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Abstract
Blautia is a genus of anaerobic microbe extensively present in the intestine and feces of mammals. This study aims to inves-
tigate the influence of Blautia producta to prevent lipopolysaccharide (LPS)-induced acute liver injury (ALI) and elaborate 
on its hepatoprotective mechanisms. B. producta D4 and DSM2950 pretreatment decreased the activities of serum aspar-
tate transferase (AST), and alanine transaminase (ALT) in mice with LPS treatment significantly decreased the levels of 
inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) and increased the activities 
of antioxidative superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Compared with the 
model group, B. producta D4 and B. producta DSM2950 pretreatment slightly increased the levels of cecal propionic acid, 
isobutyric acid, butyric acid, valeric acid, and isovaleric acid (p > 0.05). Metagenomic analysis showed that B. producta D4 
and DSM2950 pretreatment remarkably increased the relative abundance of [Eubacterium] xylanophilum group, Lachnospira, 
Ruminiclostridium, Ruminiclostridium 9, Coprococcus 2, Odoribacter, Roseburia, Alistipes, and Desulfovibrio in ALI mice, 
and their abundance is negatively related to the levels of inflammatory TNF-α, IL-1β, and IL-6 as revealed by Spearman’s 
correlation analysis. Moreover, transcription and immunohistochemistry analysis revealed that B. producta D4 and B. pro-
ducta DSM2950 intervention remarkably suppressed the transcription and expression levels of hepatic Tlr4, MyD88, and 
caspase-3 (p < 0.05). These data indicated that B. producta may be a good candidate for probiotics in the prevention of ALI.
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Introduction

The human gastrointestinal tract is a complex microbial 
ecosystem that harbors an enormous diversity of commen-
sal microbes which contribute to regulating the gut barrier, 
performing resistance to pathogenic bacteria, and modulat-
ing the immune system [1]. It is accepted that probiotics 
improve the ecological balance of intestinal microbiota and 

regulate the host glucolipid metabolism by secreting anti-
bacterial substances and producing short-chain fatty acids 
(SCFAs). Blautia is a novel genus of anaerobic microorgan-
isms widely present in the intestine and feces of mammals 
[2]. In recent years, the antibacterial activity of Blautia and 
its potential ability to regulate host health and alleviate meta-
bolic syndrome have gradually attracted people’s attention, 
which was considered to possess the potential to become a 
probiotic [3]. Blautia glucerasei sp. nov. HFTH-1 T pro-
duces extracellular glucosylceramidase that promotes the 
conversion from glucosylceramide of the plant into cera-
mide, a functional substance with a specific preventive effect 
against colon cancer [4]. Blautia obeum A2-162, isolated 
from the human intestine, is reported to inhibit the growth 
of Clostridium because it possessed the antibiotic nisin O 
[5]. The correlation analysis from several reports has shown 
that the relative abundance of Blautia was negatively related 
to the inflammatory cytokines, the body mass index, vis-
ceral fat accumulation, and type 2 diabetes [6–8]. Previous 
studies also exhibited that the relative abundance of Blautia 
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was remarkably reduced in patients with liver cirrhosis [9]. 
However, little is known about the mitigative influences of 
Blautia on liver function injury and inflammation in vivo.

The liver takes a vital role in energy metabolism and bio-
transformation, but it is susceptible to being affected and 
stimulated by a variety of pathogenic factors, which could 
cause liver function damage and inflammation [10]. Accu-
mulating evidence indicates that acute liver injury (ALI) 
has an extremely poor prognosis and the mortality rate of 
ALI patients is up to 50% [11]. According to the previous 
investigation, ALI is the result of many cellular responses 
caused by infectious and non-infectious inflammation and 
is characterized by impaired liver function, coagulation 
disorders, and liver failure [12]. Although the molecular 
mechanisms of ALI include many aspects, the inflammatory 
response takes a vital role in accelerating the pathogenesis 
and development of ALI [13]. A previous study suggested 
that inflammation of ALI results from various pathogen-
related molecules from microbial organisms, for example, 
lipopolysaccharide (LPS) [14]. LPS is a major endotoxin 
produced by commensal Gram-negative bacteria in the intes-
tinal lumen, which has been widely used to establish the 
ALI model [15]. Numerous reports indicated that LPS treat-
ment can stimulate excessive count of neutrophils and pro-
mote inflammatory cytokines secretion, for example, tumor 
necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 [16]. 
Elevated inflammatory cytokine secretion is associated with 
the occurrence of ALI. Therefore, LPS-induced ALI models 
in mice have been widely applied to explore the potential 
mechanisms and promising therapeutic drugs for ALI.

Blautia producta D4 was previously isolated from the 
healthy mouse feces and Blautia producta DSM2950 was 
procured from the BeNa Culture Collection (Shanghai, 
China), respectively. So far, the efficacy of B. producta in 
preventing or treating some diseases has been unclear. There-
fore, the purpose of this research was to explore whether 
B. producta isolated from mouse feces can ameliorate the 
symptoms of ALI in vivo, and reveal its potential mechanism 
using high-throughput sequencing and RT-qPCR.

Materials and Methods

Materials and Strain Preparation

B. producta DSM2950 was procured from the BeNa Cul-
ture Collection (Shanghai, China). B. producta D4 was 
deposited in the Culture Collection of Food Microorgan-
isms (CCFM) in Jiangnan University (Wuxi, China). LPS 
were procured from Sigma-Aldrich (Saint Louis, USA, 
Lot No.: L2630). Test kits for the determination of TNF-
α, IL-1β, and IL-6 were obtained from R&D Systems 

(Minneapolis, MN). Commercial antioxidant assay kits for 
analysis of superoxide dismutase (SOD), catalase (CAT), 
and glutathione peroxidase (GSH-Px) and malondialde-
hyde (MDA) were procured from Nanjing Jiancheng Co., 
Ltd. (Nanjing, China).

B. producta D4 and B. producta DSM2950 were first acti-
vated in GAM broth and grown anaerobically at 37 °C for 
16 h. L. rhamnosus GG was first activated in MRS medium 
at 37 °C for 18 h. Afterwards, the bacteria were collected 
by centrifugation at 8000 g for 20 min after sub-culturing, 
then rinsed twice with sterile PBS (0.01 M, pH 7.4). The 
samples were resuspended in 13% (m/v) of skim milk and 
preserved at – 80 °C. The concentration of gavage bacteria 
was adjusted to 5 × 109 CFU/mL for B. producta D4 and B. 
producta DSM2950.

Experimental Design

Forty male C57BL/6 J mice (6 weeks old, 18 ± 2 g) were 
procured from Charles River (Beijing, China). All mice 
were admitted to adaptation for 1 week. All mice were 
stochastic assigned into 4 groups (n = 10) as follows: (1) 
Control group: intragastric administration of 0.2 mL of 
sterile skim milk (13%, w/v); (2) Model group: intragastric 
administration of 0.2 mL of sterile skim milk(13%, w/v); 
(3) D4 group: intragastric administration of 0.2 mL of B. 
producta D4 (5 × 109 CFU/mL); (4) DSM2950 group: intra-
gastric administration of 0.2 mL of B. producta DSM2950 
(5 × 109  CFU/mL). The intervention period lasted for 
2 weeks. At the end of the experiment, mice in the Control 
group were intraperitoneally injected with 0.2 mL of sterile 
normal saline. Others were intraperitoneally injected with 
the same volume of 0.2 mL of LPS (5 mg/kg). After 4 h of 
LPS injection, all mice were euthanized, and tissues were 
harvested to further analysis. The whole experiment was 
approved by the Ethics Committee of Jiangnan University 
(No20201115c0701240[309]).

Analysis of Serum Biochemical Parameters

Blood from all mice was collected and placed at 25 ℃ for 
90 min. Serums from each mouse were collected by cen-
trifugation at 6000 rpm/min for 10 min at 25 °C. The serum 
glucose (Glu), total cholesterol (TC), triglyceride (TG), ala-
nine transaminase (ALT), aspartate aminotransferase (AST), 
alkaline phosphatase (ALP), creatine kinase (CK), and lactic 
dehydrogenase (LDH) levels were analyzed by an automatic 
hematology analyzer Mindray BC-5000 (Shenzhen, China). 
The serum TNF-α, IL-1β, and IL-6 were determined using 
R&D Systems (Minneapolis, MN).
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Analysis of Hepatic Oxidative Stress Parameters

The partial liver was harvested, cleared, and preserved at 
– 80 ℃. According to the instructions of commercial kits, 
a high-speed homogenizer was used to prepare a 10% liver 
tissue homogenate for the detection of liver biochemical 
parameters [malondialdehyde (MAD), superoxide dis-
mutase (SOD), catalase (CAT), and glutathione peroxidase 
(GSH-Px)].

Histological Examination

Live sections were fixed with 4% paraformaldehyde, dehy-
drated with a series of ethanol and xylene solutions, paraffin-
embedded, and cut into 2–4-μm-thick sections for histopatho-
logical analysis. After hematoxylin–eosin (H&E) staining, 
liver, spleen, and kidney sections were observed with a light 
microscope and photographed with a digital camera, respec-
tively (Nikon, Tokyo, Japan).

Analysis of Cecal Short‑Chain Fatty Acids

Cecal SCFA concentrations were obtained and analyzed 
following a previously published method [17]. A total of 
100 mg of feces was homogenized in 800 μL of saturated 
NaCl solution and placed at 4 ℃ for 0.5 h. Then, 1000 μL 
of diethyl ether and 40 μL of 10% sulfuric acid were mixed 
into the solution and centrifuged at 4 °C at 12,000 rpm for 
10 min. The water in the samples was removed using anhy-
drous Na2SO4. The concentrations of cecal SCFAs were 
detected using a gas chromatograph equipped with an Rtx 
Wax column (Kyoto, Japan).

Quantitative Real‑Time qPCR

Total hepatic RNA was obtained using commercial kits 
(Takara, Dalian, China), and RNA reverse transcription was 
carried out using a commercial cDNA kit (Takara, Dalian, 
China). RT-qPCR was implemented in StepOnePlus Real-
Time PCR System (AB, Foster City, CA, USA) with SYBR 
Premix Ex Taq II (Takara, Dalian, China). The hepatic 
mRNA expression level was analyzed by the β-actin.

Immunohistochemical Analysis

Immunohistochemical analysis was carried out following a 
previous report [18]. Briefly, the liver tissues were harvested 
and fixed with 4% paraformaldehyde. The tissue was pressed 
with paraffin and cut into uniform pieces with a thickness of 
2–4 µm. Paraffin sections were mixed with xylene, deparaffi-
nized, gradually rehydrated with alcohol, and blocked with 5% 
bovine serum albumin for 10–30 min. Tissue sections were 
then incubated overnight with appropriate primary antibodies 

(Tlr4, MyD88, caspase-3), rinsed with phosphate-buffered 
saline (PBS), and incubated with secondary antibodies. Aver-
age densities of TLR4, MYD88, and caspase-3 were analyzed 
using 1.8.0 images.

16S rDNA Amplicon High‑Throughput Sequencing

Total bacterial DNA of feces was obtained using a fecal 
DNA extraction kit (MoBio, USA) and amplified the 16S 
rDNA V3-V4 sequencing with 341F-806R primers based on 
the Illumina MiSeq platform of Tianhao Co., Ltd. (Shang-
hai, China). The sequences were classified into operational 
taxonomic units (OTUs) with a divergence of 3% by Xshell 
(Ver.7.0). Hierarchical clustering analysis was carried out 
and visualized by SIMCA-14.1 software (UMETRICS, Swe-
den). Differential OTU abundance analyses based on nega-
tive binomial distribution were performed using STAMP 
software (Ver. 2.1.3). The correlations between the key 
bacterial OTUs with biochemical parameters were revealed 
by Spearman’s correlation analysis, visualized by heatmap 
and network through R software (Ver. 4.3.0) and Cytoscape 
software (Ver. 3.9.0), respectively.

Statistical Analysis

All data are presented as mean ± standard deviation. Data 
analysis was performed using SPSS 22.0 statistical soft-
ware (IBM Corporation, Chicago, IL, USA), and one-way 
ANOVA between groups was performed using Tukey's mul-
tiple comparison test.

Results

Influences of B. producta on Body Weight and Serum 
Lipid Profile of Mice

As shown in Fig. 1, there was no remarkable difference in 
the body weight of mice among the four groups after 17 days 
of intervention (p > 0.05). Interestingly, the serum ALT and 
AST activities in the model group were remarkably higher 
than that in the control group (p < 0.05), indicating the ALI 
model was successfully established. B. producta D4 and B. 
producta DSM2950 pretreatment could reduce the serum 
ALT, and AST activities in LPS-treated mice, especially B. 
producta DSM2950. Nevertheless, there was no remarkable 
difference in the serum ALP activity of mice among the four 
groups (p > 0.05).

B. producta Improved the Inflammatory Response 
and Anti‑Oxidative Enzymes in LPS‑Treated Mice

As compared with the control group, the serum TNF-α, 
IL-6, and IL-1β levels were remarkably increased in the 



788	 Probiotics and Antimicrobial Proteins (2023) 15:785–796

1 3

model group (p < 0.05) (Fig. 2A). B. producta D4 and B. 
producta DSM2950 pretreatment remarkably reduced the 
serum TNF-α and IL-1β levels compared with the model 
group (p < 0.05). However, B. producta D4 pretreatment 
remarkably decreased the serum IL-6 levels in ALI mice 
(p < 0.05), while B. producta DSM2950 pretreatment 
slightly suppressed the changes in serum IL-6 levels induced 
by LPS (p > 0.05). In addition, excessive oxidative stress is 
one of the clear symptoms in patients with ALI, the hepatic 
MDA, SOD, GSH-Px, and CAT levels were measured 
(Fig. 2B). LPS treatment led to significant increases in the 
hepatic MDA levels, and significant decreases in the hepatic 
SOD, GSH-Px, and CAT activities compared with the con-
trol group (p < 0.05). As expected, B. producta D4 and B. 
producta DSM2950 pretreatment remarkably reduced the 
hepatic MDA levels and remarkably increased the hepatic 
GSH-Px activity in ALI mice (p < 0.05). In addition, B. pro-
ducta D4 and B. producta DSM2950 pretreatment remark-
ably increased the hepatic SOD activity compared with the 
model group (p < 0.05). Interestingly, B. producta D4 pre-
treatment remarkably elevated the hepatic CAT activity in 
ALI mice (p < 0.05).

The images of histopathological examination demon-
strated the large amplitude of hepatocyte swelling, hepato-
cyte proliferation and nuclear loss, and inflammatory cell 
infiltration in ALI mice (Fig. 2C). Nevertheless, B. producta 

pretreatment remarkably relieved these pathological changes 
induced by LPS to a certain extent.

Effects of B. producta on the Cecal SCFA Levels 
in LPS‑Treated Mice

SCFAs are regarded as one of the small molecules that are 
involved in regulating the immune system and inflammatory 
response; the cecal acetic acid, propionic acid, isobutyric 
acid, butyric acid, valeric acid, and isovaleric acid levels 
were measured (Fig. 3). There was no remarkable difference 
in the cecal SCFA levels among the four groups (p > 0.05). 
Among those, B. producta D4 and B. producta DSM2950 
pretreatment slightly increased the cecal propionic acid, 
isobutyric acid, butyric acid, valeric acid, and isovaleric acid 
levels compared with the model group (p > 0.05).

B. producta Pretreatment Shifted the Intestinal 
Microbiota Composition

The microbial community richness was measured by 
analysis of Chao1 and Observe indexes, but the Shannon 
and Simpson indexes are used to analyze the diversity and 
evenness of the microbial community. There was no sig-
nificant difference in the Chao1, Observe, Shannon, and 
Simpson indexes between the control and model groups 

Fig. 1   Effect of B. producta 
pretreatment on body weight, 
serum ALT, AST, and ALP lev-
els in LPS-treated mice (n = 10). 
Values with different letters are 
significantly different (p < 0.05)
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(p > 0.05) (Fig. 4A). However, B. producta D4 and B. 
producta DSM2950 pretreatment slightly increased these 
indexes of intestinal microbiota compared with the control 
and model groups (p > 0.05). In addition, the PCA results 
showed the intestinal microbiota were obviously similar 
between the control and model groups (Fig. 4B). How-
ever, there were dramatic changes in the intestinal micro-
biota composition after B. producta D4 and B. producta 
DSM2950 intervention, whereas the intestinal microbiota 
composition in the D4 and DSM2950 groups were more 
close, indicating that B. producta D4 and B. producta 
DSM2950 could induce similar intestinal microbiota com-
position alterations.

At the phylum level, the same microbiota structure was 
performed in both the control and model groups. However, 
B. producta D4 pretreatment obviously elevated the rela-
tive abundance of Firmicutes, Proteobacteria, and Cyano-
bacteria, and obviously decreased the relative abundance of  
Bacteroidetes compared with the control and model groups. 
At the genus level, the relative abundance of Dubosiella, 
Family XIII AD3011 group, Desulfovibrio, Odoribacter, and 
[Eubacterium] ruminantium group in the model group was 
remarkably lower than that in the control group, while the 
relative abundance of Turicibacter and Muribaculaceae in 
the model group was remarkably higher than that in the con-
trol group (Fig. 4C). However, B. producta D4 pretreatment  

Fig. 2   Effect of B. producta pretreatment on inflammatory cytokines 
and oxidative stress in LPS-treated mice (n = 10). A The serum TNF-
α, IL-6, and IL-1β levels; B The hepatic MDA, SOD, GSH-Px, and 

CAT levels; C Representative H&E staining of liver sections. Values 
with different letters are significantly different (p < 0.05)



790	 Probiotics and Antimicrobial Proteins (2023) 15:785–796

1 3

remarkably elevated the relative abundance of [Eubacte-
rium] xylanophilum group, Lachnospira, Ruminiclostridium, 
Ruminiclostridium 9, Coprococcus 2, Odoribacter, and 
Roseburia in ALI mice, whereas remarkably decreased the 
relative abundance of Bifidobacterium, Turicibacter, Muri-
baculaceae, Gordonibacter, Ruminococcaceae UCG-010, 
Akkermansia, Prevotellaceae UCG-001, and Rikenellaceae  

RC9 gut group (Fig. 4D). B. producta DSM2950 pretreatment 
remarkably elevated the proportion of [Eubacterium] xylano-
philum group, Alistipes, Lachnospira, Gordonibacter, and 
Desulfovibrio in ALI mice, while remarkably decreasing the  
proportion of Bifidobacterium, Turicibacter, Bacteroidales 
bacterium, Prevotellaceae UCG-001, Ruminococcaceae 
UCG-010, Akkermansia, Lactobacillus, and Gordonibacter.

Correlation Between Intestinal Microbiota 
and ALI‑Related Biomarkers

The association between the key genus and major biomarkers 
in ALI was carried out according to Spearman’s correlation 
(Fig. 5A, B). The serum AST, ALT, TNF-α, IL-6, and IL-1β 
levels were negatively associated with the relative abundances 
of Family XII AD3011 group, Prevotellaceae UCG 001, 
Eubacterium ruminantium group, Desulfovibrio, Roseburia, 
Odoribacter, Lactobacillus, Alistipes, Lachnospira, Bifidobac-
terium, and Gordonibacter, and positively associated with the 
relative abundance of Muribaculaceae, Bacteroidales bac-
terium, and Turicibacter. In addition, cecal SCFAs, hepatic 
SOD, GSH-Px, and CAT levels were positively related to the 
relative abundance of Alistipes, Lachnospira, Bifidobacterium, 

Fig. 3   Effect of B. producta pretreatment on cecal SCFAs levels in 
LPS-treated mice (n = 10). Values with different letters are signifi-
cantly different (p < 0.05)

Fig. 4   Effect of B. producta pretreatment on the intestinal microbiota 
composition in LPS-treated mice (n = 10). A Chao1, Observed, Simp-
son, and Shannon indexes; B PCA analysis; C Relative abundance of 

phylum; D Relative abundance of differential genus. Values with dif-
ferent letters are significantly different (p < 0.05)



791Probiotics and Antimicrobial Proteins (2023) 15:785–796	

1 3

and Gordonibacter, but negatively related to the relative 
abundance of Muribaculaceae, Bacteroidales bacterium, and 
Turicibacter.

Effects of B. producta on the Expression of Genes 
Related to Inflammation in LPS‑Treated Mice

To deeply reveal the influence of B. producta on ALI mice, 
the expression levels of mRNA related to ALI and inflamma-
tion were detected (Fig. 6). The transcription levels of hepatic 
Tlr4, MyD88, NF-κB, iNOS, COX2, TNF-α, IL-1β, and cas-
pase-3 were significantly upregulated in the model group rela-
tive to the control group (p < 0.05). Compared with the model 
group, B. producta D4 and B. producta DSM2950 intervention 
remarkably suppressed the transcription levels of hepatic Tlr4, 
MyD88, COX2, TNF-α, and caspase-3 (p < 0.05), and slightly 
decreased the transcription levels of hepatic NF-κB, iNOS, 
and IL-1β (p > 0.05). In addition, the results of immunohisto-
chemistry displayed that the expression level of hepatic Tlr4, 
MyD88, and caspase-3 in the model group was remarkably 
higher than that in the control group (p < 0.05) (Fig. 7). Never-
theless, B. producta D4 and B. producta DSM2950 treatment 
remarkably inhibited these changes in ALI mice (p < 0.05).

Discussion

Some reports suggested that long-time consumption of pro-
biotics is beneficial for regulating the host glucolipid metab-
olism, such as Lactobacillus paracasei [19], Pediococcus 

acidilactici [18], and Bifidobacterium longum [19]. Body 
weight is one of the intuitive parameters, which is widely 
used in assessing the development and energy metabolism 
of the body [20]. In the present study, B. producta D4 and B. 
producta DSM2950 treatment no obviously altered the body 
weight of mice relative to the control and model groups, 
suggesting that short-term B. producta consumption could 
not elevate the risk of glucolipid metabolism disorder. In 
addition, LPS treatment elevated the serum ALT and AST 
activities compared with that in mice without LPS treatment, 
which is in agreement with this study [21]. The serum ALT 
and AST activities are extensively used to evaluate liver 
function due to they are transferred into the blood circulation 
when the occurrence of liver injury. According to the inves-
tigation by World Health Organization (WHO), ALT serves 
as the most sensitive parameter of liver structure injury, and 
the serum ALT mainly stemmed from the damage to the cell 
membrane [13]. B. producta D4 and B. producta DSM2950 
pretreatment could suppress the elevation of serum ALT and 
AST activities induced by LPS, indicating that B. producta 
play a beneficial role in improving the host liver function, 
especially B. producta DSM2950 intervention. The major 
serum ALP activity stemmed from the hepatocytes, which 
destroys the plasma membrane [22]. The serum ALP activity 
was slightly reduced in ALI mice after B. producta pretreat-
ment, which further confirmed B. producta is beneficial in 
preventing the development of ALI. Moreover, excessive 
oxidative stress is regarded as a vital symptom of ALI. LPS 
treatment causes the accumulation of reactive oxygen spe-
cies (ROS), which can react with unsaturated fatty acids and 

Fig. 5   Spearman’s correlations analysis between the key intestinal bacterial phylotypes and parameters of ALI. Heatmap of Spearman’s correla-
tion A. Correlation network of Spearman’s correlation B. Red shows positive association and blue shows negative association
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then initiate lipid peroxidation. MDA act as the main end 
product of lipid peroxidation that aggravates liver function 
injury [23]. The function of SOD is to restrain the formation 
of reactive oxygen species (ROS) and promote the formation 
of hydrogen peroxide in vivo, which was further decom-
posed to non-toxic substances (oxygen and water) under the 
higher activity of GSH-Px [24]. In addition, CAT promotes 
transforming peroxides into relatively toxic hydroxyl sub-
stances, which can effectively eliminate ROS accumulation 
in the body [24]. In the present study, the hepatic MDA lev-
els in B. producta groups were lower than that in the model 
group, and the hepatic SOD, GSH-Px, and CAT activities in 
B. producta groups were higher than that in the model group, 
indicating that B. producta prevent the development of ALI 
by suppressing the excessive oxidative stress.

The influence of probiotics on liver function injury is 
accompanied by alteration in the diversity and structure of 
intestinal microbiota [25]. Some reports affirmed that pro-
biotic intake maintains the balance of intestinal microbiota 
and elevates the intestinal microbiota diversity in animal 
experiments [26]. Our data suggested that B. producta treat-
ment slightly elevated the intestinal microbiota diversity, 
indicating B. producta can help to prevent the development 
of ALI. At the phylum level, Bacteroidetes, Firmicutes, 
Proteobacteria, Verrucomicrobia, and Cyanobacteria were 
the major phylum in four groups. Firmicutes and Bacteroi-
detes are the main phyla that play the most beneficial role in 
the maintenance of host health by processing and scaveng-
ing dietary polysaccharides on the basis of carbohydrate-
active enzymes [27]. Our results showed that the relative 
abundance of Firmicutes and Bacteroidetes was obviously 
changed in ALI mice after B. producta treatment, indicating 

B. producta improve the host energy metabolism by alter-
ing the proportion of Firmicutes and Bacteroidetes. At the 
genus level, [Eubacterium] xylanophilum group, Rumini-
clostridium, Ruminiclostridium 9, Lachnospira, Coprococ-
cus 2, and Roseburia are regarded as the butyrate-producing 
bacterium, and its abundance was positively related to the 
serum antioxidant activities and negatively related to the 
concentrations of MDA and inflammatory cytokines, which 
is in agreement with this study [28–31]. Butyric acid pro-
motes IL-22 production in the intestines by CD4+ T cell and 
ILCs via combining the G-protein receptor 41 (GPR41) and 
activating aryl hydrocarbon receptor (AhR) and hypoxia-
inducible factor 1α (HIF-1α) [32]. Previous reports have 
shown that gut-derived IL-22 maintained the integrity of 
the intestinal barrier and elevated the host immune system, 
and then improve liver function injury [33]. Odoribacter and 
Lachnospira, another SCFAs-producing bacterium, play a 
pivotal role in maintaining a healthy gut and lowering sys-
tolic blood pressure in pregnant women [34, 35]. Alistipes 
are anaerobic bacteria discovered in the healthy human gas-
trointestinal tract [36]. A previous study exhibited that Alis-
tipes have protective effects against the secretion of TNF-α, 
IL-6, and IL-1β, which is in agreement with this study [37]. 
These results suggested that B. producta induced selective 
increase and reduces of intestinal microorganism may be 
contributed to the hepatoprotective effects of B. producta.

To further reveal the underlying mechanism whereby 
B. producta pretreatment prevents liver function injury 

Fig. 6   Effect of B. producta on the transcription of genes-related inflammation and oxidative stress in ALI mice. Values with different letters are 
significantly different (p < 0.05)

Fig. 7   Immunohistochemical analysis of A Tlr4, B MyD88, and C 
caspase-3 proteins in ALI mice after B. producta D4 intervention. 
Values with different letters are significantly different (p < 0.05)

◂
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and inflammation in ALI mice, the transcriptional level of 
genes related to ALI and inflammation were measured by 
RT-qPCR, such as Tlr4, MyD88, NF-κB, iNOS, COX2, 
TNF-α, IL-1β, and caspase-3. A previous study exhibited 
that intraperitoneal injection of LPS activated the expression 
of Tlr4 which is a type I transmembrane protein. TLR4 acti-
vates two different signaling pathways, namely the MyD88 
and TRIF pathways [38]. Deficiency Myd88 is beneficial 
for hampering the development of inflammation. In addi-
tion, overexpression of hepatic Tlr4 causes the secretion of 
pro-inflammatory cytokines and neutrophil transmigration 
into the liver by activating the NF-ҡB and other transcrip-
tion factors [39]. NF-κB is regarded as a central governor, 
which takes a vital role in the survival of lymphocytes 
and activation of innate immune cells [40]. Activation of 
hepatic NF-κB is frequently accompanied by high levels of 
TNF-α, IL-6, and IL-1β. TNF-α serves as a vital regula-
tor of immune regulation and inflammation and will exert a 
direct cytotoxic effect and induce hepatocyte necrosis. The 
secretion of TNF-α is monitored by the levels of IL-1β that 
one of the most cell cytokines and plays an important role 
in the so-called cytokine storm. IL-6 is traditionally con-
sidered a regulator of acute-phase responses, and its levels 
are strongly associated with cardiovascular disease, type 2 
diabetes, and liver functional decline [41]. In addition, the 
transcription of hepatic iNOS and COX2 was regulated by 
the NF-κB transcription. Overexpression of iNOS destroys 
liver function and leads to large quantities of nitric oxide 
production in the liver [42]. The accumulation of nitric oxide 
is reported to promote the occurrence and development of 
some diseases, such as liver injury, brain inflammation, and 
cancer [43]. Moreover, COX2 serves as an inducible enzyme 
responsible for the development of many inflammatory dis-
eases [44]. Moreover, caspase-3 is a vital apoptotic effec-
tor, which is reported to accelerate DNA damage and cell 
death [45]. In the present study, B. producta pretreatment 
decreased the hepatic Tlr4, MyD88, NF-κB, iNOS, COX2, 
TNF-α, IL-1β, and caspase-3 transcriptions in ALI, imply-
ing that B. producta serve as a candidate for preventing/
treating ALI.

Conclusions

The potential influence of B. producta on LPS-induced 
ALI and their possible mechanism were firstly investigated. 
B. producta D4 and B. producta DSM2950 pretreatment 
remarkably not only suppressed the excessive inflammatory 
response and oxidative stress, but also regulated the intesti-
nal microbiota composition in ALI mice. The transcription 
levels of genes related to inflammation of ALI mice were 
remarkably ameliorated after B. producta treatment. This 

may be the first study to confirm a direct effect of Blautia 
producta to ameliorate systemic inflammation. These results 
exhibited that Blautia producta may be a good candidate for 
probiotics in the prevention of ALI.
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