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Abstract
This study assessed the effects of a mixed formulation containing Limosilactobacillus (L.) fermentum 139, L. fermentum 263, 
and L. fermentum 296 on cardiometabolic parameters, inflammatory markers, short-chain fatty acid (SCFA) fecal contents, 
and oxidative stress in colon, liver, heart, and kidney tissues of female rats fed a high-fat diet (HFD). Female Wistar rats 
were allocated into control diet (CTL, n = 6), HFD (n = 6), and HFD receiving L. fermentum formulation (HFD-LF, n = 6). 
L. fermentum formulation (1 ×  109 CFU/mL of each strain) was administered two twice a day for 4 weeks. Administration 
of L. fermentum increased acetate and succinate fecal contents and reduced hyperlipidemia and hyperglycemia in rats fed 
a HFD (p < 0.05). Administration of L. fermentum decreased low-grade inflammation and improved antioxidant capacity 
along the gut, liver, heart, and kidney tissues in female rats fed a HFD (p < 0.05). Administration of L. fermentum prevented 
dyslipidemia, inflammation, and oxidative stress in colon, liver, heart, and kidney in female rats fed a HFD.
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Introduction

The high prevalence of cardiometabolic disorders, such as 
type 2 diabetes mellitus, dyslipidemias, arterial hyperten-
sion, and obesity, has been recognized as most important 

cardiovascular disease risk factors, being associated, in 
part, with poor food pattern, including a diet rich in calo-
ries, sugar, salt, saturated fatty acids, and cholesterol [1, 2]. 
Sex difference has been related to cardiometabolic disorder 
prevalence and evidence suggests that female hormones 
could have a protective effect [3].

High-fat diet (HFD) consumption, specifically diet rich in 
saturated and trans fats, increases the abundance of lipopoly-
saccharides (LPS)-expressing bacteria and provokes elevated 
levels of LPS in systemic circulation, characterizing a pro-
inflammatory state, named metabolic endotoxemia [4, 5]. 
Additionally, prolonged HFD consumption increases oxi-
dative stress and mitochondrial damage in several organs 
[6–8]. The findings suggest that interventions targeting gut 
microbiota and exerting anti-inflammatory and anti-oxidant 
properties could reduce the risk of cardiometabolic disorders 
provoked by HFD.

Previous investigations have suggested that gut microbiota 
differs between the sexes in rodents and humans. Women 
commonly harbor a higher ratio of Firmicutes/Bacteroidetes 
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(F/B), enhanced lactobacilli population, and short-chain fatty 
acid producers in gut microbiota when compared with men 
[9]. The related sex differences can lead to sex-dependent 
changes in systemic immunity, low-grade inflammation, oxi-
dative stress, and response to gut microbiota modulation [8, 
10–12].

A broader range of studies carried out with male have 
demonstrated that administration of probiotics promoted 
beneficial effects on gut microbiota, inflammation, oxidative 
stress, and cardiometabolic functions [13–17]. However, the 
effects of probiotic administration on inflammation, oxida-
tive stress, and cardiometabolic parameters in female have 
been little explored and remain to be elucidated.

An early investigation characterized three Lactobacillus 
fermentum (recently renamed as Limosilactobacillus fermen-
tum) [18], namely, L. fermentum 139, L. fermentum 263, 
and L. fermentum 296, as potential candidates for use as 
probiotics in a set of functionality-related in vitro properties, 
such as performance regarding adhesion, aggregation, co-
aggregation, antagonism, and survival to exposure to simu-
lated gastrointestinal conditions, besides showing absence 
of hemolytic and mucinolytic activities and resistance to 
antibiotics [19]. In this study, we have evaluated the effects 
of a mixed formulation containing these three potentially 
probiotic L. fermentum strains on cardiometabolic variables, 
biomarkers of inflammation, caecum short-chain fatty acid 
production, and oxidative stress markers in gut, liver, heart, 
and kidney tissues of female rats fed a HFD diet.

Methods

Animals and Ethical Aspects

Female Wistar rats (Rattus norvergicus) in same estrus cycle 
were used in this study. Determination of the estrous cycle 
was carried according to previous study [20]. The animals 
received water and diet ad libitum and were maintained in 
collective polypropylene cages (03 animals/cage) under con-
trolled temperature (22 ± 1 °C), humidity between 50 and 
55% and a 12-h light–dark cycle. The experimental proce-
dures were approved by Institutional Animal Care and Use 
Committee/Federal University of Paraíba (CEUA-UFPB 
protocol # 6,080,240,418, João Pessoa, Paraíba, Brazil) and 
followed the guidelines of National Council for the Control 
of Animal Experimentation (CONCEA) and International 
Principles for Biomedical Research.

Experimental Design

The rats were randomly assigned into control group (CTL, 
n = 6) receiving a control diet prepared according to the 

American Institute of Nutrition – AIN-93 M) [21]; HFD 
group receiving a high-fat diet (HFD, n = 6) purchased from 
Rhoster® Company (Araçoiaba da Serra, São Paulo, Brazil) 
and treated with placebo; and HFD group receiving a probi-
otic formulation containing a mix of L. fermentum 139, 263, 
and 296 (HFD-Lf, n = 6). Composition of CTL and HFD 
diets are shown in Supplemental Table 1.

In CTL and HFD groups, phosphate-buffered saline (PBS) 
solution was administered as placebo for 4 weeks. In HFD-
Lf group, a mix formulation containing L. fermentum 139, 
263, and 296 in a solution of approximately 3 ×  109 CFU/
mL of each strain were administered twice a day for 4 weeks. 
Administration of placebo or L. fermentum formulation was 
done by oral gavage (1 mL). Body weight were weekly meas-
ured using an appropriate scale (model AS-1000; Marte, 
Santa Rita, Minas Gerais, Brazil). After 4 weeks, rats were 
euthanized by decapitation and biochemical and cytokines 
were measured in serum, short-chain fatty acid (SCFA) were 
measured in caecum contents, and oxidative stress variables 
were assessed in gut, liver, heart, and kidney tissues.

Probiotic Strains and Cell Suspension Preparation

The L. fermentum 139, L. fermentum 263, and L. fermen-
tum 296 strains were gently provided by Laboratory of 
Food Microbiology, Department of Nutrition, Federal 
University of Paraíba (João Pessoa, Paraíba, Brazil). 
Stocks were stored at − 20 °C in de Mann, Rogosa, and 
Sharpe (MRS) broth (HiMedia, Mumbai, India) con-
taining glycerol 20% (Sigma-Aldrich, St. Louis, USA; 
20 mL/100 mL).

The probiotic cell suspension was daily obtained from 
overnight cultures of each strain grown in MRS broth (HiMe-
dia, Mumbai, India) anaerobically incubated (Anaerobic 
System Anaerogen, Oxoid Ltda., Wade Road, UK) at 37 °C, 
according to a previously described procedure [11, 14]. The 
cell suspension with viable counts of approximately 9 log 
CFU/mL were obtained by mixing the suspension of each 
probiotic strain in a ratio of 1:1:1.

Biochemical Analysis

Serum samples were analyzed to determine the levels of 
glucose, total cholesterol, high-density lipoprotein cho-
lesterol (HDL-c), triglycerides, creatinine, urea, alanine 
aminotransferase (ALT), and aspartate aminotransferase 
(AST) using commercial kits and semi-automatic pho-
tometer HumaLyzer 3500 (HUMAN Gesellschaft für Bio-
chemica und Diagnostica mbH, Wiesbaden, Germany). 
Low-density lipoprotein cholesterol (LDL-c) levels were 
calculated according to Friedewald formula: LDL-c (mg/
dL) = [TC − HDL-c − TG]/5 [22].
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Quantification of Organic Acids in Caecum Contents

Caecum sample contents were collected at the end of experi-
ments and stored under − 80 °C. Organic acids were quanti-
fied by high-performance liquid chromatography (HPLC) 
using an LC 1260 Infinity system (Agilent Technologies, 
Santa Clara, CA, USA) coupled to a PDA detector (G1315D; 
Agilent Technologies) as previously described [23].

Cytokine Measurement

Cytokine levels (IL-6, IL-10, IL1β, and TNF-α) were deter-
mined using Millipore 7-plex kit (Millipore Corp., Biller-
ica, MA, USA). Assays were performed on a 96-well plate 
containing a filter membrane following the manufacturer’s 
instructions. The concentrations of cytokines in samples were 
estimated from a standard curve using a third-order polyno-
mial equation and expressed as pg/mL. Samples with values 
below the limit of detection were recorded as zero, while for 
samples with values above the quantification upper limit of 
standard curves were assigned the highest curve value.

Oxidative Stress Measurement in Tissues

The colon, liver, heart, and renal tissues were homog-
enized in a cold buffer solution with 50 mM TRIS and 
1 mM EDTA, pH 7.4, 1 mM sodium orthogonadate, and 
200 μg/mL phenylmethanesulfonylfluoride using an IKA 
RW 20 digital homogenizer, a pestle of potter–Elvehjem, 
and glass tubes on ice. The homogenates were centrifuged 
(1.180 × g, 10 min, 4 °C) [24] and protein levels were 
measured with Bradford protocol [25].

Assessment of Lipid Peroxidation

An aliquot (0.3 mg/mL) of homogenate of tissues was 
used to quantify the production of malondialdehyde 
(MDA) in reaction with thiobarbituric acid (TBA, 100 °C). 
Sequential addition of 30% (v/v) of trichloroacetic acid 
and Tris–HCl (3 mM) were done to the sample, followed 
by centrifugation (2500 × g, 10 min, 4 °C). TBA (0.8%, 
v/v) was added to resulting supernatant, mixed, boiled for 
15 min, and after cooling, the reaction was read at 535 nm 
on a spectrophotometer.

Assessment of Superoxide Dismutase (SOD) Activity

Total superoxide dismutase (SOD) enzyme activity was 
determined according to Misra and Fridovich method. The 
tissue samples (0.3 mg/mL) were mixed with sodium car-
bonate buffer (0.05%, pH 10.2, 0.1 mmol/L EDTA, 37 °C), 

added of 30 mM/L of epinephrine (in 0.05% acetic acid), 
and SOD activity was measured by kinetics of epinephrine 
auto-oxidation inhibition for 1.5 min at 480 nm read on a 
spectrophotometer [26].

Assessment of Catalase (CAT) Activity

Catalase activity was determined by decomposition of 
 H2O2 into  O2 and  H2O. A sample of tissues homogen-
ate (0.3 mg/mL) in 50 mM phosphate buffer (pH 7.0) 
was added of 0.3 M  H2O2. Absorbance was measured at 
240 nm for 1.5 min on a spectrophotometer [27].

Assessment of Glutathione S‑Transferase (GST) 
Activity

A sample of tissue homogenate (0.3 mg/mL) was used to 
quantify GST activity, as previously described [28]. Phos-
phate buffer (0.1 M, pH 6.5 containing 1 mM EDTA), 
1 mM 1-chloro-2,4-dinitrobenzene (CDNB), and 1 mM 
reduced glutathione (GSH) was added to tissue homoge-
nate samples. Absorbance was measured at 340 nm for 
1.5 min on a spectrophotometer.

Assessment of Total Thiol Groups

Tissue homogenate samples (0.3 mg/mL) were incubated 
in extraction buffer (previously described) with 10 mM of 
5,5′-dithiobis (2-nitrobenzoic acid) in a dark environment 
for 30 min. The absorbance of the reaction was measured at 
412 nm on a spectrophotometer [29].

Statistical Analysis

Values were reported as mean ± standard deviation for paramet-
ric data or median (maximum − minimum) for non-parametric 
data. Kolmogorov–Smirnov and Shapiro–Wilk tests were used 
to assess the normality of data. Most of variables required the 
one-way ANOVA parametric test and Tukey post-hoc test. 
Non-parametric variables were compared using Kruskal–Wallis 
with Dunn’s post-hoc test. A Pearson’s or Spearman correlation 
coefficient (r) was used to evaluate the relationships among 
oxidative stress parameters in colon and liver, heart, and kid-
ney tissues. The correlations were classified as bad (r ≤ 0.20), 
weak (0.21–0.40), moderate (0.41–0.60), good (0.61–0.80), 
and excellent (0.81–1.00). Statistical analysis was done with 
software Prism 9 (GraphPad Software, San Diego, CA, USA). 
The difference was considered significant when p was < 0.05.
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Results

Body Weight and Biochemical Parameters

The percentage of weight gain at the end of the protocol 
was similar among groups (Table 1; p > 0.05). Female 
rats fed a HFD had increased serum levels of glucose, tri-
glycerides, cholesterol, LDL-cholesterol, urea, ALT, and 
AST when compared to CTL group (Table 1; p < 0.05). 
Administration of L. fermentum formulation reduced 
serum levels of glucose (140.7 ± 14.0 vs. 207.5 ± 18.3, 
p < 0.05), triglycerides (94.0 ± 11.2 vs. 151.5 ± 13.1, 
p < 0.05), cholesterol (147.4 ± 12.1 vs. 399.5 ± 22.0, 
p < 0.05), LDL-cholesterol (104.9 ± 19.2 vs. 240.7 ± 27.9, 
p < 0.05), urea (24.4 ± 2.5 vs. 47.1 ± 7.8, p < 0.05), 
ALT (64.8 ± 12.0 vs. 106.3 ± 21.5, p < 0.05), and AST 
(122.5 ± 12.2 vs. 189.0 ± 36.7, p < 0.05) when compared 
to HFD group (Table 1). In addition, L. fermentum for-
mulation increased serum levels of HDL-c (67.8 ± 6.2 vs. 
45.7 ± 8.7, p < 0.05) when compared to HFD and CTL 
groups (Table 1).

Short‑Chain Acid Fatty in Caecum Contents

Fecal contents of acetate, propionate, and succinate 
were similar between HFD and CTL groups (p > 0.05; 
Fig.  1A–C). Administration of L. fermentum formula-
tion increased fecal contents of acetate (0.1 ± 0.01 vs. 
0.03 ± 0.005 vs. 0.03 ± 0.02 g/L, p < 0.05) and succinate 
(1.38 ± 0.53 vs. 0.46 ± 0.30 vs. 0.78 ± 0.18 g/L, p < 0.05) 
when compared to CTL and HFD groups, respectively 
(Fig. 1A–C), but it did not change fecal contents of propi-
onate (p > 0.05; Fig. 3B). Butyric acid contents were below 
the limit of detection.

Cytokine Serum Levels

Female rats fed a HFD had increased serum levels of proin-
flammatory cytokines TNFα (152.8 ± 6.3 vs. 78.4 ± 6.0 pg/mL, 
p < 0.05) and IL-1β (159.8 ± 13.2 vs. 54.8 ± 2.1 pg/mL, p < 0.05) 
and decreased levels of IL-6 (38.2 ± 5.3 vs. 64.6 ± 2.9 pg/mL, 
p < 0.05) and IL-10 (28.1 ± 4.0 vs. 66.8 ± 4.6 pg/mL, p < 0.05) 
when compared with CTL group (Fig. 2A–D). HFD group 
receiving L. fermentum formulation had decreased serum lev-
els of TNF-α (107.6 ± 19.5 vs. 152.8 ± 6.3 pg/mL, p < 0.05) and 
IL1β (107.2 ± 10.9 vs. 159.8 ± 13.2 pg/mL, p < 0.05), as well 
as higher IL-6 (56.1 ± 5.8 vs. 38.2 ± 5.3 pg/mL, p < 0.05) and 
IL-10 (41.9 ± 5.6 vs. 28.1 ± 4.0 pg/mL, p < 0.05) when com-
pared to HFD receiving placebo treatment (Fig. 2A–D).
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Fig. 1  Effects of a mixed formulation with Limosilactobacillus fer-
mentum 139, 263, and 269 on short-chain fatty acid concentration in 
fecal samples in female rats fed a high-fat diet. Assessment of acetate 
(A), propionate (B), and succinate (C) in the fecal samples. Groups: 

control group (CTL, n = 6), high-fat diet (HFD, n = 6), and HFD 
receiving a mixed L. fermentum formulation (HFD-Lf, n = 6). Data 
are presented as mean ± standard deviation and analyzed by ANOVA 
one-way test with Tukey as post-hoc test

Table 1  Assessment of body weight gain and biochemical variables

Groups: control group (CTL, n = 6), high-fat diet (HFD, n = 6), and 
HFD receiving a mixed Limosilactobacillus fermentum 139, 263, and 
269 (HFD-Lf, n = 6). Data are presented as mean ± standard devia-
tion and analyzed by ANOVA one-way test with Tukey as post-hoc 
test. *p < 0.05 indicates significant difference between HFD or HFD-
Lf and CTL group; #p < 0.05 indicates significant difference between 
HFD-Lf and HFD group

Variables CTL HFD HFD-Lf

% weight gain 4.5 ± 3.0 6.7 ± 3.2 3.7 ± 2.6
Glucose (mg/dL) 112.7 ± 9.7 207.5 ± 18.3* 140.7 ± 14.0*,#

Triglycerides (mg/dL) 86.5 ± 5.7 151.5 ± 13.1* 94.0 ± 11.2#

Cholesterol (mg/dL) 134.2 ± 11.4 399.5 ± 22.0* 147.4 ± 12.1#

LDL-cholesterol (mg/
dL)

66.9 ± 5.3 240.7 ± 27.9* 104.9 ± 19.2*,#

HDL-cholesterol (mg/
dL)

53.1 ± 3.9 45.7 ± 8.7 67.8 ± 6.2*,#

Creatinine (mg/dL) 0.41 ± 0.09 0.39 ± 0.23 0.44 ± 0.06
Urea (mg/dL) 14.4 ± 0.7 47.1 ± 7.8* 24.4 ± 2.5*,#

ALT (U/L) 38.0 ± 4.1 106.3 ± 21.5* 64.8 ± 12.0*,#

AST (U/L) 117.3 ± 15.9 189.0 ± 36.7* 122.5 ± 12.2#
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Fig. 2  Effects of a mixed 
formulation with Limosilacto-
bacillus fermentum 139, 263, 
and 269 on cytokines serum 
levels in female rats fed a high-
fat diet. Assessment of tumoral 
necrosis factor alpha (TNF-α) 
(A), interleukin 1 beta (IL-1β) 
(B), interleukin 6 (IL-6) (C), 
and interleukin 10 (IL-10) (D). 
Groups: control group (CTL, 
n = 6), high-fat diet (HFD, 
n = 6), and HFD receiving a 
mixed L. fermentum formula-
tion (HFD-Lf, n = 6). Data are 
presented as mean ± standard 
deviation and analyzed by 
ANOVA one-way test with 
Tukey as post-hoc test
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Fig. 3  Effects of a mixed formulation with Limosilactobacillus fer-
mentum 139, 263, and 269 on oxidative stress parameters in colon 
mucosa of female rats fed a high-fat diet. Assessment of malondial-
dehyde levels (MDA) (A), superoxide dismutase activity (SOD) (B), 
catalase activity (CAT) (C), glutathione S-transferase activity (GST) 

(D), and total sulfhydryl content (E) in the colon mucosa. Groups: 
control group (CTL, n = 6), high-fat group (HFD, n = 6), and HFD 
receiving L. fermentum formulation (HFD-Lf, n = 6). Data are pre-
sented as mean ± standard deviation and analyzed by ANOVA one-
way test with Tukey as post-hoc test
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Oxidative Stress Biomarkers in Colon Tissues

The MDA levels and sulfhydryl content in colonic mucosa 
were similar among groups (p > 0.05; Fig. 3A, E). Female 
rats fed a HFD had decreased SOD (335.7 ± 38.0 vs. 
427.9 ± 21.8 U/mg protein, p < 0.05) and GST (9.2 ± 2.7 
vs. 15.3 ± 3.2 U/mg protein, p < 0.05) activities in colonic 
mucosa when compared to CTL group (Fig.  3B, D). 
Administration of L. fermentum formulation although 
had decreased CAT activity in colonic mucosa of rats 
fed a HFD (p < 0.05; Fig. 3C), it caused increased SOD 
(408.7 ± 34.1 vs. 335.7 ± 38.0 U/mg protein, p < 0.05) and 
GST (15.2 ± 2.7 vs. 9.2 ± 2.7 U/mg protein, p < 0.05) activ-
ities when compared to HFD placebo treated (Fig. 3B, D).

Oxidative Stress Biomarkers in Liver Tissues

The MDA level was enhanced in liver tissues of rats fed 
a HFD when compared to CTL group (p < 0.05; Fig. 4A). 
Female rats fed a HFD had decreased SOD (195.7 ± 37.1 vs. 
331.0 ± 44.2 U/mg protein, p < 0.05) and CAT (7.6 ± 4.1 vs. 
16.6 ± 2.2 U/mg protein, p < 0.05) activities in liver tissues 
when compared to CTL group (Fig. 4B, C). Administration 
of L. fermentum formulation although did not change CAT 
activity in liver of rats fed a HFD (p > 0.05; Fig. 4C), it 

caused increased SOD (301.8 ± 56.0 vs. 195.7 ± 37.1 U/mg 
protein, p < 0.05) and GST (340.8 ± 37.2 vs. 215.8 ± 20.1 
U/mg protein, p < 0.05) activities and sulfhydryl content 
(0.10 ± 0.01 vs. 0.07 ± 0.01 μmol/mg protein, p < 0.05) when 
compared to HFD placebo treated (Fig. 4B, D, and E).

Oxidative Stress Biomarkers in Heart Tissues

The SOD and CAT activities and sulfhydryl content in heart 
tissues were similar between CTL and HFD groups (p > 0.05; 
Fig. 5B, C, and E). Female rats fed a HFD had reduced GST 
activity (28.6 ± 4.1 vs. 38.5 ± 4.2 U/mg protein, p < 0.05) and 
enhanced MDA levels (0.22 ± 0.10 vs. 0.06 ± 0.02 nmol/mg 
protein, p < 0.05) in heart tissues when compared to CTL 
group (Fig. 5C, D). Administration of L. fermentum formula-
tion increased SOD activity (622.4 ± 55.4 vs. 374.9 ± 21.4 
vs. 385.5 ± 42.6 U/mg protein, p < 0.05) and sulfhydryl con-
tent (0.35 ± 0.05 vs. 0.13 ± 0.01 vs. 0.16 ± 0.02 mmol/mg 
protein, p < 0.05) in heart tissues when compared to HFD 
and CTL group, respectively (Fig. 5B, E).

Oxidative Stress Biomarkers in Renal Cortex

MDA levels, SOD and CAT activities, and sulfhydryl con-
tent in renal cortex were similar between CTL and HFD 
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Fig. 4  Effects of a mixed formulation with Limosilactobacillus fer-
mentum 139, 263, and 269 on oxidative stress parameters in liver of 
female rats fed a high-fat diet. Assessment of malondialdehyde lev-
els (MDA (A), superoxide dismutase activity (SOD) (B), catalase 
activity (CAT) (C), glutathione S-transferase activity (GST) (D), and 

total sulfhydryl content (E) in the liver. Groups: control group (CTL, 
n = 6), high-fat group (HFD, n = 6), and HFD receiving L. fermentum 
formulation (HFD-Lf, n = 6). Data are presented as mean ± standard 
deviation and analyzed by ANOVA one-way test with Tukey as post-
hoc test
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groups (p > 0.05; Fig. 6A, B, C, and E). Female rats fed a 
HFD had reduced GST activity (30.0 ± 9.1 vs. 49.2 ± 6.8 
U/mg protein, p < 0.05) in renal cortex when compared to 
CTL group (Fig. 6C, D). Administration of L. fermentum 
formulation increased SOD (380.4 ± 116.5 vs. 211.1 ± 35.4 
U/mg protein, p < 0.05) and GST activities (53.6 ± 17.8 vs. 
30.0 ± 9.1 U/mg protein, p < 0.05) in renal cortex when 
compared to HFD group (Fig. 6B, D), but did not change 
MDA levels, CAT activity, and sulfhydryl content (p > 0.05; 
Fig. 6A, C, and E).

The relationship between antioxidant enzyme activities in 
colon, liver, heart, and kidney tissues was demonstrated as a 
hierarchical heat map (Fig. 7), which showed distinct clus-
ters of associations based on antioxidant enzyme activities 
found in CTL, HFD, and HFD-LF groups (Fig. 7). In addi-
tion, we have carried correlation analysis between oxidative 
stress biomarkers in colon with oxidative stress biomark-
ers in liver, heart, and renal cortex (Table 2). SOD activ-
ity in colon correlated positively with SOD activity in liver 
(r = 0.708, p = 0.001), but not with SOD activity in heart 
(r = 0.234, p = 0.349) and renal cortex (r = 0.199, p = 0.428). 
Similarly, CAT activity in colon correlated positively with 
CAT activity in liver (r = 0.641, p = 0.004), but not with 
CAT activity in heart and renal cortex (p > 0.05; Table 2). 
GST activity in colon also correlated positively with GST 
activity in liver (r = 0.0.566, p = 0.014), but not with GST 

activity in heart and renal cortex (p > 0.05; Table 2). TBARS 
and sulfhydryl contents in colon had not correlation with 
liver, heart, and renal cortex (p > 0.05; Table 2).

Discussion

In recent years, our research group has isolated and charac-
terized potentially probiotic fruit-derived strains. The strains 
of L. fermentum 139, L. fermentum 296, and L. fermentum 
263 were recovered from Brazilian fruit by-products [19, 
30]. L. fermentum 139 was isolated from Mangifera indica 
L. (mango), L. fermentum 263 was isolated from Ananas 
comosus (pineapple), and L. fermentum 296 was isolated 
from Fragaria vesca L. (strawberry). All the three strains 
displayed potential for use as probiotics in terms of a set 
of functionalities related in vitro properties, such as auto-
aggregation, co-aggregation, survival during exposure to 
simulated gastrointestinal conditions, and pathogen antago-
nism, in addition to showing the absence of hemolytic and 
mucolytic activities and resistance to antibiotics [19]. Such 
findings indicated that these L. fermentum fruit-derived 
strains could be potential candidates for use as novel probi-
otics. Using those strains, we have demonstrated for the first 
time that administration of a mixed formulation containing 
three potentially probiotic L. fermentum strains, twice a day 

Su
lfh

yd
ry
ls

(
m
ol
/m

g
pr
ot
ei
n)

CTL HFD HFD-Lf
0.0

0.1

0.2

0.3

0.4

0.5 0.4996

<0.0001

<0.0001

TB
A
RS

(n
m
ol
/m

g
pr
ot
ei
n)

CTL HFD HFD-Lf
0.0

0.1

0.2

0.3

0.4
0.0019

0.1021

0.1365

C
AT

ac
tiv

ity
(U

/m
g
pr
ot
ei
n)

CTL HFD HFD-Lf
0

2

4

6

8

10
0.1980

>0.9999

0.1197

SO
D
ac

tiv
ity

(U
/m

g
pr
ot
ei
n)

CTL HFD HFD-Lf
0

200

400

600

800 >0.9999

0.0261

0.0039

G
ST

ac
tiv

ity
(U

/m
g
pr

ot
ei
n)

CTL HFD HFD-Lf
20

25

30

35

40

45

50 0.0015

0.0013

0.9966

A B C

D E

µ
Fig. 5  Effects of a mixed formulation with Limosilactobacillus fer-
mentum 139, 263, and 269 on oxidative stress parameters in heart tis-
sue of female rats fed a high-fat diet. Assessment of malondialdehyde 
levels (MDA) (A), superoxide dismutase activity (SOD) (B), catalase 
activity (CAT) (C), glutathione S-transferase activity (GST) (D), 

and total sulfhydryl content (E) in the heart tissue. Groups: control 
group (CTL, n = 6), high-fat group (HFD, n = 6), and HFD receiv-
ing L. fermentum formulation (HFD-Lf, n = 6). Data are presented 
as mean ± standard deviation and analyzed by ANOVA one-way test 
with Tukey as post-hoc test



608 Probiotics and Antimicrobial Proteins (2023) 15:601–613

1 3

for 4 weeks, increased fecal acetate and succinate contents, 
reduced glycemia, dyslipidemia, systemic low-grade inflam-
mation, and oxidative stress in colonic mucosa, liver, heart, 
and kidney tissues of female rats fed a HFD.

In agreement with previous studies, HFD consumption 
provoked hyperglycemia and hyperlipemia [14, 31, 32]. 
Here, administration of mixed L. fermentum formulation pre-
vented increases of glucose, triglycerides, urea, ALT, AST, 

and cholesterol serum levels, as well increased serum levels 
of HDL-cholesterol in female rats, indicating to occur rel-
evant hypoglycemic and hypolipidemic effects and reduced 
serum indicators of hepatic injury. The use of different L. 
fermentum strain types have also caused hypolipidemic and 
hypoglycemic findings, as well reduced hepatic injury indi-
cators in rodents and humans in early investigations [13, 
33–36]. For example, in female rats, administration of L. 
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Fig. 6  Effects of a mixed formulation with Limosilactobacillus fer-
mentum 139, 263, and 269 on oxidative stress parameters in renal 
cortex of female rats fed a high-fat diet. Assessment of malondial-
dehyde levels (MDA) (A), superoxide dismutase activity (SOD) (B), 
catalase activity (CAT) (C), glutathione S-transferase activity (GST) 

(D), and total sulfhydryl content (E) in the renal cortex. Groups: con-
trol group (CTL, n = 6), high-fat group (HFD, n = 6), and HFD receiv-
ing L. fermentum formulation (HFD-Lf, n = 6). Data are presented 
as mean ± standard deviation and analyzed by ANOVA one-way test 
with Tukey as post-hoc test

Fig. 7  Effects of a mixed 
formulation with Limosilacto-
bacillus fermentum 139, 263, 
and 269 on antioxidant enzyme 
activities. Heatmap showing 
antioxidant enzyme activities in 
colon, liver, heart, and kidney 
tissues in female rats. Groups: 
control group (CTL, n = 6), 
high-fat group (HFD, n = 6), and 
HFD receiving L. fermentum 
formulation (HFD-LF, n = 6)

CTL HFD HFD-Lf

SOD colon
CAT colon
GST colon
SOD heart
CAT heart
GST heart
SOD Liver
CAT Liver
GST Liver

SOD Kidney
CAT Kidney
GST Kidney

A
nt
io
xi
da

nt
en

zy
m
es

ac
tiv

iti
es

(U
/m

g
pr
ot
ei
n)

100

200

300

400

500

600

HFD HFD-LfCTL

skee
w

4

L. Fermentum
(3 x 109 CFU, 
twice a day)



609Probiotics and Antimicrobial Proteins (2023) 15:601–613 

1 3

fermentum MCC2759 and MCC2760 alleviated inflamma-
tion and improved intestinal function in high-fat diet-fed and 
streptozotocin-induced diabetic [36].

For us, the results of the present study reinforce that L. 
fermentum 139, L. fermentum 263, and L. fermentum 296 
strains has great potential to act as novel anti-dyslipidemia 
and anti-diabetes biotherapeutic products due to their ability 
to attenuate lipid-glucose metabolism disorders and further 
translational studies should be carried out [11, 14].

The SCFAs, primarily are acetate, propionate, and 
butyrate, can be generated in the colon as end products of 
bacterial fermentation [37]. In the present study, butyrate 
contents were below the analytical detection limit. Admin-
istration of mixed L. fermentum formulation although had no 
significant effect on propionate fecal contents, it effectively 
increased acetate and succinate fecal contents in female rats 
fed a HFD, indicating heterofermentative properties of L. 
fermentum strains used in this formulation and a stimulatory 
effect on gut microbiota. In the colon, SCFAs play a key 
role in maintenance of epithelial integrity, energy source of 
colonocytes, fluid absorption, and important anti-inflamma-
tory effect [37]. Acetate has been found as prevalent SCFA 
concentration in colon and early studies have demonstrated 
acetate as a relevant suppressor of colonic inflammation via 
G-protein coupled receptor 43 (GPR43) signaling [37, 38]. 
If L. fermentum exert a suppressor effect of colonic inflam-
mation remain to be elucidated.

Gut microbiota can also produce important amounts of 
succinate, an intermediary microbial product especially 
derived from fermentation of fibers and oligosaccharides [39, 
40]. Early investigations have reported enhanced succinate 
cecal contents and improved glycemic control in mice fed a 
fiber-rich diet [40, 41]. The role and tolerance level of suc-
cinate gut-derived is still unclear, but it has been suggested 
that succinate acting in GPR91 exert an important function in 
modulation of intestinal inflammation [39] and against colo-
nization and growth of exogenous pathogens [42].

In agreement to results of early studies, HFD consumption 
provoked diabetic dyslipidemia phenotype [43] and a low-
grade inflammation condition in female rats [44, 45], which 
was linked to increased serum levels of pro-inflammatory 

cytokines TNFα and IL1β and reduced anti-inflammatory 
cytokine IL-10. Pro- and anti-inflammatory properties have 
been reported as potential functions of cytokine IL-6 [46]. 
Although reduced serum levels of IL6 have been found in 
female rats fed a HFD, the result set of measured cytokines 
could indicate a metabolic endotoxemia condition.

Strain- and sex-specific immunological effects have been 
found in probiotic bacteria [47]. Regarding anti-inflamma-
tory properties of L. fermentum CECT5716, preceding stud-
ies have reported a significant reduction in pro-inflammatory 
cytokines TNFα and IL-1β in inflamed tissue of rats display-
ing colitis [48, 49]. Additionally, it has been reported that L. 
fermentum CECT5716 [50] and L. fermentum UCO-979C 
[51] can modulate the host immune system by increasing 
regulatory T cells (Treg) leading to enhanced IL-10 produc-
tion in serum and intestine of female mice. The results of 
this study indicate for first time that administration of poten-
tially probiotic L. fermentum promoted an important immune 
modulation in female rats fed a HFD, as indicated by induc-
tion of increased levels of IL-10 and IL-6 and decreased 
levels of IL-1β and TNF-α.

In physiological condition, reactive oxygen species (ROS) 
are found at low concentration into normal cells due to an 
efficient enzymatic and non-enzymatic anti-oxidant system 
[52]. However, it has been broadly reported that during 
nutritional stress (e.g., HFD consumption) excessive ROS 
production or down-regulation of anti-oxidant response can 
provoke oxidative stress, damage cells, and development of 
chronic diseases [7, 53]. Available evidence has suggested 
that powerful oxidative stress inducers may be associated 
with gut dysbiosis and pro-inflammatory processes [54–56]. 
In the present study, HFD consumption increased systemic 
low-grade inflammation and damaged the anti-oxidant sys-
tem in colon mucosa, liver, heart, and kidney tissues of 
female rats.

Many beneficial effects of probiotics on oxidative stress 
tolerance and antioxidant capacity have been reported [13, 
16, 35]. In the present study, a mixed L. fermentum formu-
lation promoted increased antioxidant enzyme activities in 
colonic mucosa, liver, heart, and kidney tissues of rats fed 
a HFD, suggesting a direct and broad antioxidant effect. 

Table 2  Correlation coefficients 
among oxidative stress 
biomarkers in colon with 
oxidative stress biomarkers in 
liver, heart, and kidney

TBARS thiobarbituric acid reaction, SOD superoxide dismutase, CAT  catalase, and GST glutathione 
S-transferase

Parameters Colon × liver Colon × heart Colon × kidney

r p-value r p-value r p-value

TBARS (nmol/mg protein) 0.418 0.084 0.030 0.905  −0.272 0.274
SOD (U/mg protein) 0.708 0.001 0.234 0.349 0.199 0.428
CAT (U/mg protein) 0.641 0.004 −0.221 0.378 0.004 0.985
GST (U/mg protein) 0.566 0.014 0.199 0.427 0.450 0.060
Sulfhydryls (μmol/mg protein) 0.225 0.369 −0.012 0.959 −0.163 0.515
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Probiotic strains with antioxidant properties have been 
growing explored [16] and studies have reported a relevant 
anti-oxidant capacity in other L. fermentum strains. Admin-
istration of L. fermentum CECT5716 [57] and L. fermentum 
MTCC: 5898 [13] has shown to reduce oxidative stress in 
cardiometabolic disorders.

Although underlying mechanism by which mixed L. fer-
mentum formulation increased SOD and GST activities in 
colonic mucosa, liver, heart, and kidney tissues were not 
explored, MnSODs enzyme activity has been reported for 
some lactic acid bacteria [16]. Additionally, it has been demon-
strated that L. fermentum strains could have a fully functional 
GSH system composed of GSH peroxidase and GSH reductase 
capable of protecting cells against oxidative stress [58].

We have postulated that tissue oxidative damage provoked 
by HFD consumption, in part, could be due to increased oxi-
dative stress in colon. Here, we have reported that antioxi-
dant enzyme activities in colon were correlated positively 
with antioxidant enzyme activities in liver, but not in heart 

and renal cortex. Our findings suggest that L. fermentum 
formulation might modulate oxidative stress biomarkers 
through gut-liver axis [59], but the modulation of oxidative 
stress biomarkers in gut-heart axis and gut-kidney axis was 
not demonstrated.

Early investigation has suggested that gut-heart axis 
and gut-kidney axis could be considered as novel areas for 
therapeutic research to prevent and reduce the risk of cardio-
vascular disease [60, 61] and renal disease [8, 62]. For us, 
further studies using probiotic therapy are needed to inves-
tigate the potentiality of gut-heart axis and gut-kidney axis 
as therapeutic strategy.

The lack of gut microbiota composition analysis could 
be described as a main limitation of this study, although we 
have previously documented enhanced Lactobacillus counts 
in feces from rats treated with L. fermentum strains with 
claimed probiotic properties [11, 14].

In conclusion, administration of a mixed formulation 
containing three potentially probiotic L. fermentum strains 
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prevented diabetic dyslipidemia, low-grade inflammation, 
and oxidative stress along the gut, liver, heart, and kidney 
tissues in female rats fed a HFD (Fig. 8). Additionally, the 
mixed L. fermentum formulation was effective to increase 
acetate and succinate fecal contents. These results encour-
age the development of future clinical trials to assess the 
effects of examined L. fermentum formulation in subjects 
with dyslipidemias.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12602- 021- 09878-1.
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