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Abstract
The growing consumer awareness towards healthy and safe food has reformed food processing strategies. Nowadays, food 
processors are aiming at natural, effective, safe, and low-cost substitutes for enhancing the shelf life of food products. Milk, 
besides being a rich source of nutrition for infants and adults, serves as a readily available source of precious functional 
peptides. Due to the existence of high genetic variability in milk proteins, there is a great possibility to get bioactive peptides 
with varied properties. Among other bioactive agents, milk-originated antimicrobial peptides (AMPs) are gaining interest 
as attractive and safe additive conferring extended shelf life to minimally processed foods. These peptides display broad-
spectrum antagonistic activity against bacteria, fungi, viruses, and protozoans. Microbial proteolytic activity, extracellular 
peptidases, food-grade enzymes, and recombinant DNA technology application are among few strategies to tailor specific 
peptides from milk and enhance their production. These bioprotective agents have a promising future in addressing the 
global concern of food safety along with the possibility to be incorporated into the food matrix without compromising overall 
consumer acceptance. Additionally, in conformity to the current consumer demands, these AMPs also possess functional 
properties needed for value addition. This review attempts to present the basic properties, synthesis approaches, action 
mechanism, current status, and prospects of antimicrobial peptide application in food, dairy, and pharma industry along with 
their role in ensuring the safety and health of consumers.
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NALDI	� Nanostructure laser desorption/
ionization

LC-MS	� Liquid chromatography-mass 
spectrometry

Introduction

Good and safe food has always been a priority for humans 
and numerous strategies have been employed over the years 
to achieve it. This includes various food preservation pro-
cesses and techniques to increase the shelf life and usabil-
ity of the food items. Most preservation processes aim at 
decreasing the growth of microbes by limiting their vital 
life requirements of moisture, temperature, pH, osmolarity, 
etc. Some processes also include use of preservatives using 
chemical additives which act as antioxidants or as growth 
limiters to the microbes. This has been very successful in 
increasing shelf life of food items and we see a humongous 
increase in number of processed and canned foods in the 
past decades. Lately, some of these chemical preservatives 
are being identified as carcinogenic and public awareness 
against it has increased [1, 2]. Now, research has gained 
attention towards developing safer food preservatives while 
maintaining food quality, shelf life, and palatability using 
novel bioactive agents. One of such agents are antimicro-
bial peptides (AMPs) which are gaining interest as broad-
spectrum antimicrobials with activity at micromolar con-
centration, and microorganisms are less likely to develop 
resistance against them. Predominantly, AMPs are a fam-
ily of small peptides found throughout nature and plays an 
important role in organisms’ innate immune system. Apart 
from that, AMPs can be produced from a variety of protein 
sources such as milk via enzymatic hydrolysis or microbial 
fermentation. AMPs have found application in food and 
pharmaceutical industry. Primarily, they can be used as bio-
preservatives in food products and have no appreciable effect 
on applicability across different food matrices.

In the modern world, foodborne infections have emerged 
as one of the most common public health concerns which are 
caused by either live pathogenic organisms or their toxins. 
Owing to their negative impact on the health and economic 
condition of the individuals, assurance of microbiologically 
safe food is very important. Also, the food recalls due to 
foodborne disease outbreaks and food spoilage are decreas-
ing the consumer confidence leading to significant food and 
economic losses. Adoption of food preservation techniques 
using the natural substances is very crucial to prevent food 
losses and diseases spread to consumers. AMPs present an 
interesting alternative to chemical preservatives used for 
food preservation. Also, AMPs have potential to replace 
conventional antibiotics employed in animal welfare as pro-
phylactic or therapeutic. AMPs are unique in the sense that 

they target the cell membrane of microorganisms, while con-
ventional antibiotics target specific cellular activities such 
as DNA, protein, or cell wall synthesis. AMPs are more 
advantageous compared to conventional antibiotics owing 
to their ability to bypass common resistance mechanisms, 
thereby limiting microbial resistance [3]. AMPs are amphi-
pathic molecules composed of 6 to 100 amino acids with 
a net positive charge of + 2 to + 9. This net positive charge 
guides them towards negatively charged bacterial cell mem-
branes and promotes their ability to rupture and destabilize 
the cell membranes [4]. After the discovery of lysozyme, the 
scientific community shifted attention towards the detection, 
isolation, purification, and characterization of AMPs. AMPs 
combat low and high-affinity pathogen targets which confer 
them with the ability to overcome pathogen resistance lead-
ing to their prominence in the new era of antimicrobials [5].

Milk serves as a readily available source of precious bio-
active peptides with diverse biological activities such as anti-
microbial, antihypertensive, anti-oxidative, antithrombotic, 
and immunomodulatory [6, 7]. Fermented dairy products 
including yogurt, sour milk, and cheese include a variety of 
naturally produced bioactive peptides. Milk-derived AMPs, 
in particular, are an important component of the innate 
defense, especially on mucosal surfaces such as the lungs 
and small intestine, which are constantly exposed to a wide 
range of pathogens [8]. Lactoferrin, among other milk pro-
teins, exhibits bacteriostatic and bactericidal activity against 
a variety of bacteria by binding to iron [9]. Infant milk lac-
talbumin has previously been shown to have antagonistic 
effect against Escherichia coli O127, and also a reduction in 
the incidence of diarrhea [10]. In a series of successive clini-
cal trials, half (1–11) displayed antibacterial activity against 
antibiotic-resistant Staphylococcus aureus [11–14]. Moreo-
ver, CAMP211-225, a milk-derived peptide, was recently 
found to have antibacterial action against E. coli and Yersinia 
enterocolitica [15]. As an outcome of these research find-
ings, milk-derived AMPs are gaining attraction as a safe and 
effective alternative to antibiotics, with the added benefits 
of application in food targeting shelf life extension. There-
fore, this review aims to delineate the recent developments 
in milk protein-derived AMPs and their potential application 
in food, dairy, and pharma sector with reference to emerging 
antibiotic resistance. An attempt has also been made to pre-
sent reader with an overview of production, characterization, 
and mode of action of AMPs.

Food Chain and Antibiotic Resistance

For almost a century, antibiotics and other antimicrobial for-
mulations remain a prominent weapon to deal with infec-
tions both in humans and other animals. Over some time 
period, microbes started developing resistance against these 
antimicrobials, leading to decreased efficacy of drugs and a 
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burden on the global economy. AMR is prevalent across both 
species and geographical boundaries due to the food chain 
web, relaxation in international trade barriers, and lack of 
dose accuracy acquaintance. Animal husbandry and dairy 
sector are also reeled into this as the animals reared for milk 
and meats are frequently exposed to these antimicrobials. 
The possible factors responsible for emerging antibiotic 
resistance in the dairy sector include unrestricted availability 
of drugs, unchecked usage, improper diagnosis of disease, 
poor infection prevention and control measures, and lack of 
adequate surveillance and monitoring system [3]. There is an 
estimate of about a 67% increase in usage of antimicrobial 
compounds in the dairy sector by 2030 [16] especially in 
developing countries such as India due to increasing popula-
tion, the gap in demand and supply, and greater chances of 
bacterial growth and survival due to tropical environmental 
conditions. Preservatives are usually added to keep the food 
protected from spoilage. Milk and milk products being a 
rich source of proteins, sugar, and vitamins are an excellent 
medium for growth of microbes. In countries with tropi-
cal climate with temperature exceeding 30 °C and where 
refrigeration or cold chain facilities are limited, milk is often 
preserved using chemicals [17]. However, their use in milk 
is debatable due to the reported bad effects on health. A 
comparative list of common chemical preservatives used 

for milk and milk products preservation is presented in 
Table 1. Available reports have raised hopes of overcom-
ing the menace of antibiotic resistance and adverse health 
effects of other chemical preservatives via application of 
AMPs considering their high propensity towards resistant 
bacteria. The use of AMPs as therapeutic adjuncts due to 
least chances of resistance development offers a promising 
policy in the pharmaceutical industry as well [28].

Milk and Whey‑Derived Antimicrobial 
Peptides

Antimicrobial peptides can be classified based on their ori-
gin, activity, structural characteristics, and synthesis pro-
cess. Antimicrobial peptides can be isolated from microbes, 
amphibians, and insects. Various microorganisms such as 
bacteria and fungi can serve as a source of AMPs [5]. Nisin 
and gramicidin are classic examples of AMPs originating 
from Lactococcus lactis, Bacillus subtilis, and Bacillus bre-
vis. The relatively high cost involved in chemical synthesis 
of AMPs leads to more interest in microbial origin peptides. 
Mammalian milk is a very potent source of antimicrobial 
peptides. α-Lactalbumin, β-lactoglobulin, lactoferrin, and 
other casein fractions are the major identified AMPs of milk 

Table 1   Common preservatives used in milk and milk products

Name of preservative Effective against Legal safe amount Adverse health effects of 
overdose

References

Hydrogen peroxide Pathogens, aflatoxins Maximum 0.05% Irritation to GI track, nausea, 
vomiting, etc

[18]

Salicylic acid More effective against fungi 
and yeast compared to 
bacteria

Not defined due to its heat 
instability

Gastric irritation, bleeding, 
diarrhea etc

[19]

Benzoic acid Bacteria, yeast, and fungi 300 mg/kg in dairy based desserts 
and 1000 mg/kg in dairy fat 
spreads

Asthma, urticaria, metabolic 
acidosis, convulsions, and 
pseudo-allergy

[20, 21]

Sorbic acid Bacteria, yeast and molds 1000 mg/kg in dairy based 
drinks, 3000 mg/kg in cheese

Metabolic acidosis, convulsions 
and hyperpnoea

[21, 22]

Boric acid Pathogens Declared unsafe by FAO/WHO Nausea, vomiting, bloody 
diarrhea, severe colic, renal 
failure

[23]

Sodium carbonate/bicarbonate Neutralizes bacterially developed 
acidity

Less than 0.3% as stabilizer in 
condensed, evaporated and 
powdered milk

Gastrointestinal problems [24]

CO2 Bacteriostatic effect against 
Gram-negative bacteria

- May reduce body mineral 
density

[25]

Formaldehyde/formalin Antiseptic nature Not allowed Potent carcinogenic, vomiting, 
diarrhea

[26]

Bronopol Lowers somatic cell count Not defined Irritant reactions and allergic 
contact dermatitis

Potassium dichromate Bacteriostatic effect - Carcinogenic, skin irritation, 
rhinitis, and allergic contact 
dermatitis

[27]
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origin [29]. On the basis of their activity, AMPs can be clas-
sified into 18 major categories (in light of ADP3 database). 
These categories include antimicrobial (antibacterial, antivi-
ral, antifungal), antiparasitic, anti-human immunodeficiency 
virus, and antitumor peptides. A significant number of AMPs 
have antibacterial activity against common pathogenic bac-
teria (Table 2). Number of synthetic antimicrobial peptides 
display inhibitory activity against both Gram-positive and 
Gram-negative pathogens. In an in silico study, goat milk 
proteins were highlighted as a potential source of AMPs hav-
ing application in food sector. Different online tools were 
used to predict the physiochemical properties, toxicity, and 
allergenicity of peptides [44].

Antimicrobial peptides can also be classified on the basis 
of constituent amino acids such as proline-rich peptides, tryp-
tophan-arginine-rich peptides, histidine-rich peptides, and 
glycine-rich peptides. The amino acid composition primar-
ily regulates the antimicrobial activity and probable mecha-
nism of action. For example, AMPs rich in proline (non-polar 
amino acid) enter bacterial cells through the non-invasive 
pathway. In contrast, arginine and histidine (basic amino 
acids)-rich peptides are attracted towards anionic bacterial 
membrane. On the basis of structural conformation of AMPs, 
they can be divided into four major categories, viz., linear, 
α-helical peptides, ß-pleated sheet peptides, linear extension 
structure, and both α-helical and ß-sheet peptides. This sec-
tion focuses on milk and whey as source of AMPs. Casein 
makes up 80% of milk protein. Casein hydrolysis results 
into generation of diverse number of antimicrobial/bioac-
tive peptides. Isracidin was the first antimicrobial peptide 
obtained from bovine casein hydrolysate. Casein hydrolysate-
based AMPs, such as casecidin (caseicin A and caseicin B), 
lactenin, isracidin, and kappacin, are derived from α-, ß-, and 
ĸ-casein fractions [9]. αs1-casein f(99–109) obtained from 
pepsin-mediated hydrolysis of bovine sodium caseinate pro-
tein displayed antimicrobial activity against Gram-positive 
(B. subtilis and Listeria innocua) and Gram-negative bacteria 
(Salmonella typhimurium, E. coli, Salmonella enteritidis, and 
Citrobacter freundii) [45]. Caseicin A αs1-casein f(21–29) 
and caseicin B αs1-casein f(30–37) from bovine casein 
checked the growth of Cronobacter sakazakii in powdered 
infant formula trials [30]. In later studies, these peptides were 
found to inhibit Klebsiella spp., Salmonella spp., and Staph. 
aureus [46]. The chymosin digest of bovine sodium caseinate 
results into release of αs2-casein f(181–207), f(175–207), 
and f(164–207), which showed potential inhibition of a wide 
variety of Gram-positive and Gram-negative bacteria [44]. 
Another ĸ-casein-derived peptides such as kappacin, k-casein 
A (138–158) exhibited potential activity against Streptococ-
cus mutans, E. coli, and Porphyromonas gingivalis [31].

Whey proteins are obtained following casein precipita-
tion and constitute about 20% of the remaining protein in 
milk. Hydrolysis of whey proteins can generate bioactive 

peptides having antioxidant, antimicrobial, antihypertensive, 
and antidiabetic activities [47]. Whey lactoferricin (Lfcin) 
is a well-identified multifunctional peptide obtained from 
pepsin hydrolysis of bovine lactoferrin protein. Chemically 
synthesized lactoferrin domain peptide lactoferrampin 
f(268–284) exhibits anti-Candida activity and antibacte-
rial activity against B. subtilis, E. coli, and Pseudomonas 
aeruginosa [32]. β-Lactoglobulin, another fraction of whey 
protein, composing 50% of whole protein can be found in the 
milk of many mammals, but not in human milk. Upon tryptic 
digestion, it produces four fragments including f(15–20), 
f(25–40), f(78–83), and f(92–100) displaying activity mainly 
against Gram-positive bacteria [48]. This protein component 
resists proteolytic enzymes and gastric digestion and serves 
as a stabilizer in yogurt and cheese due to its heat-gelling 
capacity [49]. α-Lactalbumin, another fraction of whey 
protein (14.4 kDa), results from trypsin or chymotrypsin 
digestion. Its presence in bovine milk is just 20%, while in 
human milk, it is the most abundant whey protein [50]. This 
protein component has high nutritional value leading to its 
commercial application in infant formula. Furthermore, it 
displays high antagonistic activity against Gram-positive 
bacteria including antibiotic-resistant variants.

Synthesis, Purification, and Identification 
of AMPs

Antimicrobial peptides that are encrypted in an inactive 
form within the protein can be released either through enzy-
matic hydrolysis or via microbial fermentation. Enzymatic 
hydrolysis, especially used in the food and pharmaceutical 
industries, is the most common approach for decrypting 
bioactive peptides from whole protein sources. Proteases 
used for hydrolysis may be of the gastrointestinal origin or 
from microbial or plant source. Trypsin and pepsin are the 
prominent proteases commonly used to obtain bioactive pep-
tides with diverse activities. In particular, trypsin and pepsin 
hydrolysis have contributed to most of the recognized anti-
microbial peptides [51]. In addition, alcalase, chymotrypsin, 
pancreatin, and thermolysin are used individually or in com-
bination to release bioactive peptides from diverse protein 
sources. Shorter reaction time and ease of scalability select 
enzymatic hydrolysis over microbial fermentation. Proteo-
lytic enzymes of microbial origin can be the source of many 
new peptides with unique bioactivities. Microbial proteases 
represent one of the most important tools in the modifica-
tion of protein structure, development, and production of 
new protein hydrolysates to obtain specific peptides that 
can be commercially exploited. The peptide bonds cleaved 
by the proteolytic enzymes are surrounded by the amino 
acid sequence having some degree of substrate specificity. 
For instance, when bovine milk casein is hydrolyzed using 
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pancreatin, the rate of peptide fragments produced is highest 
for ß- and α-casein [52]. In contrast, papain most effectively 
hydrolyzes sodium caseinate, followed by trypsin and pan-
creatin [53]. Thus, different milk sources differ in suscepti-
bility to hydrolytic enzymes, which indicates differences in 
the number, type, and concentration of bioactive peptides.

Microbial fermentation to obtain bioactive peptides is 
gaining recognition due to being a natural, safe, and cost-
effective strategy. Lactic acid bacteria (LAB) have devel-
oped the ability to hydrolyze proteins to compensate for 
their amino acid requirement. LABs not only generate free 
amino acids for their own use but also produce a wide range 
of biologically active peptides [54]. The proteolytic system 
of LABs mainly comprises of cell wall-bound proteinases 
(initially degrade casein into oligopeptides), peptide trans-
porters (transfer oligopeptides into the cytoplasm), and 
distinct intracellular peptidases, including endopeptidases, 
aminopeptidases, tripeptidases, and dipeptidases which con-
vert peptides into small molecules and generate free amino 
acids [55]. The proteolytic activity of LABs is exerted in a 
species- and strain-dependent manner. To name a few LABs, 
Lactobacillus helveticus, Lact. delbrueckii subsp. bulgari-
cus, Lact. delbrueckii subsp. lactis/diacetylactis, and Lact. 
delbrueckii subsp. lactis/cremoris display effective proteo-
lytic activity for milk protein hydrolysis [56]. Especially, 
Lact. helveticus strains are most extensively studied and 
known to possess high extracellular proteinase activity. Fan 
and coworkers identified 212 peptide sequences from casein 
fermented with Lact. helveticus, among which 44 previously 
identified peptides possess antimicrobial activity [57]. In 
another study, Lactobacillus acidophilus-generated peptides 
(IKHQGLPQE, VLNENLLR, and SDIPNPIGSENSEK) dis-
played antibacterial activity against pathogenic Enterobacter 
sakazakii and E. coli [30]. Ebner and coworkers investigated 
the proteomic profile of kefir (alcoholic fermented milk 
beverage) and identified 257 peptides mostly released from 
β-casein [58]. Among them, 16 peptides were previously 
reported to have antimicrobial, immunomodulatory, ACE 
inhibitory, opioid, antithrombotic, mineral binding, and anti-
oxidant activities. Fungal strains, e.g., Aspergillus oryzae 
and Aspergillus flavipes, have also been used for generat-
ing bioactive peptides from bovine and goat milk via solid-
state fermentation. The generated peptides displayed potent 
antimicrobial activity [59]. Caseicin A (IKHQGLPQE) and 
caseicin B (VLNENLLR) generated from sodium caseinate 
fermentation by Bacillus cereus and Bacillus thuringiensis 
effectively inhibited C. sakazakii [60].

Recombinant DNA technology (RDT) is extensively used 
for the production of proteins and hormones having wide 
application in medical sciences. RDT has now also been 
explored for scaling up both the production and yield of the 
specific bioactive peptides. This method allows simultane-
ous production of several peptides by expression of peptide 

coding region into microbes [61]. AMPs of milk origin have 
been produced by over-expression of bovine lactoferricin 
B-W10 (LfcinB-W10), a novel derivative of cationic antimi-
crobial peptide lactoferricin Lf(f17–41) in E. coli. Likewise, 
by combining bovine lactoferricin and the inducible insect 
antimicrobial peptide thanatin, a hybrid antimicrobial pep-
tide was developed [62].

Membrane filtration technology is the method of choice 
for the isolation and purification of peptides based on 
molecular weight. It has several advantages such as being 
cost-effective, non-chemical, energy-saving, and easy to set-
up. Protein hydrolysates obtained following hydrolysis are 
fractionated through molecular weight cut-off membranes of 
varying sizes (0.5 to 100 kDa). Different fractions are later 
screened for their antimicrobial activity. Goat milk casein 
hydrolysates low molecular weight (< 3  kDa) fractions 
showed high antimicrobial activity against E. coli and B. 
cereus as compared to 3–10 kDa fractions [63]. Nanofiltra-
tion technique could also be applied for isolation of peptide 
with molar mass < 1 kDa, as it consists pore size of 0.5–2 nm 
[64]. More recently, an electrodialysis with filtration mem-
brane technique has been adopted for increased efficiency 
based on peptide molecular weight and net charge [65]. For 
analytic purpose, there are many powerful techniques for 
separation, purification, detection, and isolation of bioactive 
and novel antimicrobial peptides. These are one-dimensional 
electrophoresis, high-performance liquid chromatography 
(HPLC), reverse-phase liquid chromatography (RP-HPLC), 
ion-exchange chromatography (IEC), size-exclusion chroma-
tography (SEC), fast protein liquid chromatography (FPLC), 
gel-filtration chromatography, affinity chromatography, or 
multidimensional system. RP-HPLC is the most widely used 
purification method for milk-derived bioactive peptides due 
to its quick detection and separation potential from the sam-
ple mixture. Peptides are fractionated using an analytical 
silica-based RP-C18 column in the stationary phase [66]. 
The peptides fraction obtained are collected between reten-
tion and gradient time and the data is analyzed using an 
ultra-violet detector [63]. This technique has been preferably 
used to fractionate protein and peptide content in both one-
dimensional and multidimensional separation systems based 
on peptide polarity and molecular weight. Size-exclusion 
chromatography also separates peptide molecules based 
on molecular size. Earlier, Morais and coworkers used SE-
HPLC and separated whey protein concentrate hydrolysates 
into four fractions and characterized peptides according to 
chain length with molar mass < 1000 Da [67]. Parameters 
such as pore size/volume, ionic strength, and mobile phase 
nature affect the performance of the SE-HPLC column [68]. 
A multidimensional separation system combining more than 
one separation tool provides high-resolution power and peak 
capacity as compared to the one-dimensional purification 
and separation approach. Using this approach, Rahimi and 

49Probiotics and Antimicrobial Proteins  (2023) 15:44–62

1 3



coworkers hydrolyzed camel milk casein protein enzymati-
cally and the peptides obtained were fractionized by multi-
dimensional technique using ultrafiltration membranes and 
semi-preparative RP-HPLC [69]. However, multidimen-
sional separation techniques are not always effective, due to 
variable nature of operational techniques which makes the 
solvent incompatible, while proper selection of combination 
of different multidimensional separation system will lead to 
potential outputs as well as purify and identify peptides of 
complex samples with high desirable bioactivity [65].

Identification and Characterization of Peptides

The antimicrobial peptide sequence can be determined using 
various approaches such as matrix-assisted laser desorption 
ionization time-of-flight mass spectrometry (MALDI-TOF 
MS), electro spray ionization (ESI), and nanostructure laser 
desorption/ionization (NALDI). In recent years, the most 
frequently used method for profiling and identification of 
peptides from several food sources including milk is through 
liquid chromatography coupled with mass spectrometry 
(LC–MS) [70]. The chromatographic technique combined 
with mass spectrophotometry termed as liquid chromatogra-
phy/tandem mass spectrometry (LC–MS/MS) identifies and 
characterizes complex mixtures of peptide sequence, based 
on their molecular mass, and has high resolution and sepa-
ration efficiency [71]. Fractionated peptides are desalted on 
a RP-C18 trap column and further separated using reverse-
phase C18 analytical column. The eluted peptides are col-
lected at different time intervals, on particular flow rate and 
the data monitored using MS analyzer instrument such as 
Q-Exactive Orbitrap and Q-TOF ion-trap. Peptide databases 
like BIOPEP, UNIPROT, SWISS PROT, and MBPDB are 
used to identify amino acid sequence for discovery of novel 
peptide [72]. Nowadays, in silico techniques like homol-
ogy modeling, hidden Markov models, and support vector 
machine are also explored for modeling of identified protein 
fragments to confirm their bioactivity. Figure 1 represents 
the different antimicrobial peptides synthesis, purification, 
and identification strategies.

Antimicrobial Peptide Database

Peptides derived from food proteins, due to their biological 
and functional properties, are considered valuable health 
beneficial and functional food components. The research 
interest in bioactive peptides is reflected by the huge spike in 
the number of articles published annually on these peptides 
[73]. The latter has ramifications in terms of the necessity 
to collect and store the huge amount of data being generated 
in databases. A variety of databases have been developed in 
the past to keep track of various types (antiviral, antimicro-
bial, antitumor, hemolytic, and cell penetrating peptides) of 

bioactive peptides [74]. Most of the information about these 
bioactive peptides is available in various databases such as 
TumorHoPe [75], Biopep-UWM, StraPep, FeptideDB, ACE-
pepDB, BioPD, APD, BACTIBASE [76], CAMP, PenBase 
[77], RAPD [78], Hmrbase [79], PhytAMP [80], PeptideDB, 
ACEpepDB [81], Amper [82], and BAGEL3 [83].

Several antimicrobial peptide databases have been created 
over the past several years including Peptaibol Database [84], 
PenBase [77], Defensins Knowledgebase [85], PhytAMP [80], 
BACTIBASE [76], CAMP [86], YADAMP [87], DAMPD 
[88], Milk AMP [89], CAMPR3 [90], DBAASP [91], APD 
[92], MBPBD [93], FeptideDB [94], and FermFooDb [74]. 
Despite the huge potential of antimicrobial peptides from 
food especially from milk, only a few databases are dedi-
cated to them. Food-derived bioactive peptides have been 
widely reported since the 1970s. However, in databases of 
food-derived antimicrobial peptide, the information includ-
ing sequence, function, source, and references is poorly inte-
grated. There are few reasons for poor integration of relevant 
information regarding active peptides from food sources: first, 
their sequence information is to be gathered from the relevant 
published articles and databases; second, lack of professional 
classification in food sources of active peptide; and lastly, sev-
eral connections between food-derived peptides, their origins, 
roles, and products are unknown. Due to the lack of a compre-
hensive database on food-derived peptides, researchers in lab-
oratories and industry must scour the Internet for them [95]. 
Milk AMP database was designed specifically for milk anti-
microbial peptides and lists natural and artificial antimicrobial 
peptides derived from amino acid sequences of dairy proteins 
of different origins. The database was created with an aim to 
provide comprehensive information on peptide structure/func-
tion relationships, inhibitory activity, spectrum of action, and 
minimal inhibitory concentration (MIC) determined for each 
tested microbial strain. It includes a fairly complete list of 
references for each peptide. The information in this database 
will supplement conventional databases by supplying miss-
ing data and allowing for rapid prediction of structure/func-
tion correlations and target organisms, resulting in improved 
usage of peptide biological activity in both the pharmaceutical 
and food industries. At the time of creation, it contained 371 
entries, including 9 hydrolysates, 299 antimicrobial peptides, 
and 23 peptides predicted as antimicrobial, as well as 40 non-
active peptides. This database also allows entries from users 
for expansion and improvement in data [89].

MBPDB is a comprehensive database of functional pep-
tides in milk. This database was created to identify and ana-
lyze novel bioactive peptides and allows examination of pat-
terns in the data of bioactive peptides. The database offered 
improvement over earlier databases in being specific and 
comprehensive to all milk bioactive peptides across species 
and proteins with several advanced search functions. This 
database helps in the creation of prediction models based 
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on the relationship between peptide structure and activity 
to determine the likelihood of bioactive milk peptides iden-
tified in other types of biological samples. This database 

contains information for 177 AMPs only as some informa-
tion was lacking in the rest of the AMPs from other data-
bases such as the original research article, the full sequence 

Fig. 1   Schematic representation of different antimicrobial peptides synthesis, purification, and identification strategies
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of amino acids in peptide, bioactive function, source spe-
cies, and source proteins [93]. The BIOPEP-UWM data-
base, a widely used database in food and nutrition science, 
is freely accessible. This database is continuously being 
updated and modified. The BIOPEP-UWM provides data-
bases of proteins, allergenic proteins, and their epitopes in 
addition to bioactive peptides. The database enables users 
to help in update of the database by allowing them to submit 
a peptide sequence, which after verification gets updated. 
The information provided by the database consists of ID 
number, name, sequence, function, number of amino acid 
residues, activity, chemical mass, and bibliographic data 
[72]. FermFooDb is a consolidated database that maintains 
biologically active peptides obtained from fermented foods. 
As the food industry, especially dairy industry, is focus-
ing mainly on the commercialization and development of 
novel fermented foods, this database can be of great use 
for the purpose. This database enables users to evaluate the 
medicinal potential of fermented foods using the wide range 
of bioactive peptide characteristics stored in this database, 
which are compiled from existing databases like AHTPDB, 
ACEPepDB, BIOPEP, and MBPDB [74]. This database 
maintains the different peptide properties like sequence, 
physicochemical properties, length, and IC50 value as well 
as fermentation process along with compiled details includ-
ing experimental model, starter culture, and PubMed ID of 
research article.

Mechanisms of Action of Antimicrobial 
Peptides

Activity and specificity of AMPs precisely depend upon 
structural parameters, such as conformation, charge, hydro-
phobicity, amphipathicity, and polar angle. It is important to 
note that these molecular determinants are interdependent; 
hence, modification of one parameter often leads to com-
pensatory alterations in others. Here, the article will discuss 
in general the major structural components of antimicrobial 
peptides that influence their mechanism of action. In spite 
of the structural conformational homology displayed dur-
ing target membrane interaction, AMPs display immense 
diversity in their peptide sequences. The reason for this 
structural homology could lie in the presence of specific 
peptide sequences that are crucial for particular activity 
irrespective of the sequence of remaining peptide residue. 
One such important feature is the presence of glycine resi-
due cap at N-terminal of peptide chain. Tossi and cowork-
ers reported that glycine at the first position of N-terminus 
region of α-helical peptide is relatively conserved sequence 
[96]. Glycine residue cap prevents peptide cleavage by 
aminopeptidases. Likewise, presence of peptide amidation 
has been observed as another important post-translational 

modification for AMPs. The peptide amidation provides 
one additional H-atom which in turn transfers the energy 
to acquire helical structure as well as prevent the cleavage 
of peptide by carboxypeptidases [97]. In addition to these 
specificities, presence of long stretch of basic amino acids 
(lysine and arginine) also enhances the cationic nature of 
peptides [96]. The partition constant of AMP and membrane 
is an important factor that determines interaction between 
AMP and cell surface. Usually, AMPs have higher magni-
tude of partition constant as compared to the charged cell 
membranes. The aromatic amino acids are a major contribu-
tor towards partition constant and facilitate the anchoring of 
peptide to the head group of lipid bilayer [98]. Some amphi-
pathic peptides acquire conformation in which hydrophobic 
residue resides on one side and hydrophilic on the other. 
The hydrophilic cationic domain initially interacts with the 
membrane surface and the hydrophobic portion leads to pep-
tide insertion (mediated via Van der Waals interaction and 
hydrophobic interaction in hydrocarbon chain).

The degree of structure is another pivotal aspect of anti-
microbial peptides. The peptides usually acquire α-helix 
or β-sheet conformation, which upon contact with the cell 
membrane helps peptide to combat with the differences in 
partition constants between AMP and cell membrane. Elec-
trostatic charge is another driving factor that influences pep-
tide attraction towards microbial cell and peptide folding 
at lipid peptide interface. Most of the antimicrobial pep-
tides are cationic in nature with net positive charge rang-
ing from + 2 to + 9. The presence of acidic phospholipids, 
phosphatidylserine, and cardiolipins imparts negative charge 
to the cell membrane. Additionally, presence of lipopolysac-
charide in Gram-negative bacteria and teichoic/lipoteichoic 
acid in Gram-positive bacteria distributes the total anionic 
charge. Likewise, presence of phosphomannans, chitin, and 
β-1 → 3 glucan carries strong negative charge to the fungal 
cell wall. In contrast, mammalian cells have higher propor-
tion of cationic components such as phosphatidyl choline, 
phosphatidylethanolamine, sphingomyelin, and no/low 
amount of anionic components (phosphatidylglycerol and 
cardiolipins) conferring net positive charge to the mam-
malian membrane [99]. Thus, the electrostatic charge is 
prime factor that regulates the initial interaction of peptide 
with cell surface. The difference in electrostatic potential 
and lipid composition of microbial cells plays a major role 
in the selectivity and specificity of antimicrobial peptides. 
For instance, Tossi and coworkers observed that increase in 
charge of magainin-2 peptide from + 2 to + 5, while keeping 
other factors stable, increased its antimicrobial activity [96]. 
Furthermore, it was also observed that the increase in cati-
onic charge from + 6 to + 7 did not improve the antimicrobial 
activity. This may be due to the fact that increase in posi-
tive charge results in strong interaction between peptide and 
phospholipids, which hinders peptide translocation through 
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the microbial membrane. The addition of a formal net charge 
of + 8 to a peptide increased activity against yeast cells while 
decreasing activity against Bacillus megaterium and Staph. 
aureus. This could be explained by stearic impediment in 
peptide helix formation due to its near proximity and net 
repulsive contact between basic residues of packed peptides 
[96]. In addition to this, the electrostatic repulsion within the 
peptide decreases the lifespan of the pore, thus reducing its 
membranolytic activity.

Amphipathicity is the measure of relative ratio of hydro-
phobic and hydrophilic residues in the peptide. Quantita-
tively, the vector sum of all hydrophobic amino acid, nor-
malized to ideal helix, gives the measure of hydrophobic 
moment and, hence, the amphipathicity. Alpha-helical 
conformation is the most favorable conformation acquired 
by amphipathic peptides having 3–4 amino acids per turn 
periodically. This is the crucial property of an AMP for its 
initial interaction with the cell membrane. In α-helix, polar 
phase is attracted towards the negatively charged membrane 
and non-polar phase causes insertion into membrane through 
Van der Waals forces and hydrophobic interactions lead-
ing to increased permeability. Hydrophobicity, the measure 
of hydrophobic residues within a peptide, determines par-
tition constant of membrane hydrophobic core [100]. It is 
suggested that hydrophobicity has higher impact on toxic-
ity towards host cell as compared to antimicrobial activity. 
Beyond some threshold value, the increase in hydrophobic-
ity enhances peptide hemolytic activity and decreases its 
ability to discriminate between host and microbial cells 
[101]. For example, Chen and coworkers demonstrated that 
the increased hydrophobicity of L-V13K peptide enhanced 
its activity against RBCs by 62.5 times. Increasing hydro-
phobicity beyond a certain limit causes oligomerization or 
dimerization of peptide, resulting in the formation of ener-
getically stable peptide aggregates [102]. The higher aque-
ous stability of peptide aggregates can prevent the partition 
into the membrane, displaying weaker interaction with mem-
brane surface. A systematic study on gramicidin S exhibited 
that the balance between hydrophobicity and amphipathicity 
is the key factor that determine relative therapeutic ability 
of peptide (i.e., directly affects their hemolytic and antimi-
crobial activity) [103].

Polar angle of peptide represents the relative fraction of 
polar versus non-polar faces of an amphipathic helical pep-
tide. Any aggregation or change in the polar or non-polar 
residue tends to change the polar angle. It is assumed that 
higher non-polar (hydrophobic) domain in peptide is directly 
related to smaller polar angles and increased membrane per-
meabilization [104], thus having a strong correlation with 
membrane stability and pore formation. Irrespective of the 
precise mechanism of action, all AMPs primarily act on the 
plasma membrane through the establishment of electro-
static bonding with plasma membrane components [105]. 

AMPs acquire α-helical or β-sheet conformation upon com-
ing in contact with the membrane via electrostatic force of 
attraction. Anionic AMPs usually complex with zinc ion or 
highly cationic peptides. Cationic AMPs can easily bind to 
negatively charged cell surface. Nisin specifically binds with 
the lipid II component of cell wall. Mersacidin also inter-
feres with transglycosylation and peptidoglycan synthesis 
of Gram-positive cell wall via targeting lipid II [106]. Fol-
lowing binding, a critical concentration of AMP is required 
to precede surface disruption. With multimerization, AMPs 
penetrate into the deeper layers of target cell surface. AMPs 
enter cells via membrane lytic or non-membrane lytic mode. 
Various models, viz., barrel stave model, toroidal model, 
and carpet models, have been identified for membrane lytic 
mechanism of AMPs (Fig. 2). In barrel stave model, AMPs 
adopt amphipathic conformation in the membrane to form a 
stave (spokes within barrel)-like structure which goes deep 
inside the membrane forming a stable pore-like structure 
that disrupts the membrane integrity [107]. Toroidal model 
is primarily shown by α-helical AMP molecules. The heli-
cal AMPs position parallel to the membrane, resulting in 
displacement of phospholipid groups. These cause break in 
hydrophobic regions and induce a strain on membrane. After 
attaining a threshold critical concentration, AMPs change 
their conformation perpendicular to the membrane and form 
toroidal pore complex [108]. In carpet model, AMPs initially 
bind to cell surface causing conformational change within 
them. After attaining threshold concentration, AMPs cover 
the surface of target cell in sheet/carpet-like manner, causing 
change in energy kinetics and fluidity of membrane which 
subsequently leads to membrane destabilization. In the final 
stage, AMPs saturate the cell membrane resulting in mem-
brane collapse into micelles.

Several models (aggregate channel model, sinking raft 
model, electroporation model) have been proposed for 
explaining non-membrane lytic action mechanism of AMPs 
(Fig. 2). In “aggregate channel model,” AMPs initially 
attract to the cell surface and consequently get inserted into 
the membrane. Following insertion, peptide conformed itself 
into unstructured aggregate that covers the membrane. These 
peptide aggregates associate with water molecules, thus 
leading to formation of channels through which ions and 
larger molecules get leaked. Some AMPs preferentially bind 
to specific lipid domains in the lipid membrane and thus 
causes imbalance in mass ratio. This imbalance increases 
membrane curvature of confined regions leading to peptide 
translocation. This phenomenon is referred to as sinking raft 
model, and is responsible for creating transient pores in the 
membrane through inducing mass imbalance in peptides of 
membrane leaflet [109]. Electroporation model proposes 
transient membrane pore formation under the influence of 
electric field. This only occurs when peptides have sufficient 
charge density to generate the electric potential of at least 
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0.2 V. This model explains the mechanism of entry opted 
by annexin V peptide [110]. Some peptides significantly 
disrupt cell membrane by forming lipid peptide domains. 
This phenomenon can be explained with the peptide-induced 
lipid segregation mechanism, where peptide induced the 
segregation of anionic components from zwitterionic lipids 
and can even cause the de-mixing of the anionic lipids in 
Gram-positive model membrane [111]. Arouri and cowork-
ers proposed that peptides can induce lipid segregation in 
PG/PE (phosphoglycine/phosphoethanolamine) membranes, 
which could be the specific action of these peptides on bac-
terial membrane and hence their killing [112]. Zhao and 
coworkers suggested that AMPs can act similar to some 
bacterial cytotoxin proteins and cytolysin [113]. Peptide 
bound to lipids acquires linear amphipathic structure with 
hydrophobic portion facing towards lipid bilayer, which 
enhances the insertion of lipid-protein complex in the mem-
brane. The hydrophilic face increases the hydrogen bond-
assisted self-multimerization between the proteins leading 
to the formation of long fibrils that confer cytotoxicity. The 
insertion of lipid-protein aggregates increases the positive 
curvature in the membrane which causes transient leakage in 
the cell membrane (leaky slit) and thus enhances membrane 

permeabilization. Finally, these fibrils acquire conformation 
of amyloid-like structure that spans the complete cell mem-
brane. This mechanism proved that the conformational flex-
ibility, amphipathicity, and propensity to fold are the basic 
properties that affect the toxicity of AMPs.

AMPs cause microbial cell death via disruption of cell 
membrane. Membrane disruption causes the leakage of 
cell contents to the surrounding and thus killing the cells. 
AMPs also target several other microbial cell components. 
Various cationic AMPs can bind to nucleic acid (anionic) 
due to electrostatic force of attraction. Buforins isolated 
from Bufo bufo gargarizans can bind to DNA. Buforin II, 
a 21-amino acid peptide, is able to induce membrane per-
meability in Gram-negative bacteria. Similarly, indolicidin 
(13-amino acid peptide) derived from cytoplasmic granules 
of bovine neutrophils attacks at a basic site of DNA, thus 
inhibiting its biosynthesis. Furthermore, it also binds to 
DNA topoisomerases, thus preventing DNA relaxation of 
replication fork [114]. Another AMP microcin 25 (mcc25 
or J25) isolated from the E. coli AY25 is a potent antibac-
terial peptide, particularly against Gram-negative bacteria. 
Microcin J25 binds to catalytic center of RNA polymerase 
and disrupts transcript elongation [115]. Lactoferricin B 

Fig. 2   Mechanism of action of the antimicrobial peptides by membrane lytic mechanism [A  barrel stave model, B  toroidal model, C carpet 
model] and non-membrane lytic mechanism, D aggregate model, E sinking raft model, F electroporation, and G leaky slit model]
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hinders bacterial growth by suppressing phosphorylation 
of the two-component system [116].

Application of Milk‑Derived Antimicrobial 
Peptides

AMPs with broad-spectrum activity against a wide range of 
pathogens are considered promising candidates for the devel-
opment of new bio-preservatives. AMPs have been shown to 
have a number of biological actions, including antibacterial, 
antiviral, antifungal, and anti-mitogenic effects, as well as 
anticancer and anti-inflammatory capabilities and the poten-
tial to modulate the immune system. Their broad spectrum 
of activity, effective antibacterial action, less susceptibility 
to resistance development, and potent immunomodulatory 
effects make them suitable to be used as an alternative to a 
wide range of regularly used bio-preservatives and medica-
tions [117]. During the past decade, application of antimi-
crobial peptides in food and pharmaceutical industries for 
designing safer and functional food/pharmaceutical options 
has gained immense interest.

Application in Food and Dairy Sector

Milk-derived AMPs can serve as promising alternative to 
chemical preservatives. Introduction of milk-derived AMPs 
may provide a new arena to food industry, which can ful-
fill the consumers’ demands without compromising indus-
trial interests. Several AMPs have been evaluated for their 
potential to inhibit foodborne pathogens in a number of 
food matrices such as dairy, meat, beverage, and fruit-based 
products. Recently, Yang and coworkers reported an anti-
microbial peptide from whey acidic protein (WAP) of large 
yellow croaker (Larimichthys crocea) [118]. The peptide 
LCWAP displayed MIC value of 15.6 µg/mL against Staph. 
aureus. The killing effect was due to the disruption of cell 
membrane integrity resulting in leakage of cell contents. 
The peptide had no cytotoxic effect on hepatocytic cells of 
human, but had strong inhibitory effect on the growth of 
Staph. aureus in milk. Similarly, a peptic hydrolysate of LF 
at a dose of ≤ 2 mg/mL under limiting conditions of tempera-
ture (4 °C) and pH 4.0 could restrict the growth of E. coli 
O157:H7 and Listeria monocytogenes in milk [119]. Earlier, 
Quinteri and coworkers established the potential of LFcin B 
in restricting the spoilage of mozzarella cheese from meso-
philic bacteria [120]. The presence of isracidin and kappa-
cin in Italian cheeses indicates the release of antimicrobial 
peptide by microbial proteases during cheese formation and 
ripening process [121]. Recently, a combination of LFcin B 
(0.5 mg/g) and high pressure (400–500 MPa) was reported 
to significantly control the population of Pseudomonas flu-
orescens ATCC948 [122]. On the other hand, lactoferrin 

has been incorporated in different food matrices such as in 
sausage batters [123], bologna [124], ground beef/meat frac-
tions [125], and fennel [126]. However, rapid degradation in 
food matrix poses the major limitation with AMP applica-
tion in food. Several milk-derived peptides such as casocidin 
and isracidin [127] and LFcin B were evaluated for their 
resistance against microbial proteolytic degradation using 
different starter cultures (Streptococcus thermophilus and 
Lact. delbrueckii subsp. bulgaricus strains). Long sequenced 
AMPs and chemical modification in sequences can help gen-
erate AMPs with reduce susceptibility to proteolysis.

The U.S. Food and Drug Administration (FDA) have 
conferred lactoferrin with Generally Recognized as Safe 
(GRAS) status since 2000. European Commission (EC) 
approved use of bovine Lf (bLf) in different food categories 
and documented its maximum levels under Regulation (EC) 
No. 258/97 [128]. Bovine lactoferrin has found its appli-
cation in infant milk formula, fermented and skim milks, 
yoghurts, drinks, and nutritional supplements [128–130]. 
In oil industry, lactoferrin was reported to decrease oxida-
tion of unsaturated fatty acids, thus enhancing shelf life of 
soybean oil powder. Lactoferrin also inhibit Dekkera bruxel-
lensis, yeast responsible for deteriorating wine quality [131]. 
Enrique and coworkers reported that LF f(17–31) peptide-
based approaches have potential to control the population 
of Saccharomyces cerevisiae and other spoilage wine yeasts 
(Cryptococcus albidus, Dekkera bruxellensis, Pichia mem-
branifaciens, Zygosaccharomyces bailii, and Zygosaccha-
romyces bisporus) and bacteria (Levilactobacillus brevis 
(formerly Lactobacillus brevis), Lactobacillus hilgardii, 
Pediococcus damnosus, and Oenococcus oeni) without 
compromising wine attributes [132–134]. Functional coat-
ing with immobilized lactoferricin B controlled the micro-
bial deterioration of cheese [120]. Del Olmo and coworkers 
showed that lactoferrin and its derivatives under hydrostatic 
pressure significantly control the bacterial (E. coli O157: H7 
and P. fluorescens) contamination in chicken fillet [135]. 
Taylor and coworkers demonstrated that spray application 
of bovine milk-derived lactoferrin on raw beef reduces the 
microbial contamination [136]. A commercial LF-based 
spray for control of bacterial contamination in beef dur-
ing carcasses processing was approved by the USDA–FSIS 
in 2008 (US Department of Agriculture Food Safety and 
Inspection Service). Barbiroli and coworkers used the com-
bination of lysozyme and lactoferrin on carboxyl-methyl cel-
lulose single use paper napkins, which effectively controlled 
growth of Listeria sp. [137]. In a similar study, cellulose 
film was coated with bLf and its antimicrobial activity was 
evaluated in packaging fresh sausage. The bLf-coated cel-
lulose film could effectively reduce E. coli and Staph. aureus 
[138]. Nakamura reported the antimicrobial, iron binging, 
and emulsifying properties of glycosylated Lactoferrin 
(gLf) [139]. Glycosylated Lf showed 1.29 times higher iron 
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binding and emulsification property than native lactofer-
rin and repressed the growth of E. coli in cottage cheese 
at 15 °C for a week. Lactoferrin is stable at pasteurization 
conditions and significantly maintains its storage stability 
and iron binding activity. LFcin displays better bactericidal 
over fungicidal activity [134]. Milk-derived AMPs can also 
serve as potential candidate to control the growth of food 
spoilage microbes in agriculture produces such as fruits and 
vegetables. In this context, LFcinB and LF f(17–31) were 
tested on mandarins to control the population of Penicillium 
digitatum, thereby paving a way to use AMPs to replace the 
fungicides [134].

Pharmacological Applications

Antimicrobial peptides do have application as pharmaceuti-
cal agent as visible by several convincing reports. However, 
only a few AMPs have reached industry as drug options. 
Kappacin (milk peptides) along with Zn2+ ion has been 
shown to have antimicrobial effect by inhibiting biofilm 
formation by oral cariogenic microorganisms [140]. Kappa-
cin and zinc ions are used as mouth wash solutions. Glyco-
macropeptide/kappacin and zinc at 1:15 produced compara-
ble effects to chlorhexidine commercial preparations against 
plaque formation on teeth. Likewise, lactoferricin-derived 
peptides showed immense antibacterial potential against 
Clostridium. Teraguchi and coworkers demonstrated ability 
of bovine lactoferricin (intact or hydrolyzed with pepsin) to 
control growth of Clostridium species under in vivo condi-
tions [141]. Mastitis, a mammary gland infection caused by 
Staph. aureus and Streptococcus species, is a big concern 
for dairy farming. Kawai and coworkers used infusion of LF 
hydrolysate in mastitis-infected cows [142]. They reported 
reduced somatic cell number on first infusion; however, the 
disease was eradicated in a total of 14 days. AMPs have 
good ability to cure systemic infection and subcutaneous 
infection caused by Staphylococcus spp., Pseudomonas 
spp., E. coli, and Candida spp. Intramuscular injection of 
isracidin showed protective action on mice subcutaneously 
infected with Staph. aureus, L. monocytogenes, and Strepto-
coccus pyogenes (M3) and these protective effects lasted for 
5 months. Recently, Elnagdy and Alkhazindar proposed that 
lactoferrin has the ability to enhance host immunity against 
viral infections, such as SARS-CoV [143]. Lactoferricin can 
serve as first line of defense against microbial infections as 
it is an important constituent of human and bovine milk. 
Lactoferricin hLF f(1–11) exhibited good antifungal activity 
against fluconazole resistant Candida species [144].

Recently, administration of hLF(1–11) at a rate of 40 µg/
kg in MRSA-infected (20-h infection) neutropenic mice 
showed 15–60 fold cell reduction within 2 h irrespective of 
mode of administration (intravenous, intra-peritoneal, subcu-
taneous, or oral injections). However, dose-dependent effects 

were observed with increasing intravenous dosage. During 
the first phase of clinical trials, hLF(1–11) at a dose of up 
to 5 mg was found to be safe and well tolerated by health 
individuals [145]. The drug is in its second phase of clinical 
trial that includes testing on risk patients. Till now, LFcin 
B was known as potential peptide characterized with low 
MIC values and broad-spectrum activities in vitro. However, 
the claim is supported by limited in vivo studies [146]. The 
broad-spectrum activities such as anti-pathogenic, antican-
cer, and anti-inflammation characterized by LFcin B make 
it prime target for the development of drug molecules and 
functional foods. The antibacterial activity of milk sample 
supplemented with 1.5% whey protein concentrate and fer-
mented with Lacticaseibacillus rhamnosus (formerly Lac-
tobacillus rhamnosus (NS4)) was attributed to antimicrobial 
peptide (ETVPYMFEN) which was identified as lactoferrin 
that blocks the entry of bacteria by binding to the surface 
receptors [147]. The analysis of ionic fraction of buttermilk 
peptide revealed that antimicrobial activity was key charac-
teristic of cationic peptides; on the other hand, anionic and 
neutral peptides were inefficient against Salmonella enterica 
[148]. Any modification in the peptide structure can invari-
ably alter the function of peptide. Alvarez-Ordonez and cow-
orkers modified αS2-casein (183–207) peptide by c-terminal 
pentapeptide truncation followed by substitution of alanine 
at position 23 with arginine and loss of lysine, which signifi-
cantly reduced the antibacterial activities against L. monocy-
togenes and C. sakazakii. On the other hand, modification of 
αs2-casein f(193–203) and αs2-casein f(197–207) peptides 
with hydrophobic end tagging statistically enhanced the anti-
microbial activities against L. monocytogenes [149].

Moreover, due to its specific properties, lactoferrin has 
become the choice of ligand and component to drug deliv-
ery system. It is extensively used in targeted drug delivery 
system for intravenous administration for encephalopathy 
[150], as well as hepatic [151] and pulmonary tumors [152]. 
This phenomenon owes to the ability of lactoferrin to act 
as ligand that can cause modification in nano-carriers and 
can cross blood–brain barrier through lactoferrin receptor-
mediated transcytosis [153]. Owing to proteolytically stable 
structure of lactoferrin, it can withstand the gastrointestinal 
environment and thus can be exploited for the development 
of oral delivery system drugs [154].

With respect to clinical application, there are a number 
of AMPs, which are not from milk origin but are well stud-
ied singly or in association with some antibiotics against 
multi-drug-resistant bacteria with positive outcomes. In a 
recent study, it was observed that the use of AMPs alone 
or in combination with conventional drugs is effective in 
combating different infectious agents, especially multi-
drug-resistant bacteria. In one such study, a combined 
action of natural AMPs with different structures and modes 
of action with varied antibiotic agents including gentamicin, 
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ofloxacin, oxacillin, rifampicin, and polymyxin B toward 
selected bacteria was examined [155]. Akbari et al. [156] 
also studied the synergistic effect of antimicrobial peptides 
and antibiotics against multi-drug-resistant isolates of Aci-
netobacter baumannii and P. aeruginosa and reported a 
significant reduction in minimal inhibitory concentration of 
these organisms. Another study demonstrated SAAP-148 
(synthetic antimicrobial peptide) as a promising compound 
against antibiotic-resistant bacteria. A single 4-h treatment 
with SAAP-148 containing ointment eradicated infections 
with methicillin-resistant Staph. aureus and MDR A. bau-
mannii [157]. Conlon et al. [158] discovered that acyldep-
sipeptide (ADEP4) effectively activated the ClpP protease, 
having the ability to degrade more than 400 proteins, thereby 
forcing cells to digest themselves and killing persister cells. 
When combined with rifampicin, ADEP4 eliminated Staph. 
aureus biofilms in vitro and treated deep leg infection in 
mice. As an increasing body of research keeps on suggesting 
the development of drug resistance in microorganisms, it is 
becoming crucial and difficult at the same time to develop 
alternative antimicrobial compounds. The use of antimicro-
bial peptides provides a golden opportunity to develop the 
potential antimicrobial peptide drug candidates that can be 
used effectively in place of traditional antibiotics. The FDA 
has also approved the use of several AMPs in clinical appli-
cations (Table 3) [159]. AMPs derived from milk can also 
be explored further for their antimicrobial activity and can 
be considered to be as a potent alternative to antibiotics.

Conclusion

In modern world of functional and safe food options, 
milk serves as an important source for the production 
of antimicrobial bioactive peptides. The application of 
AMPs in food animals and food matrices is regarded as 
safe alternative to antibiotics and food preservatives. 
Addition of AMPs in food matrices can not only replace 

chemical preservatives but also enhance shelf life with-
out compromising the quality and nutritional aspect of 
food. Unlike antibiotics and various food preservatives, 
AMPs do not pose risk of resistance development in 
pathogenic microbes, and thus can serve as resourceful 
alternative against the global threat of antibiotic resist-
ance. The commercialization of AMP in food matrices 
and pharmacological products requires an elaborated 
assessment of safety measurements through human clini-
cal trials, which can prove their efficacy and safety. Till 
now, only a few studies have been attempted to assess 
the safety aspects of antimicrobial peptides. Therefore, 
a detailed understanding of the mechanism and safety 
aspects of the magical milk-derived AMPs can pave 
the way towards the development of functional and 
safe options for food preservation and pharmaceutical 
formulations.
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