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Abstract
The excess use of antibiotics has led to the evolution of multidrug-resistant pathogenic strains causing worldwide havoc. 
These multidrug-resistant strains require potent inhibitors. Pseudomonas aeruginosa is a lead cause of nosocomial infections 
and also feature in the critical priority list of the world health organization (WHO) for the development of new antibiotics 
against their antimicrobial resistance. Antimicrobial peptides (AMPs) found in almost every life form from microorganisms 
to humans are known to defend their hosts against various pathogens. Owing to the diversity of the human microbiome, in 
this study, we have identified the cell-penetrating AMPs from the human microbiome and studied their inhibitory activity 
against the outer membrane protein OprM of the MexAB–OprM, a constitutively expressed multidrug efflux pump of the Ps. 
aeruginosa. Screening of the AMPs from the human microbiome resulted in the identification of 147 cell-penetrating AMPs 
(CPAMPs). The virtual screening of these CPAMPs against the OprM protein showed significant inhibitory results with 
the top docked AMP showing binding affinity exceeding −30 kcal/mol. The molecular dynamic simulation determined the 
interaction stabilities between the AMPs and the OprM at the binding site. Further, the residue interaction networks (RINs) 
are analyses to identify the inhibitory patterns. Later, these patterns were confirmed by MM-PBSA analysis suggesting that 
the AMPs are majorly stabilized by electrostatic interactions at the binding site. Thus, the high binding affinity and insights 
from the molecular interaction signify that the identified CPAMPs from the human microbiome can be further explored as 
inhibitory agents against multidrug-resistant Ps. aeruginosa.
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Introduction

The twentieth-century, golden age of the antibiotic era has 
witnessed the discovery of about half of the antibiotics used 
today helping cure dreadful bacterial infections saving mil-
lions if not billions of lives. Speaking of life, survival of the 
fittest has always played a prominent role in evolution. Due 
to the misuse and abuse of antibiotics, the disease-causing 
microbes rapidly evolved to survive the antibiotic use result-
ing in the emergence of antibiotic and multidrug-resistant 
bacterial strains. According to a recent UN committee 
report, about 700,000 people die each year globally due to 
drug-resistant bacteria. By 2030, it is estimated that drug-
resistant bacterial strains may kill up to 10 million people 

each year threatening us of a post-antibiotic era where a 
minor infection could prove deadly. The recent report of 
WHO also states that the development of new antibiotics 
against antimicrobial-resistant Acinetobacter baumannii, 
Pseudomonas aeruginosa, and Enterobacteriaceae is of 
critical priority.

Adding to this, the shocking fact of pharmaceutical indus-
tries losing enthusiasm in developing antibiotics due to the 
rapid development of antibiotic resistance by bacteria will 
surely send chills through our spine. Given this, to combat 
antibiotic resistance, researchers are targeting the bacterial 
mechanism of antibiotic resistance. It is studied that the four 
major mechanisms of antibiotic resistance in a bacterial cell 
are (i) altering the cellular permeability to prevent the entry 
of antibiotics, (ii) modifying the antibiotic targets to ren-
der them to be ineffective, (iii) inactivating the antibiotics 
through enzymatic action, and (iv) expression or overexpres-
sion of efflux pumps to pump out antibiotics [1].
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Classified into six families, namely, the ATP-binding 
cassette (ABC) superfamily, the major facilitator superfam-
ily (MFS), the multidrug and toxic compound extrusion 
(MATE), the small multidrug resistance (SMR) family, the 
resistance-nodulation-division (RND) superfamily, and the 
drug metabolite transporter (DMT) superfamily [2], it is 
studied that efflux pumps constitute the most ubiquitous type 
of antimicrobial resistance in all organisms [3, 4].

Coming to the innate antimicrobial resistance, almost all 
the organisms from simple single cellular to complex mul-
ticellular microbes produce antimicrobial peptides (AMPs) 
showing innate defense activities [5]. Studies suggest these 
AMPs are known to show high potency towards antibacte-
rial activity with functions ranging from wound healing to 
immune modulation [6].

With P. aeruginosa being a leading cause of nosocomial 
infections amounting to about 10% of all hospital-acquired 
infections [7, 8], In this study, we focus on the identification 
of inhibitors for the efflux pumps that act as determinants of 
resistance from bacterial strain Ps. aeruginosa using antimi-
crobial peptides through an in-silico approach. Owing to the 
diverse ecological community of the human microbiome, we 
considered the AMPs from the human microbiome that was 
identification in a recent study to inhibit the drug-resistant 
P. aeruginosa [9].

As it is known that the RND superfamily of efflux pumps 
plays an important role in multidrug resistance [10], three 
outer membrane proteins, namely, OprM, OprJ, and OprN 
are identified to be responsible for multiple drug resistance 
in P. aeruginosa [11]. Of these three known outer membrane 
proteins, OprM is the only known protein to be constitutively 
expressed in P. aeruginosa contributing significantly to its 
antimicrobial resistance [12, 13].

Considering the above, we have used the three-dimensional 
structure of OprM protein to predict its potential inhibitors 
from AMPs identified from human metagenome using an in-
silico approach.

Materials and Methods

Protein Structure Identification

The protein structure of the multidrug efflux pump of Ps. 
aeruginosa was retrieved from the protein data bank (PDB). 
The OprM structure was extracted from the co-crystallized 
X-ray structure of the outer membrane protein OprM with 
multidrug resistance protein MexA and multidrug resistance 
protein MexB (PDB ID: 6IOL). This extracted OprM struc-
ture is considered as the target for the virtual screening of 
the AMPs using in-silico studies for identifying its potential 
inhibitory peptides.

Identification of AMPs

It is studied that peptides less than 30 amino acids are con-
sidered to be cell-penetrating peptides (CPPs) [14, 15]. All 
the AMPs containing 30 or fewer amino acids from the 
HAMP database [9] amounting to 147 AMPs are identified 
and extracted for this study. These 147 AMPs were subject 
to molecular docking studied to identify their interactions 
and inhibitory effects on the outer membrane protein OprM 
of Ps. aeruginosa.

Molecular Docking

To identify the potential peptide inhibitors of the outer 
membrane protein OprM, it was subjected to docking stud-
ies against the potential cell-penetrating AMPs (CPAMPs). 
As the binding pocket of the peptides on the protein is not 
previously known, the binding pocket affinity maps of the 
protein were generated and selected using AutoGridFR 
[16]. AutoGridFR is a binding site prediction tool from 
the AutoDockFR, AutoDock4, and AutoDock CrankPep 
suites. Further, the CPAMPs are docked onto the OprM at 
the identified active site grid coordinates using AutoDock 
CrankPep (ADCP) [17], a docking engine specialized for 
peptides docking based on CRANKITE [18] using a modi-
fied Metropolis Monte Carlo algorithm. ADCP works with 
the affinity maps of the AutoDock to identify the potential 
energy landscape of the receptor. Using this energy land-
scape, the peptides are folded to yield the docked poses of 
the peptide at the grid site. As it is known that the larger 
the peptide, the larger the Monte Carlo steps required, we 
performed 100 independent searches per peptide with 30 
million Monte Carlo evaluation steps per search allocating 
about 1 million steps per amino acid in the peptide. Each 
search is performed by randomly rotating and placing a con-
structed peptide structure from the amino acid sequence in 
the identified docking grid box with a 4-Å padding on each 
side.

Molecular Dynamic Simulation

The top three docked peptide structures from the docking 
studies are subjected to molecular dynamics simulation 
analysis to explore their stability and conformational flex-
ibility using CHARMM36 all-atom force field (March 2019) 
[19] and GROMACS (Version 2018.2) [20]. Inhouse ad hoc 
scripts were used to generate GROMACS compatible files 
before the topologies were solvated, minimized, and equili-
brated. The protein-peptide complexes are solvated using 
TIP3P explicit water molecules, and the system was neu-
tralized using Cl− and Na+ ions as needed. The complex 
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was minimized until the maximum force is less than 10.0 
kJ/mol using particle Mesh Ewald summation [21] by the 
steepest descent algorithm. Further, The NVT and NPT 
conserved ensembles were used to equilibrate the system 
by Berendsen thermostat and Berendsen pressure coupling 
[22], respectively, at constant pressure and temperature of 
1 bar and 310 K with a simulation time of 100 ps for each. 
After equilibration, molecular dynamic simulations of 50 ns 
were performed for each protein-peptide complex at constant 
temperature and pressure of 310 K and 1 bar, respectively, 
using the leapfrog algorithm with an integration time step 
of 2 fs. The trajectory was saved every 30 ps. Further, the 
generated trajectories were analyzed using GROMACS 
analytic utilities to conclude results. The root-mean-square 
deviation (RSMD) between the initial and the simulated 
structure, the radius of gyration (Rg), change in coulom-
bic interaction energies, and hydrogen bonding between the 
outer membrane protein and the peptide over the simulation 
time are evaluated to determine the stability of the docked 
complexes. Further, the free energy landscape (FEL) analy-
sis was performed along the principal components PC1 and 
PC2 of essential dynamics projections [23] to evaluate the 
conformational stability of the complex.

Binding Free Energy (MM‑PBSA) Analysis

The residue interaction-energy-based investigation of the 
MD simulations is used to estimate the binding free energy 
of the protein-phytochemical complexes. The binding free 
energy helps in determining the interaction stability of the 
peptide at the binding site. The residue interaction energy 
between the protein and the peptide residues (ΔGbind) can 
be stated as

where ΔEMM and ΔGsol signify the deviations of the molec-
ular mechanics and solvation free energy due to ligand 
binding. The Poisson Boltzmann and surface area-based 
approach were used to calculate the polar and non-polar 
solvation energies, respectively [24].

Determining the Maximum Common Substructure

The conformation of a protein inhibitor can be predicted by 
aligning it with the three-dimensional structure of a refer-
ence inhibitor molecule. Commonly known as similarity-
based docking, this method determines the one-on-one 
atomic correspondence between two molecular structures 
helping in identifying compounds with similar biological 
activities [25]. In this study, we have identified the MCS 
between the top docked structures to determine the most 
prominent molecular conformation and molecular residues 

ΔGbind = ΔEMM + ΔGsol

that determine the inhibitory effect on the outer membrane 
protein OprM at the identified binding pocket.

To find the most prominent protein and peptide residues 
involved in the interaction, firstly, the RINalyzer [26] and 
Cytoscape 3.8.0 [27] are used to generate the residue inter-
action networks (RIN) of the five best-docked peptides with 
the protein structure. These RINs are analyzed to determine 
the most common protein residues that could play a promi-
nent role in inhibitory activity. Later, to identify the impor-
tant peptide residues involved in antimicrobial activity, the 
MCS between the RINs of the three best-docked peptides are 
generated using CytoMCS [28]. The patterns of the peptide 
residues involved in forming the MCS are analyzed and fur-
ther validated using free energy analysis results to identify 
the most significant pattern of AMPs involved in inhibition.

Results

Molecular Docking

The outer membrane protein OprM that plays an important 
role in drug resistance in Ps. aeruginosa is subjected to 
docking studies against antimicrobial peptides to identify 
its potential inhibitor that aids in controlling drug-resistance 
superbugs. The antimicrobial peptides identified from the 
human metagenome are used in docking studies. The dock-
ing studies reveal that these antimicrobial peptides show sig-
nificant inhibitory activity against the multidrug-resistant 
efflux pump.

With the best-docked peptide showing a binding affinity 
of −30.9 kcal/mol, and an average binding affinity of 28.5 
kcal/mol for the top ten docked peptides, it is considered that 
these peptides show significant inhibitory activity against 
the multi-drug resistance in Ps. aeruginosa. The binding 
affinities of the top ten AMPs as predicted by AutoDock 
CrankPep are given in Table 1 along with their HAMP 

Table 1  Molecular docking 
scores (kcal/mol) of the AMPs 
from the Human Microbiome 
(best 10 hit molecules) with the 
drug-resistant outer membrane 
protein OprM

HAMP ID Affinity 
(kcal/
mol)

862 −30.9
834 −30.4
1298 −29.8
1518 −28.8
232 −28.7
309 −28.7
2397 −27.6
1104 −26.8
2311 −26.7
2997 −26.3

182 Probiotics and Antimicrobial Proteins  (2022) 14:180–188



knowledgebase identifier and the structural conformations 
of the top three docked structures are shown in Fig. 1.

Although the docking results suggest that the AMPs could 
play an important role in inhibiting multidrug resistance, 
considering the assumptions during docking studies such 
as rigidity of the receptor and binding site for fast screening 
of the peptides along with overlooking the dynamics of the 
interaction between the protein and the AMPs, MD simula-
tions of the docked complexes are performed mimicking the 
flexibility of the protein and peptides for a more realistic 
quantum level interaction studies with reference to time.

Molecular Dynamics

The conformational stability of the top three docked protein- 
peptide complexes was assessed by molecular dynamics 
simulation of 50 ns using various structural order parameters 
such as RMSD, Rg, and H-bond interactions. On comparing 
the Cα-RMSD of the peptide from the OprM-AMP com-
plexes, it is observed that all the AMPs achieved stability 

at the active site rapidly (Fig. 2a). These OprM-AMP com-
plexes attained stability in about 10 ns without any major 
deviations throughout the simulation time. The RMSD plot 
of 834 shows an initial rise in RMSD of ~0.7 nm and settles 
rapidly showing stable conformation for the whole 50 ns, 
suggesting stable interaction of 834 with outer membrane 
protein OprM. The trajectory of 1298 with OprM shows a 
slightly greater initial deviation of ~0.8 nm but this complex 
too settled rapidly showing a stable interacting conformation 
for the whole simulation time. Notably, the conformational 
dynamics of 862 with OprM are observed up be very stable 
with a low initial deviation of ~0.5 nm. This rapid equilibra-
tion of the peptides indicates their interaction stability. The 
stable trajectories of the peptides during 100 ns simulation 
time indicate that the AMPs are spatially stable at the active 
site of OprM.

To further investigate the conformational stability of the 
OprM-AMP complexes, the radius of gyration (Rg) has 
been analyzed to check the structure compactness. With an 
average Rg of 1.54 nm, 1.48 nm, and 1.30 nm for AMPs 

Fig. 1  Molecular docking analysis of the CPAMPs blocking the outer membrane protein OprM of the multidrug efflux pump MexAB-OprM 
from Pseudomonas aeruginosa. (a) 834, (b) 862, and (c) 1298

Fig. 2  Time evolution plot of the structural order parameters of the 
AMPs with target protein OprM. a The RMSD of peptide Cα-atoms, 
b radius of gyration (Rg) of the peptide, and c the propensity of 

H-bonds interaction between the AMPs and the protein during the 
period of simulation (100 ns) at 300 K
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834, 862, and 1298, respectively, the structural integrity of 
the peptides remains stable throughout the simulation time 
(Fig. 2b). The small initial deviations in the Rg suggest 
minor conformational rearrangement of the peptide in the 
binding site of OprM.

To further understand the interaction stability of the 
AMPs with OprM, the H-bonds are analyzed using time 
evolution plots (Fig. 2c). The H-bonding is an important 
parameter in determining the interaction stabilities. The 834, 
862, and 1298 show a maximum occupancy of 17, 11, and 
18 H-bonds with OprM, respectively. With an average of 9 
H-bonds, ~7 H-bonds remained consistent between 834 and 
OprM for the whole 50 ns. Similarly, with an average of 9 
H-bonds, ~5 H-bonds remained consistent between 1298 and 
OprM for the whole 50 ns. However, with a maximum of 11 
H-bonds, only ~3 H-bonds remained consistent between 862 
and OprM. The results indicate that the AMPs 834, 862, and 
1298 are stabilized by an average of 9, 4, and 9 H-bonds at 
the binding pocket of OprM.

Free Energy Landscape

The free energy landscape (FEL) plot (Fig. 3) helps us 
visualize the minimum energy conformational ensembles 
of the protein complexes aiding us in determining 
the conformational changes during protein-peptide  
interactions [29]. The Boltzmann inversion method (F 
= −RT lnP) is used to generate the FEL plot where P 
signifies the probability distribution of the principal 
components. The FEL plots indicate that the AMPs bind 
with OprM along the minimum energy conformations. 
The FEL plot of 834 shows that the ensembles are 
confined to two distinct but neighboring energy basins. 
These two energy basins are separated by a high energy 
barrier of about 4.0 kcal/mol signifying stable peptide 
bound conformations of the OprM. As the ensembles 
occupy a very narrow energy basin, it is suggested that 
the complex readily reached stability. The FEL plot of 862 

shows that the peptide navigated a vast conformational  
space from various energy basins. However, many of  
these energy minima are separated by very high energy 
barriers indicates that the ensemble states cannot move 
out from one energy basin to another easily, suggesting 
its conformational stability. Further, the FEL plot of 1298 
shows single but elongated energy minima, suggesting its 
heterogeneous sub-states. With a very low energy barrier of 
about 1.0 kcal/mol between the ensembles, the complex is 
suggested to show a stable conformation within the energy 
basin interplaying between the sub-states.

Maximum Common Substructure

To identify the most significant protein residues that might 
involve in the inhibitory activity of OprM, the protein-
peptide RINs of the top five docked structures are gen-
erated and analyzed. Eight common protein residues, all 
from chain A, are identified from the RINs. These eight 
common residues namely are Thr 167, Gln 174, Leu 226, 
Glu 277, Lys 360, Thr 364, Glu 368, and Thr 430 suggest-
ing their importance in inhibitory activity. The residue 
interaction networks of the top five docked complexes are 
given in Fig. 4.

Further, to identify the significant inhibitory patterns 
from the peptides, the MCS among the top three docked 
complexes are analyzed. CytoMCS identified six substruc-
tures that are considered to be common among the given 
three RINs. The peptide residues from the substructures as 
identified are given in Table 2. It is observed that majorly 
the basic amino acids of the peptide play an important role 
in interacting with the commonly interacting protein resi-
dues. Further analysis suggests that the presence of basic 
amino acids at positions 5, 6, 9, 15, 18, and 26 to 29 of the 
peptides play a prominent role in inhibitory activity due 
to their presence in the MCS as well as their interactions 
with the common protein residues.

Fig. 3  FEL of OprM complexed with AMPs. a 834, b 862, and c 1298. The free energy is given in kcal/mol and indicated by the color code in 
the right panel
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Binding Free Energy (MM‑PBSA) Analysis

To investigate the molecular interaction involved in the bind-
ing and stability of AMPs to the outer membrane protein 
OprM, the MM-PBSA is performed to obtain a detailed 
analysis of the binding free energy. Results suggest that 
all the AMPs favorably bind to the OprM as enumerated 
in the supplementary file (Online Resource 1). As shown 
in (Fig. 5), except for LYS-360 and GLN-174, all the other 
common residues between the RINs especially GLU-277 
and GLU-368 majorly show good binding affinity toward 
the peptides in the case of all three AMPs. The contribution 
towards negative free energy by the common residues, espe-
cially the GLN-277 and GLU-368 with an average of −261.3 
kcal/mol and −292.5 kcal/mol, respectively, suggests their 
high significance in inhibitory activity.

Fig. 4  The residue interaction networks of the top five docked complexes. a 232, b 834, c 862, d 1298, and e 1518

Table 2  The peptide 
residues involved in the 
formation maximum common 
substructures (MCSs)

862 834 1298

Pro 2.D Met 1.D Met 1.D
Ser 3.D Ser 3.D Lys 5.D
Gly 4.D Lys 6.D Lys 11.D
Lys 5.D Lys 11.D Met 12.D
Lys 8.D Asn 14.D His 15.D
Arg 9.D Lys 18.D Lys 18.D
His 26.D Ala 21.D Asn 29.D
Lys 27.D Arg 25.D Lys 30.D
Lys 28.D Lys 28.D

Lys 29.D

Fig. 5  The residue decomposition plot (MM-PBSA) representing the binding energy contribution of the common residues from the active site of 
the OprM energetically stabilizing the AMPs at the binding pocket. a 834, b 862, and c 1298
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Further, to validate the results of the MCS that suggest 
the presence of basic amino acids contribute to the inhibi-
tory activity of the peptide, the per-residue free energy con-
tribution of the peptide is calculated using the MM-PBSA 
method. The per-residue free energy contribution (Fig. 6) 
and the MCS suggest that the basic residues of the peptide 
play an important role in binding to the OprM. Majorly, the 
basic amino acids at positions ranging from 5 to 9 and 16 
to 20 contribute actively to the binding free energy with an 
average binding free energy of −83.8 kcal/mol and −100.4 
kcal/mol, respectively.

Previous studies on the probiotics against drug-resistant 
bacteria suggest that the probiotics aid in mitigating drug 
resistance. Studies are suggesting that administration of pro-
biotics during antibiotic treatment prevents the colonization 
of multidrug-resistant bacteria in the gut [30], probiotic bac-
teria from breastfed infant aid in inhibiting diverse multid-
rug-resistant bacterial strains including Ps. aeruginosa [31]. 
Supporting the effect of probiotics against pathogens, the gut 
microbiota imparted by the functional foods is shown to aid 
in the control and prevention of malaria [32]. Recent studies 
also suggest that designer probiotics pave a way for healthy 
living and efficient prevention and treatment of human dis-
eases [33–35]. Furthering the research on the use of pro-
biotics against drug-resistant bacteria, this study identifies 
the AMPs from the healthy human microbiome along with 
their mechanism of action against inhibiting drug resistance. 
While this study shows promising results regarding the com-
position of the AMPs that inhibit multidrug efflux pumps in 
Ps. aeruginosa, they should be further validated in an in-
vitro environment to confirm their activity. These results can 

be used in developing a synthetic AMP against the multid-
rug-resistant Ps. aeruginosa or could be further incorporated 
as a part of a designer probiotic that could aid in inhibiting a 
broad spectrum of multidrug-resistant microbes.

Conclusion

In summary, this study explores the possibility of antimicro-
bial peptides from the human microbiome for their potential 
inhibitory effects on multidrug resistance in Ps. aeruginosa by 
inhibiting outer membrane protein OprM with is a conserved 
efflux pump protein in the majority of the drug resistance Ps. 
aeruginosa using computational studies. The molecular dock-
ing studies show that the majority of the AMPs from the human 
microbiome could efficiently bind to the drug-resistant OprM 
protein. Further, the RINs and the MCSs of the docked com-
plexes are computed to identify the probable inhibitory pattern 
of the AMPs. To study the stability of the docked complexes 
and to validate the identified inhibitory patterns, the MD simu-
lations, FELs, and per-residue free energy contributions of the 
OprM with AMPs are analyzed explaining the interaction stabil-
ity with the vital residues in terms of H-bonding and per-residue 
energy estimations. Our study identifies potential AMPs against 
the MDR Ps. aeruginosa along with their mechanism of action 
which can be further explored as an effective inhibitor against 
the drug-resistant Ps. aeruginosa. The results conclude that the 
AMPs majorly consisting of basic amino acids at critical loca-
tions inhibit multidrug efflux pumps in Ps. aeruginosa, in turn 
inhibiting multidrug resistance exhibited by the bacteria.

Fig. 6  The residue decomposition plot (MM-PBSA) representing the binding energy contribution of the residues from the AMPs energetically 
stabilizing them at the binding pocket of OprM. a 834, b 862, and c 1298
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