQ, 
LfFR, and LfFQR had minor reductions compared to the 
nutraceutical without QUE and RES (LfF). Considering 
that the target of probiotics is the intestine, the capability 
of LfFQ, LfFR, and LfFQR in helping to keep the viability 
of L. fermentum 296 up to reaching the intestinal phase is 
an important result because the release of viable probiotics 
is necessary for gastrointestinal tract colonization [7, 34].

Table 2   Contents and bioaccessibility of quercetin and resveratrol in the nutraceuticals exposed to simulated gastrointestinal conditions (results 
expressed as average ± standard deviation, n 3)

Asterisks indicate significant differences from the oral phase. Hashtags indicate significant differences from the gastric phase, based on Tukey’s 
test (p < 0.05)
LfF L. fermentum 296 + fructooligosaccharides (FOS), LfFQ L. fermentum 296 + FOS + QUE, LfFR L. fermentum 296 + FOS + RES, LfFQR L. 
fermentum 296 + FOS + QUE + RES, FOS 200 mg, QUE 160 mg, RES 150 mg, Dwb dry weight basis
a Variation in relation to the content of phenolic compound quantified in the respective sample

Sample/compound Oral phase
(g/100 g dwb)

% Bioaccessibilitya Gastric phase
(g/100 g dwb)

% Bioaccessibilitya Intestinal phase
(g/100 g dwb)

% Bioaccessibilitya

LfFQ
  Quercetin 41.49 ± 3.20 93.3 ± 0.04 42.95 ± 2.71 96.6 ± 0.03 29.17 ± 0.62*# 65.6 ± 0.01

LfFR
  Resveratrol 41.93 ± 1.51 97.8 ± 0.01 39.37 ± 3.75 91.9 ± 0.07 23.05 ± 0.33*# 53.8 ± 0.02

LfFQR
  Quercetin 20.62 ± 0.15 65.7 ± 0.13 20.06 ± 0.89 63.9 ± 0.12 12.85 ± 0.86*# 41.0 ± 0.09
  Resveratrol 27.79 ± 0.74 94.5 ± 0.22 27.54 ± 0.92 93.6 ± 0.21 19.83 ± 0.66*# 67.4 ± 0.17
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The examined nutraceuticals had a small portion of 
injured L. fermentum 296 cells before exposure to simu-
lated gastrointestinal conditions, which may be due to the 
freeze-drying process used in their production. However, 
the more remarkable changes in the physiological status of 
L. fermentum 296 cells in the nutraceuticals occurred after 
exposure to gastric conditions. The increase in the subpop-
ulation of injured and dead cells after exposure to gastric 
conditions could be expected due to acid stress (pH around 
2.0) and presence of pepsin that can injure or even inactivate 
probiotic cells (Melchior et al. [32]). However, LfFQR had 
the lowest subpopulation of L. fermentum 296 dead cells, 
followed by LfFQ and LfFR. The subpopulations of injured 
and dead cells increased at the end of the simulated gastro-
intestinal conditions, although the nutraceuticals with QUE 
and/or RES had the lowest subpopulations of dead cells. 
The protective effects of QUE and RES on L. fermentum 
296 cells could be linked to their antioxidant capacity [35], 
which is reinforced by the positive correlation between the 
plate counts and antioxidant capacity (DPPH assay) in LfFQ, 
LfFR, and LfFQR during exposure to simulated gastrointes-
tinal conditions.

The cFDA and PI dual staining was a sensitive and effec-
tive method to assess the physiological status of L. fermen-
tum 296 cells in the nutraceuticals exposed to simulated 
gastrointestinal conditions. Some studies have shown the 
relationship between the bacterial cell viability (live cell 
phenotype) indicated by staining and plate culture capacity 
[34, 36]. In this study, when the values of the plate counts 
and the sum of the live and injured cells were close, the 
injured cells could be as cultivable as the viable cells. How-
ever, when the values of the plate counts were smaller than 
the sum of the viable and injured cells, it could indicate that 
part of the injured cells became nonculturable. VBNC cells 
could enter this state because exposure to digestive stress-
ing conditions can disturb physiological functions and cause 
sublethal cell damage [37].

Stressed probiotic bacteria that enter in VBNC state are 
metabolically active but do not grow in culture media, being 
undetectable by plate counting [25, 34]. These cells can 
be detected by combining plate counts and physiological 
function measurements with flow cytometry [38, 39]. This 
study showed that in the gastrointestinal conditions caus-
ing the greatest stress (gastric and intestinal phases), part 

of L. fermentum 296 cells could be entered the VBNC state, 
where an arbitrary GMean index unit was defined to clas-
sify it (above 0.5). The existence of VBNC cells in some 
probiotic lactobacilli is suggested as a common incidence 
[25, 40]. However, probiotic lactobacilli VBNC cells could 
recover from sublethal damage, restore broad functioning, 
and replicate in more favorable environments, such as when 
implanted in the gut [41]. The plate counts and live cell 
counts of L. fermentum 296 in the nutraceuticals exposed to 
simulated gastrointestinal conditions correlated positively, 
while the plate counts correlated negatively with GMean 
index, confirming that the higher the GMean index the lower 
the population of cells cultivable in agar.

The contents of QUE and RES in the nutraceutical did 
not change up to exposure to gastric conditions, while were 
lower when exposed to intestinal conditions compared to 
oral and gastric conditions. The contents of QUE and RES in 
phenolic-rich matrices can decrease when exposed to gastro-
intestinal conditions, being changes in pH as the main factor 
causing the irreversible breakdown of QUE and RES [35]. 
In addition, the hydrogen bonds of QUE and RES can be 
cleaved by hydrolytic enzymes, such as amylase, pepsin, and 
pancreatic enzymes. Most dietary polyphenols, including 
phenolic acid and flavonoids, are stable under acidic condi-
tions in the stomach [35] but are sensitive to mildly alkaline 
conditions in the small intestine [35, 42].

Bioaccessibility is the efficiency of digestion and absorp-
tion (or digestibility and absorptivity) of a given food con-
stituent and is usually expressed as a percentage of the actual 
amount released and absorbed concerning its total content 
[43]. LfFQ, LfFR, and LfFQR showed bioaccessibility of 
QUE and RES during exposure to simulated gastrointestinal 
conditions. The highest percentage of bioaccessibility was 
found after exposure to oral and gastric conditions, while it 
slightly decreased after exposure to intestinal conditions.

Oral conditions typically do not affect the bioaccessibil-
ity of phenolic compounds due to the short time of exposure 
to salivary amylase [44, 45]. The greater bioaccessibility of 
phenolic compounds after exposure to gastric conditions 
compared to intestinal conditions has been also linked to 
their greater stability in acidic pH. Phenolic compounds 
may change in neutral to alkaline pH found in the intes-
tine, which could explain their lower bioaccessibility after 
exposure to intestinal conditions [26, 46], agreeing with 
the results of QUE and RES contents and their bioacces-
sibility in LfFQ, LfFR, and LfFQR. The bioaccessibility 
of QUE was lower when combined with RES in LfFQR, 
which could be linked to the low solubility of QUE in the 
intestinal fluid. Additionally, the combination with RES 
could reduce the QUE solubility and restrict its release in 
the buffer solution [36, 47].

LfFQ, LfFR, and LfFQR maintained the antioxidant 
capacity during exposure to simulated gastrointestinal 

Fig. 3   Antioxidant capacity of the nutraceuticals exposed to simu-
lated gastrointestinal conditions (B, before digestion; M, oral phase; 
G, gastric phase; I, intestinal phase). LFf, L. fermentum 296 + FOS; 
LfFQ, L. fermentum 296 + FOS + QUE; LfFR, L. fermentum 
296 + FOS + RES; LfFQR, L. fermentum 296 + FOS + QUE + RES. 
FOS, 200  mg; QUE, 160  mg; RES, 150  mg. Results are expressed 
as average ± standard deviation (n 3). a–d: different lowercase letters 
denote differences among the different nutraceuticals at each gastroin-
testinal phase, based on Tukey’s test (p ≤ 0.05)

◂
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conditions when measured by ABTS and DPPH assays. 
However, the assays showed different patterns since in the 
DPPH assay, the nutraceuticals had a higher antioxidant 
capacity when exposed to gastric conditions, while in the 
ABTS assay, the nutraceuticals had a lower antioxidant 
capacity when exposed to gastric conditions. ABTS and 
DPPH assays have different mechanisms to measure antiox-
idant capacity. The transition from acidic to alkaline media 
typically increases the release of phenolic compounds and 
flavonoids, contributing to an increased antioxidant capac-
ity due to the deprotonation of the hydroxyl groups forming 
the aromatic rings [48–50]. Another influential factor in the 
antioxidant capacity of phenolic compounds is their inter-
action with other compounds released during the gastro-
intestinal passage, such as the sugars present in FOS used 
as a cryoprotectant to prepare the examined nutraceuticals, 
which can increase the antioxidant capacity in the intesti-
nal environment [51]. The maintenance of the antioxidant 
capacity of the nutraceuticals during the gastrointestinal 
passage is important since they can exert a local antioxi-
dant effect and regulate gastrointestinal inflammation due 
to their ability to protect the body against oxidative stress 
[52], besides reaching the colon with high contents of bio-
active components to exert the reported beneficial impacts 
on the intestinal microbiota [14]. Although the protocol 
used in this study has shown high accuracy and consistent 
results indicating the maintenance of the bioactive compo-
nents and potential functionalities of the examined nutra-
ceuticals through the gastrointestinal tract, one possible 
limitation of this study could be the characteristics of the 
material resulting from their exposure to each phase of 
the simulated gastrointestinal conditions that could differ-
ently compared to in vivo models because of the difficulties 
to simulate complex physicochemical and physiological 
events occurring in the human digestive tract. Thereby, 
further in vivo investigations could confirm the expected 
beneficial effects caused by the consumption of the exam-
ined nutraceuticals on parameters linked to intestinal health 
and systemic outcomes.

Conclusion

The results showed that the nutraceuticals with QUE and/
or RES exerted protective effects on L. fermentum 296 
during exposure to simulated gastrointestinal conditions, 
helping to keep high counts of viable and physiologically 
functioning potentially probiotic cells. When exposed to 
gastric and intestinal conditions, part of L. fermentum 296 
cells in the nutraceuticals could be entered the VBNC state 
but maintained their vitality, where an arbitrary GMean 
index (above 0.5) was defined to classify it. Furthermore, 
the nutraceuticals kept high contents and bioaccessibility 
of QUE and RES, as well as antioxidant capacity during 
exposure to simulated gastrointestinal conditions, which 
could be linked to the protective effects on L. fermentum 
296. This study showed for the first time that nutraceuti-
cals combining potentially probiotic L. fermentum 296, 
QUE, and/or RES could cross along the gastrointestinal 
tract with high concentrations of functioning cells, bio-
available phenolic compounds, and antioxidant capacity 
to exert the local and systemic beneficial impacts on the 
consumers’ health, being an innovative strategy for co-
ingestion of these bioactive components and formulation 
of novel added-value nutraceuticals.
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the nutraceuticals exposed to simulated gastrointestinal conditions. 
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