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Abstract
Synbiotics are preparations in which prebiotics are added to probiotics to achieve superior performance and benefits on the 
host. A new route of their formation is to induce the prebiotic biosynthesis within the probiotic for synbiotic self-production 
or autologous synbiotics. The aim of this review paper is first to overview the basic concept and (updated) definitions of 
synergistic synbiotics, and then to focus particularly on the prebiotic properties of probiotic wall components while describ-
ing the environmental factors/stresses that stimulate autologous synbiotics, that is, the biosynthesis of prebiotic-forming 
microcapsule by probiotic bacteria, and finally to present some of their applications to human and animal health.
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Introduction

Synbiotics are “a mixture comprising live microorganisms 
and substrate(s) selectively utilized by host microorganisms 
that confers a health benefit on the host.” Two types of syn-
biotics have to be distinguished: (a) complementary synbi-
otics, which consist of a probiotic combining with an inde-
pendently active prebiotic, and (b) synergistic synbiotics, in 
which the substrate is designed to be used selectively by the 
co-administered microorganism [1]. The synergistic effect of 
synbiotics is demonstrated by inhibiting the growth of patho-
genic bacteria [2] and promoting the growth of beneficial 
organisms [3]. The term “probiotic” is designated for bac-
teria as well as some yeasts that can live until reaching the 

gut, and have beneficial effects on the host health. Among 
the microorganisms considered probiotics, lactic acid bacte-
ria (LABs) are the most common probiotics known to have 
beneficial effects on the gastrointestinal tract [4]. Prebiotics 
are a group of non-digested substrates selectively utilized by 
host microorganisms conferring a health benefit [5]. Initially, 
it mainly consists of carbohydrate-based substances such as 
of fructans, galactans, beta-glucans, and exopolysaccharides 
(EPSs), leading to the formation and regulation of the host 
gut microbiota [6, 7]. However, substances such as polyphe-
nols and polyunsaturated fatty acids converted to respective 
conjugated fatty acids may be considered prebiotics when 
there is an adequate evidence of their health benefits for the 
target host, according to the updated definition.

To improve host health through the beneficial activity of 
bacteria, it must be ensured that probiotic cell survival in any 
type of formulation should achieve a certain density depend-
ing on the expected dose–response effects for each strain 
[8, 9]. However, for ease of use, the probiotic ingredients 
are usually in a dried form. During the production, storage, 
and powder digestion, the bacteria may experience a variety 
of stresses, which can affect their survival and beneficial 
effects [10]. Importantly, ensuring the survival of probiotics 
needs to be considered when they were transported through 
the harsh acidic environment of the stomach to reach the 
target site, hence allowing adequate colonization and pro-
liferation [11]. Protecting probiotics into macromolecular 
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microcapsules successfully help them to survive from the 
harsh [12] and changing conditions of the gastrointestinal 
tract [13, 14]. The microencapsulation technique also stabi-
lizes probiotics during storage at various temperatures and 
can significantly extend the cell shelf life [15–17].

It has been proven that probiotic strains such as Lac-
tobacilli, propionibacteria, and bifidobacteria experience 
membrane injury under various stresses [18], such cell 
membrane acting as a barrier against adverse environmen-
tal conditions. In response to these challenges, bacteria are 
able to adopt various mechanisms. These include internal 
changes expressed by overexpression of molecular chaper-
ones as well as the synthesis of stress-resistant proteins, and 
extrinsic changes through enhancing the synthesis of cell 
wall components such as membrane lipids, peptidoglycans 
(PGs), S-layer proteins, and EPSs [10]. Numerous studies 
have indicated that probiotic bacteria enhance the synthesis 
of EPSs, forming a protective envelope around the cells, 
so-called capsules, under environmental challenges [19, 20].

The current review outlines, on one hand, the basic con-
cept of synbiotics and their various applications, and on the 
other hand, the prebiotic properties of probiotic wall compo-
nents. A particular attention will be focused on the potential 
use of environmental stresses stimulating autologous synbi-
otics, that is, the biosynthesis of prebiotic-forming micro-
capsule by probiotic bacteria.

Synbiotic Composition and Definitions

Basically, synbiotics are composed by probiotics and prebiot-
ics in the same preparation [2]. Probiotics are live microor-
ganisms including bacteria and yeast that have been shown to 
have beneficial effects on the host health [21, 22] and gastro-
intestinal function [22], and may contain one or more selected 
strains. Bacillus, Enterococcus, Lactobacillus, Pediococcus, 
and Streptococcus as well as some fungi and yeast strains such 
as Saccharomyces cerevisiae and Kluyveromyces are various 
examples of microbial genera recognized as probiotics [22]. 
Prebiotics are a group of nutrients capable of stimulating the 
growth of probiotic bacteria [23]. Various compounds which 
have been functionally identified as prebiotics are fructo- 
oligosaccharides (FOS), galacto-oligosaccharides (GOS), 
trans-galacto-oligosaccharides, short-chain fatty acids, pepti-
doglycans [23], and EPSs [24]. Previously, synbiotics were 
simply a combination of probiotics and prebiotics [3, 25] 
and required that each independently provides health ben-
efits, which are dependent on the dose of each component. 
[5]. However, a more general definition has been given by the 
International Scientific Association for Probiotics and Prebiot-
ics (ISAPP), which defines synbiotics as “a mixture compris-
ing live microorganisms and substrate(s) selectively utilized by 
host microorganisms that confers a health benefit on the host.” 

According to this formula, the microbial composition is not 
necessarily an independent probiotic, and the non-digestible 
substrate is not necessarily an independent prebiotic, but if 
they confer a health benefit, the mixture can be called a syn-
ergistic synbiotic [26].

Synbiotic formulation simply includes two main com-
ponents of a living microorganism and a certain substrate 
(Fig. 1). The combination of these ingredients into a synbiotic 
will provide better health benefits than the individual ingredi-
ents. The next section treats the mechanism of action of such 
a combination.

Synergistic Synbiotics

The synergistic effect of probiotics and prebiotics in synbiotics 
confers host health benefits. For complementary synbiotics, 
the probiotic and prebiotic ingredients can act independently 
and must meet minimum dosage criteria to achieve one or 
more health benefits [26]. However, both prebiotics and probi-
otics function optimally when they are combined. These syn-
ergistic benefits enhance the therapeutic and nutritional value 
of products containing these components [27, 28]. Therefore, 
prebiotics should be comprehensively characterized to evaluate 
not only their fermentability, but also their influences on pro-
biotic properties likes adherence, because enhanced adhesion 
can prolong the residence time of bacteria in the gastrointesti-
nal tract [29]. In meanwhile, probiotics confer positive effects 
on health by impacting the resident microbiota, intestinal epi-
thelium cells, and the host immune system [30]. In addition, 
probiotics can use prebiotics as a source of nutrients, helping 
them stay longer in the gut [31]. This probiotic higher viability 
facilitates the delivery of the expected health benefits [27, 32]. 
Thus, the combination of both probiotic and prebiotic ingre-
dients in a product will ensure superior efficacy compared to 
using them independently [33].

For synergistic synbiotics, substrates are designed for selec-
tive use by co-administered microorganisms, whereas live 
microorganisms are selected based on their ability to provide 
health benefits and to support the growth as well as activity of 
selected microorganisms [27]. Although the substrate may also 
enrich other beneficial members of the gastrointestinal micro-
biota, its primary target is the ingested microorganisms [27]. 
However, designing and demonstrating the efficacy of a syner-
gistic synbiotic is an experimental challenge. Therefore, many 
of the commercial synbiotics used in clinical trials and nearly 
all synbiotics used in commercially available clinical trials are 
mostly in complementary synbiotics [34]. The mechanism of 
action of synbiotics can be described in Fig. 2.

Fig. 1  The formulation of a synbiotic
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When combining as a synbiotic, prebiotics play a role in 
improving the survival of probiotics [35]. It is not surpris-
ing that the components involved in the construction of the 
cell wall also have a similar function, contributing to the 
enhancement of the probiotic properties of beneficial bac-
teria. In addition, some ingredients such as EPSs have been 
proven to exhibit prebiotic activities [24].

Probiotic Bacterial Cell Wall Containing 
Prebiotic Components

LAB is the most common group of probiotic bacteria [4]. 
The cell wall of LAB is composed of a thick PG sacculus 
(multi-layered) that surrounds the cytoplasmic membrane 
and is embedded with teichoic acids, lipoteichoic acids, 
proteins, and polysaccharides [36] (Fig. 3). Each cell sur-
face macromolecule impacts the probiotic activity of LAB 
because it is involved in the interaction between bacteria 
and the host [37]. The PG layer is an essential component 
which protects cell integrity and resists lysis [38, 39]. In 
addition, other cell wall components such as teichoic acids, 
lipoteichoic acids, S-layer proteins, and polysaccharides are 
non- or covalently bound to PGs which serve as a perma-
nent framework for these components [38]. The chemical 

structure of PGs consists of glycan chains interspersed with 
N-acetylglucosamine and N-acetylmuramic acid linked via 
β-1.4 linkage. The peptide chain is covalently linked via the 
N-terminus to the lactyl group of N-acetylmuramic [36]. 
The negatively charged polymers covalently bonded to PGs 
were identified as teichoic acids, or directly attached to the 
cytoplasmic membrane were identified as lipoteichoic acids 
(LTAs) [36].

The basic structure of teichoic acids (TAs) consists of 
repeating units of polyglycerol phosphate or polyribitol 
phosphate depending on various conditions such as species, 
stage or growth rate, pH of the medium, carbon source, and 
the presence of phosphate that the structure and abundance 
of this polymer can be different [40, 41]. Different roles are 
assigned to TAs, at least concerning their anionic proper-
ties or their distribution in the bacterial cell wall. TAs pro-
vide a reservoir of ions close to the cell wall that may be 
necessary for enzymes to function properly. Due to their 
anionic properties, TAs can bind both cations, such as  Mg2+ 
and protons, thereby creating a pH gradient across the cell 
wall. TAs and their substitutes are crucial for the control of 
autolysis in certain species of Gram-positive bacteria [41]. 
LTAs were originally considered autolysin inhibitors. By 
determining the number of binding sites for autolysin cati-
ons, their D-alanylation level has also been proposed as a 
means of regulating autolysation [41]. LTAs appear to play 
a prominent role in host-Lactobacilli interactions [42]. LTAs 
have been reported to be essential for the adhesion of Lac-
tobacillus johnsonii La1 to human intestinal epithelial cells 
(Caco-2), possibly through hydrophobic interactions [43].

Another important component of the LAB cell wall is 
surface proteins, which can be large or small, and consist of 
repeat domains or discrete domains [39]. One of the impor-
tant surface proteins called the S-layer is tightly bound to 
PGs [40]. The surface proteins of probiotic or commensal 
bacteria are thought to facilitate the colonization and per-
sistence of mucosa in the gastrointestinal tract. It has been 
suggested that the S-layer proteins may be involved in the 
adhesion properties of LAB to the intestinal epithelium and 
other extracellular complex components [44, 45].

Finally, the cell wall surface of probiotics contains poly-
saccharides [39]. These polysaccharides can covalently bind 
to PGs called capsule polysaccharides or secrete directly into 
the external environment called exopolysaccharides; they 
are sometimes collectively named EPSs [39]. Several roles 
have been assigned to EPSs in LAB such as in bacterial-host 
interactions. EPSs are required for normal cell morphology 
and play a role in cell division [46]. In addition, EPSs are 
also involved in a wide range of bacterial properties and 
functions, including adhesion to abiotic surfaces and bio-
film formation [36]. EPSs have also been shown to protect 
Lactococcus lactis against macrophage phagocytosis [46]. A 
Lacticaseibacillus casei Shirota mutant synthesizing lower 

Fig. 2  Mechanism of action of synbiotics

Fig. 3  Structure of the probiotic cell wall
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levels of high-molecular-weight EPSs produced higher 
levels of cytokines IL6, IL10, and IL12 after being co-
incubated with mouse macrophages in vitro. These results 
highlight the immunosuppressive function of EPSs [47]. 
The monosaccharide composition in EPSs influences their 
protective efficacy. The galactose-rich EPSs of Lacticasei-
bacillus rhamnosus GG protect against host innate defense 
molecules, such as the antimicrobial peptide LL-37 [48].

Environmental Stress Factors Enhancing 
the Prebiotic Self‑Producing Probiotics

In response to extreme environmental conditions, probiotics 
can strengthen their cell wall by enhancing the synthesis of 
S-layer proteins, peptidoglycans, and EPSs. As a result, the 
cell wall becomes thicker forming a protective microencap-
sulation. The following reviews will be more specific about 
the effects of environmental stresses on cellular mechanisms 
for improving survival.

The Synthesis of Internal Stress‑Resisting Factors

Probiotics LAB can survive at high temperatures from 45 to 
80 °C [49]. Grujović et al. reported that Limosilactobacil-
lus fermentum (KGPMF28 and KGPMF2) was capable of 
growing at 45 °C for 24 h [50]. The viability of LAB at high 
temperatures is a very important criterion for the selection of 
LAB species as starter cultures and probiotics. At high tem-
peratures, biomolecules such as proteins and nucleic acids 
can be degraded and lost their function, leading to the inhibi-
tion of metabolism [51]. High temperatures can also increase 
the fluidity of cell membranes, thereby disrupting cellular 
activities [52]. To avoid denaturation and degradation, LAB 
have multiple adaptive mechanisms including increased pro-
duction of specific proteins [53]. These proteins include heat 
shock proteins, the chaperone protein DnaK prolyl-tRNA 
synthetase, chaperonins (GroEL), and cofactors (GroES) that 
play important roles in promoting the correct folding and 
subsequent translocation of newly synthesized polypeptides 
[54]. In addition, under heat stress conditions, LAB increase 
the synthesis of saturated and straight-chain fatty acids, pro-
viding the appropriate amount of fluidity required for mem-
brane functions [55]. The expression of DNA-binding pro-
teins is another way to protect biomolecules like DNA which 
is through the expression of DNA-binding proteins [56].

The ability of probiotics to maintain viability in cold is 
vital due to most commercial probiotic strains be supplied 
as lyophilized powders [57]. The viability of probiotic LAB 
during freeze-drying and storage before consumption is a 
determinant of their probiotic properties [58]. LAB cope 
with the effects of low temperatures by creating antifreeze 
and cold shock protein that ameliorate the harmful effects 

associated with cold environments [59]. LAB are known to 
be capable of synthesizing cold-adapted enzymes to remain 
active at freezing temperatures and support both transcrip-
tion and translation [60]. Some LABs also produce antico-
agulant proteins which bind to ice crystals to prevent them 
from penetrating cells [61].

Strengthening acid tolerance is crucial to promoting LAB 
survival and therefore ensures the quality and functional-
ity of probiotics products. Acidity is one of the important 
barriers that LAB need to deal with to survive the passage 
from the stomach to the intestines. Probiotic LAB can expe-
rience extreme acid stress conditions in the stomach due to 
the presence of hydrochloric acid. However, some LAB are 
equipped with mechanisms that allow them to survive at low 
pH conditions [62]. Consequently, to qualify as a probiotic, 
LAB must have the ability to survive under the pH condi-
tions of the gastrointestinal tract [63]. It is fortunate that 
LAB are equipped with molecules to protect against cell 
damage and improve tolerance to the harmful external envi-
ronment [64, 65]. One such protective molecule secreted by 
LAB during fermentation is a proton-translocating ATPase 
[66], which stabilizes the pH inside the cell in response to a 
low external pH [67].

Under alkaline conditions, LABs regulate their intra-
cellular pH by alkalizing the cytoplasm [68]. Zhang et al. 
proved that  K+ and  Na+ proton antagonists lower cytoplas-
mic pH undergrowth in alkaline conditions [69].  K+ ions 
are required for LAB protection under alkaline pH because 
the expression of soluble shock proteins is activated by 
 K+ [70].

Probiotic LAB are often subject to osmotic pressure caus-
ing dehydration. To tolerate such changes, probiotics have 
developed systems to protect against osmotic stress. During 
growth in a highly osmotic medium, LABs regulate their 
intracellular osmolarity to maintain osmotic balance with the 
outside. Probiotic bacteria activate specific mechanisms such 
as  K+ or compatible solute uptake/synthesis to prevent cell 
death in media with high salt concentrations. Probiotic bac-
teria also produce protective molecules (mainly proteins), 
such as the operon proteins DnaK and HtrS, protecting cells 
from salt-induced damage [71].

S‑Layer Proteins

Bacteria are surrounded by extracellular polymeric sub-
stances such as EPSs and proteins, which allow bacteria to 
exist with their different physicochemical states of modes 
of organization [72]. The surface properties of probiotic 
LABs are related to their ability to adhere to the gastroin-
testinal epithelium, a condition considered a prerequisite 
for the exclusion of enteric pathogenic bacteria [73, 74] 
and the regulation of host immunity [75]. Several species 
of Lactobacillus including mucosa-associated species such 

983Probiotics and Antimicrobial Proteins  (2022) 14:980–993

1 3



as Lactobacillus crispatus, Lactobacillus acidophilus, and 
Lactobacillus gallinarum as well as species related to milk 
fermentation such as Lactobacillus kefiranofaciens and 
Lactobacillus helveticus can form S-layer proteins which 
participate in the outermost structure of the cell envelope. 
These S-layer proteins are involved in critical cell func-
tionalities such as maintaining cell shape, controlling the 
transfer of nutrients and metabolites, promoting cell adhe-
sion, and acting as a protective barrier against adverse envi-
ronments [76]. In some species of Lactobacillus, S-layer 
proteins mediate bacterial attachment to the extracellular 
matrix or the host cells [77]. There is evidence that bacteria 
can express alternative S-layer protein genes in response to 
different stresses, for example, the host immune response 
to pathogens dramatic changes in environmental conditions 
for non-pathogenic agents [78, 79].

It has been suggested that the surface properties of bac-
teria depend on the growth conditions and the composition 
of the culture medium [80]. A recent study showed that the 
probiotic strain Lactiplantibacillus plantarum 299v in the 
human intestine specifically regulates its metabolic capac-
ity to acquire carbohydrates, synthesize EPSs, and express 
surface proteins [81]. Certain stressful conditions can also 
induce S-layer proteins by L. acidophilus IBB 801, presum-
ably helping to increase the viability of this strain under 
adverse culture conditions. Proteomic studies have provided 
information on proteome changes when L. acidophilus IBB 
801 is subjected to thermal stress [82]. The role of S-layer 
proteins in the adaptation of L. acidophilus ATCC 4356 to 
high salt-induced osmotic stress was also demonstrated. The 
pre-adaptation to high salt conditions favors the probiotic 
nature of L. acidophilus ATCC 4356 because the increased 
number and the release of S-layer proteins may be consistent 
with its antimicrobial potential [71].

Peptidoglycans

Peptidoglycans play an important role in the survival and 
growth of probiotics as well as in the regulation of host 
immune responses [83]. This represents a potential charac-
terization as a prebiotic of PGs. PGs derived from L. rham-
nosus MLGA are able to induce the antimicrobial peptide 
defensin while simultaneously avoiding the harmful risks 
of inflammatory reactions [84]. Under lethal pH, the MurC 
and GalE1 proteins involved in peptidoglycan synthesis are 
upregulated in response to acid stress [85]. In addition, pre-
vious transcriptome analysis revealed that inducing pepti-
doglycan synthesis is a strategy that enhances cell wall  H+ 
blocking in Bifidobacterium [86]. The production of PGs in 
the cells was significantly higher under low pH conditions. 
This suggested that the cell wall of the adapted cells has 
improved integrity and strength [87].

Exopolysaccharides

LAB’s EPSs are important biopolymers, which are widely 
used in food and pharmaceuticals, and act as prebiotic. 
Among prebiotics, EPSs were examined for their prebiotic 
activities [24]. It has also been indicated that the EPSs pro-
duced by LAB are able to inhibit the formation of biofilms 
via certain pathogenic bacteria [88]. Glucan-type EPSs iso-
lated from Levilactobacillus brevis ED25 have potential as 
a prebiotic which stimulates the growth of Lactobacillus GG 
[89]. A previous study reported that the EPSs produced by L. 
plantarum, Weissella cibaria, Weissella confusa, and Pedio-
coccus pentosaceus can be utilized (as carbon source) by 
Bifidobacterium bifidum DSM 20456 [90]. The metabolic, 
physiological, and cell surface properties of probiotic bacte-
ria can be altered under exposure to stressful gastrointestinal 
conditions, thereby affecting the production of colonization 
factors such as EPSs. As a result, their ability to adhere to 
the intestinal epithelium is significantly affected [91]. The 
production of EPSs in LAB can be stimulated by various 
environmental stresses [92]. Probiotic LAB enhance EPS 
synthesis making a physical barrier to protect cells from 
adverse environmental conditions [93]. There is evidence 
that sub-lethal thermal stress improves the survival of B. 
bifidum by enclosing the EPS layer around the cells [94]. 
A recent study also showed that there is an enhancement of 
EPS synthesis in L. plantarum VAL6 under stress conditions 
of pH and sodium chloride [20].

Synbiotics Applications

Synbiotics are currently considered one of the important 
approaches to better maintain human and animal health by 
preventing and lowering the risk of disease. There is evi-
dence that synbiotics influence the microbial ecology of 
the intestinal tract and play a role in alleviating various dis-
eases [3, 95]. These studies suggested that synbiotics can  
modulate the Firmicutes/Bacteroidetes ratio as well as 
inhibit harmful bacteria by direct antagonism, competitive  
exclusion, microbiota recovery healthy intestinal flora accel-
eration, e.g., maintaining the pH of the intestine, producing 
important metabolites, and promoting the restoration of the 
intestinal mucosal barrier. Furthermore, synbiotics have the 
potential to help fight multidrug-resistant microorganisms 
[96–98].

In humans, the effects of synbiotic supplementation were 
also studied in patients with chronic kidney disease [99], 
nonalcoholic fatty liver disease [100], autoimmune dis-
ease [101], diarrhea [102], and metabolic syndrome [103]. 
Although studies on the effects of synbiotics on livestock 
health and performance are still limited, it is worth mention-
ing that health impacts will likely depend on the combination 
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of synbiotics and seem to be promising for the regulation of 
gut microbiota composition [104]. The beneficial effects of 
synbiotics have also been extensively studied in poultry and 
aquatic animals [2, 105]. The results of the in vivo trials 
performed are promising. Furthermore, recent developments 
in the application of synbiotics have significantly focused 
on evaluating their beneficial effects on animal health and 
performance (Table 1).

Recent studies have shown that the use of synbiotics is 
a promising approach to strengthen the immune system of 
chickens. The combination of probiotics and prebiotics can 
improve the survival and persistence of health-promoting 
organisms in the poultry gut because the substrate for fer-
mentation is readily available [129]. Bodyweight gain and 
feed efficiency were significantly improved by the synbiotic 
treatment, and it is therefore recommended that synbiotics 
can be used as non-antibiotic growth promoters to improve 
the growth index in poultry [130].

Dietary and water-based probiotics and prebiotics 
together with synbiotics supplements are most beneficial 
for the control or treatment of bacterial, viral, and parasitic 
diseases in aquaculture. The effectiveness of these supple-
ments has been determined by enhancing immune responses, 
stimulating the production of antimicrobial agents, altering 
the gut microbiota, competing for nutrients and binding 
sites, and conducting enzyme-related activities [131].

It is evident that most of the synbiotics used are mixtures 
of one or more strains of live microorganisms with one or 
more prebiotics, mainly FOS, GOS, and MOS (Table 1). 
Prebiotics appear to be used in this combination to help 
probiotics survive during the passage through the upper 
digestive tract while also impacting the intestinal microflora 
positively [132]. However, it has been reported that exces-
sive intake of prebiotics, especially oligosaccharides such 

as FOS and GOS, could cause bloating owning to their fer-
mentation in the colon [133]. In addition, prebiotics, in this 
case, also failed to protect during the production of probiotic 
powder before being incorporated into synbiotics. Therefore, 
the prebiotic biosynthesis within the probiotic for synbiotic 
self-production is a promising alternative.

Future Outlook

It should be noted that the positive health effects of probiot-
ics and prebiotics are highly dependent on their appropriate 
combinations, which is necessary to consider the protective 
potential of prebiotics to probiotics. To further improve the 
efficiency of synbiotic utilization and to ensure their stabil-
ity and viability, different strategies have been applied such 
as microencapsulation [134]. In addition, environmentally 
adaptive treatment is also a potential strategy to enhance 
the survival rate of probiotics and promote their functional 
properties in synbiotics [135]. Approaches using environ-
mental adaptation to enhance the synthesis of prebiotic char-
acterized components on the cell wall that improve bacterial 
viability have been discussed. According to the study results, 
it is possible to propose a model for enhancing synbiotics by 
applying environmental stresses (Fig. 4). In particular, expo-
sure of probiotic strains to environmental challenges can 
trigger the reprogramming of cellular mechanisms for cell 
wall biosynthetic pathways, leading to microencapsulation 
with ingredients featured in prebiotics. Probiotics change 
the properties of the cell wall by producing more surround-
ing polysaccharides, S-layer proteins, peptidoglycans, and 
lipoteichoic acids in response to environmental challenges 
such as temperature and pH. As a result, living microbial 
cells contain both components characteristic of synbiotics.

Fig. 4  Proposed model for the 
enhancement of cell wall com-
ponents in probiotic bacteria. 
Environmental stresses trigger 
the reprogramming of the cel-
lular mechanism for cell wall 
biosynthesis pathway, resulting 
in increased synthesis of prebi-
otic characterized components 
such as EPSs, S-layer, and 
peptidoglycan
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Conclusions

Synbiotics have been shown to provide positive health ben-
efits through the synergistic effect of prebiotics and probiot-
ics. For maximum effectiveness, there is one aspect to con-
sider that is the proper combination of these two ingredients 
and the viability of the product to achieve its goals. Using 
environmental stress adaptation may be a promising strategy 
to positively alter the biosynthesis of cell wall components 
to enhance survival. As a result, the probiotic strain fully 
exhibits the characteristics of a synbiotic with high viability 
by the protection of its microencapsulation which contains 
the prebiotic characterized components.
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