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Abstract
The antimutagenic activity of probiotic strains has been reported over several decades of studying the effects of probiotics. 
However, this activity is rarely considered an important criterion when choosing strains to produce probiotic preparations and 
functional food. Meanwhile, the association of antimutagenic activity with the prevention of oncological diseases, as well 
as with a decrease in the spread of resistant forms in the microbiota, indicates its importance for the selection of probiotics. 
Besides, an antimutagenic activity can be associated with probiotics’ broader systemic effects, such as geroprotective activ-
ity. The main mechanisms of such effects are considered to be the binding of mutagens, the transformation of mutagens, and 
inhibition of the transformation of promutagens into antimutagens. Besides, we should consider the possibility of interaction 
of the microbiota with regulatory processes in eukaryotic cells, in particular, through the effect on mitochondria. This work 
aims to systematize data on the antimutagenic activity of probiotics and emphasize antimutagenic activity as a significant 
criterion for the selection of probiotic strains.
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Introduction

In the modern anthropogenic environment, humans and ani-
mals are regularly exposed to various mutagens, in amounts 
that significantly exceed natural ones. Some of the widely 
used drugs can have a mutagenic effect [1], including those 
acting on the human microbiota, increasing the likelihood of 
antibiotic resistance. Anticancer drugs [2, 3] or antibiotics 
[4] are examples of such preparations. Moreover, mutagens 

are formed even during heat treatment of food [2]. Reactive 
oxygen species produced by both body cells and microbiota 
can also be considered promutagens, so probiotics’ antioxi-
dant potential should also be considered [3].

In addition to exogenous mutagens that enter the human 
body from the environment, there are also endogenous muta-
gens. Reactive oxygen species (ROS), produced in mito-
chondria, are an integral part of cellular metabolism. ROS 
take part in signaling pathways in the cell, but they can lead 
to oxidative stress and damage cellular molecules: lipids, 
proteins, and DNA, thereby causing mutations [5, 6].

A high mutational burden leads to an increase in the level 
of several diseases and systemic effects. Also, the accumula-
tion of mutations at critical points of the genome is consid-
ered one of the most likely mechanisms of aging. And even 
though now it is believed that the accumulation of mutations 
by cells to a greater extent affects the likelihood of maligni-
zation than the general fitness, over time there is more and 
more evidence that healthy cells accumulate many somatic 
mutations with age. That is, among others, associated with 
the risk of age-related diseases [7].

Antimutagens, or substances and structures capable of 
inactivating mutagens or reducing their effect on the body, 
have been found in various natural sources, including pro-
biotic microorganisms.
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However, in the search for new probiotic strains and 
screening and selection of components for complex probiotic 
preparations, little attention is paid to the criterion of anti-
mutagenicity. The antimutagenic activity of probiotic strains 
is rarely considered an important criterion when choosing 
strains to produce probiotic preparations and functional 
food. Meanwhile, the association of antimutagenic activity 
with the prevention of oncological diseases, as well as with 
a decrease in the spread of resistant forms in the microbiota, 
indicates its importance for the selection of probiotics.

Besides, an antimutagenic activity can be associated with 
probiotics' broader systemic effects, such as geroprotective 
activity.

Mostly, the positive effect of probiotics on the host organ-
ism is explained by the following mechanisms:

1.	 Probiotic microorganisms are in an antagonistic relation-
ship with pathogenic fungi and bacteria.

2.	 Probiotics release metabolites that have a positive effect 
on the host organism.

3.	 Probiotics can metabolize hazardous and toxic com-
pounds coming from the external environment into less 
toxic ones.

4.	 Probiotics release substances that can interfere with the 
regulatory processes in the host’s body.

5.	 There are also cases of specific interactions, such as 
some strains’ ability to suppress tumor cells’ growth.

However, a variety of systemic effects can also be 
observed. Some studies indicate that probiotics affect the 
mental state of the host [8], interfere with the regulation 
of metabolism, the work of hormonal systems [9], gene 
expression [10], and other regulatory mechanisms. Gradu-
ally, numerous facts have accumulated about the ability of 
probiotic microorganisms to effectively correct pathological 
manifestations of diseases not associated with infections, 
particularly allergies, toxicosis of various natures, etc. [11]. 
This nonspecific stimulating activity may be associated with 
the release of metabolites that protect host cells from the 
most destructive effects of stress — the generation of reac-
tive oxygen species and DNA damage.

It is also known that probiotics play an immunomodula-
tory role, have anticancer effects, and help lower cholesterol 
levels. These functions are associated with the release of 
metabolites such as bacteriocins, biosurfactants, exopolysac-
charides, and siderophores [12].

The antimutagenic activity of probiotics is generally 
viewed primarily in the context of the mechanism of anti-
cancer action. A search for reviews focusing on the anti-
mutagenic effects of probiotics reveals that no review has 
emerged that specifically addresses the antimutagenic effects 
of probiotics. The most recent review on a related topic, con-
taining a mention of the antimutagenic activity of probiotics, 

also focuses on the anticancer effect of exopolysaccharides 
of lactic acid bacteria [13].

Indeed, it is the antimutagenic activity that allows some 
probiotic strains to reduce cancer incidence in hosts, which 
has been shown in various mammalian models. Thus, it has 
been shown that the administration of lactobacilli and Bifi-
dobacterium effectively reduces DNA damage caused by 
chemical carcinogens in the gastric and colon mucosa in 
rats [14]. Lyophilized cultures of Bifidobacterium longum, 
introduced into the diet of rats, inhibited tumors of the liver, 
colon, and mammary gland caused by food mutagens [15]. 
Several spore-forming probiotics, such as Bacillus subtilis 
var. natto, also exhibit anticancer properties [16, 17].

Nevertheless, an antimutagenic activity can be the basis 
for other systemic effects, such as, for example, slowing 
down aging processes, including reproductive aging. It has 
been shown that the stabilization of mitochondrial DNA 
observed under the action of probiotic Bacillus preparations 
may be associated with the prolongation of reproductive age 
in chickens [18]. It should also be noted that metabolites of 
probiotic bacteria exhibit the ability to suppress the SOS 
response [19], which can also be attributed to antimutagenic 
effects.

This work aimed to systematize data on the antimuta-
genic activity of probiotics and emphasize antimutagenic 
activity as a significant criterion for selecting potential pro-
biotic strains. The novelty of this work is that for the first 
time, antimutagenic activity is considered as an independent 
criterion for screening probiotics. We believe that putting 
together the available data on antimutagenic activity in a 
form of a critical review, with emphasis on the importance of 
this criterion for the future selection of probiotic candidates, 
may inspire researchers to use the criterion of antimutagenic 
activity in the selection of probiotics.

Probiotics with Antimutagenic Activity

Among all genera of probiotic bacteria, representatives of 
lactic acid bacteria (LAB) and Bifidobacterium are most 
often mentioned as sources of antimutagenic compounds. 
Several studies showed antimutagenic activity against het-
erocyclic amines, N-nitroso compounds, benzo (a) pyrene, 
and aflatoxin B [20–22]. Both live cultures of LAB and their 
fermentation products demonstrate antimutagenic and anti-
carcinogenic activity [23, 24].

Probiotics strains with antimutagenic activity are also 
found in other groups of microorganisms. For example, the 
Escherichia coli Nissle 1917 (EcN) strain is one of the old-
est probiotics [25] that exhibits antimutagenic activity. Pre-
sumably, 4-nitroquinoline-1-oxide (4-NQO) is deactivated 
by the E. coli cell’s metabolic systems with the formation 
of decay products of 4-aminoquinoline. However, the exact 
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mechanisms of deactivation of benzo(a)pyrene have not yet 
been established [26]. This kind of activity is quite typi-
cal for probiotics, for example, Lacticaseibacillus (formerly 
Lactobacillus) rhamnosus IMC501 can also convert 4-NQO 
into a non-genotoxic metabolite [27].

LAB with Antimutagenic Properties

It was stated that probiotic bacteria characteristic of the 
microbiota of goats, isolated from healthy goat feces and 
belonging to the genera Lactobacillus, Enterococcus, and 
Bifidobacterium, could reduce the mutagenicity of sodium 
azide and benzopyrene in the Ames test and reduce the risk 
of gastrointestinal cancer [28]. Among the substances whose 
mutagenic effects can be reduced by probiotic lactobacilli, 
heterocyclic aromatic amines should also be noted [29].

Lactobacillus and Bifidobacterium produce extracellular 
bioactive compounds with antimutagenic properties against 
benzo[a]pyrene (BaP) and sodium azide (SA). Interestingly, 
the common antimutagenic effects in exponential and sta-
tionary growth phases were different. Lactobacillus exhibit 
this activity mainly in the stationary growth phase [30].

Lactobacillus acidophilus (isolated from commercially 
available yogurt), Lactobacillus gasseri (P79), Weissela 
confusa (formerly Lactobacillus confusus) (DSM20196), 
Streptococcus thermophilus (NCIM 50,083), Bifidobac-
terium breve, and Bifidobacterium longum (isolated from 
child stools) reduced the DNA-damaging effect of methyl-
nitronitrosoguanidine (MNNG) in rat intestinal cells. It is 
peptidoglycan fraction from lactobacilli that exhibit anti-
mutagenic effects [14].

It has been shown that six strains of L. acidophilus and 
nine strains of Bifidobacteria show antimutagenic activ-
ity against the following mutagenic compounds: MNNG; 
4-nitro-O-phenylenediamine; 4-nitroquinoline-N-oxide; 
Aflatoxin B; 2-amino-3-methyl-3H-imidazoquinoline; PhIP, 
и 2-Amino-3-methyl-9H-pyrido[2,3-b]indole. The effect 
strongly depends on strains [22]. L. acidophilus LA 106 
fermented milk significantly decreased mutagenic effects 
by MNNG (by 77%) [31].

Lactiplantibacillus (formerly Lactobacillus) plantarum 
and Staphylococcus xylosus reduced the mutagenic activity 
of biogenic amines in the production of sausages [32].

Streptococcus thermophilus and Lactobacillus bulgari-
cus fermented milk reduced the effects of 4-nitroquinoline-
N-oxide (a direct-acting mutagen) and 2-aminofluorene (a 
mutagen requiring S9 activation) [33].

There is evidence that palmitic acid produced by Lacto-
bacillus delbrueckii ssp. bulgaricus and Streptococcus sali-
varius ssp. thermophilus in yogurt has antimutagenic effects 
on MNNG [34].

The possible mechanism of Lacticaseibacillus (formerly 
Lactobacillus) casei ATCC 393 antimutagenic effect can 

be connected with involvement and support in polyamines 
metabolism (putrescine, spermidine, and spermine) in host-
organism cells [35].

It should be noted that not all LAB have antimutagenic 
activity. Moreover, Sharma M. et al. (2020) have shown that 
out of 60 LAB isolated from various sources, only 10 iso-
lates showed antigenotoxicity of more than 30%, and four 
showed cytotoxicity of 70–80% [36]. In another research, 
only 4 strains from 25 isolates exhibited a pronounced anti-
mutagenic activity [37].

Bifidobacterium with Antimutagenic Properties

Bifidobacterium bifidum, Bifidobacterium lactis, and Bifi-
dobacterium longum showed significantly higher antimuta-
genic potential against benzo(a)pyrene than Bifidobacterium 
adolescentis, Bifidobacterium breve, and Bifidobacterium 
infantis. In particular, the activity of bifidobacteria on benzo 
[a] pyrene was noted by Lo et al. [21]. Bifidobacterium pseu-
docatenulatum G4 and B. longum are able to directly bind 
heterocyclic amines [38]. Bifidobacterium longum exhibited 
anti-mutagenic properties in fermented milk [20] and have 
shown the ability to bind dietary carcinogens [39].

Bacillus with Antimutagenic Properties

As for the representatives of the genus Bacillus, there is 
less research reported on their antioxidant and antimutagenic 
activity, although this is gradually changing. However, it 
should be noted that bacteria of this genus began to be con-
sidered as probiotic bacteria later than LAB.

Caldini et al. studied the effect of 16 Bacillus strains from 
pharmaceutical probiotic preparations and laboratory col-
lections (B. subtilis, Bacillus firmus, Bacillus megaterium, 
Bacillus pumilus) on genotoxicity caused by the standard 
mutagen 4-nitroquinoline-1-oxide (4-NQO) using the SOS 
chromotest, with E. coli PQ37 as a test organism [40]. It was 
found that the activity of 0.1 mm 4-NQO decreased after co-
incubation with Bacillus suspension with a titer of 108 CFU/
mL. All isolates showed the ability to deactivate 4-NQO, 
with genotoxicity inhibition ranging from 92.9 to 100%. The 
authors associate the observed effect with the modification 
of the 4-NQO molecule.

In a later work [41], the inhibitory effect of 21 bacilli 
strains on four genotoxins was investigated in vitro using 
the same method. All strains exhibited high inhibitory 
activity against 4-nitroquinoline-1-oxide and N-methyl-N′-
nitro-nitro-nitrosoguanidine (direct genotoxic agents), while 
against 2-amino-3,4-dimethylimidazo [4,5-f]-quinoline and 
aflatoxin B1 (indirect genotoxic agents), inhibitory activ-
ity was high or moderate. Antigenotoxicity was observed 
in vegetative cells but not in heat-treated cells or spore sus-
pensions. The spectroscopy showed that the properties of 
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genotoxin molecules were changed after incubation with 
cells, and all strains retained high viability after exposure 
to genotoxins.

It has been shown that the Bacillus coagulans strain GKN316 
can efficiently metabolize furfural, 5-hydroxymethylfurfural 
(HMF), vanillin, syringaldehyde, and p-hydroxybenzaldehyde 
(pHBal), converting them into less toxic corresponding alcohols 
in situ [42].

Other Gut Bacteria with Antimutagenic Properties

Cell extracts and Streptococcus faecalis cells reduce the 
mutagenic effect of 2-nitrofluorene in the Salmonella Typh-
imurium TA1538 strain. This is manifested through several 
mechanisms involving extracellular and intracellular fac-
tors. Presumably, thiol compounds are extracellular factors. 
Desmutagens affecting the biotransformation of a mutagen 
within a cell include thermally stable compounds, possibly 
of proteinaceous nature, with a molecular weight of less than 
12 kDa [43].

Another intestinal microorganism Enterococcus faecium 
M-74 had a more significant antimutagenic effect under 
similar conditions in a live state and when selenium was 
added to the medium [44].

Most of the above studies have some methodologi-
cal drawbacks. The researchers choose xenobiotics as 
genotoxic substances (such as MNNG and NQO, rather 
exotic for living organisms) that must be inactivated by 
probiotics. Meanwhile, living organisms do not encoun-
ter these compounds that often. Even if considering the 
anthropogenic environment, among all the most frequently 
used experimental models of promutagens and mutagens, 
benz(a)pyrene is the only compound that humans and ani-
mals have to deal with. If we consider probiotics as a fac-
tor in preventive therapy against diseases caused by muta-
genic factors, models based on more typical substances 
that threaten the human body in the modern world should 
be used for screening and selection of promising targeted 
probiotic strains. As stated earlier in the “Introduction” 
section, many drugs are mutagens and therefore can be 
used for similar models.

Probiotic strains with antimutagenic activity and their 
sources were summarized in Table 1.

Analyzing the data summarized in Table 1, we can con-
clude that among all references to probiotics with antimuta-
genic activity, representatives of lactobacilli are in the lead. 
According to our meta-analysis, reports of them represent 
about 43% of all mentions of antimutagenic probiotics. In 
23% of cases, bifidobacteria are mentioned; 20% of papers 
mention representatives of the genus Bacillus; 9%, Strepto-
coccus sp.; and in 5% of cases, other bacteria.

Antioxidant Activity of Probiotics

Antioxidant activity, although part of antimutagenic activ-
ity, requires separate consideration. The mechanisms 
responsible for it are usually more specific than those that 
provide antimutagenic activity.

Antioxidant activity of probiotics is shown for many 
strains, among which Lactobacillus species are most stud-
ied and used in medicine and the food industry.

Lactobacillus with Antioxidant Properties

Chooruk et al. showed that in a series of 201 strains of lac-
tobacilli isolated from the human oral cavity, antioxidant 
activity is, to some extent, inherent in all of the isolated 
strains, and in a large number of strains, it was significant. 
The most prominent strains belonged to L. fermentum, L. 
paracasei, and L. rhamnosus [52]. It was shown that L. 
plantarum ATCC14917 enhanced the antioxidant activity 
of apple juice [53], and the Levilactobacillus (formerly 
Lactobacillus) brevis KCCM 12203P strain possessed both 
antioxidant and immunomodulatory activity [54].

Bifidobacterium with Antioxidant Properties

Bifidobacterium probiotic species are less studied due to 
the difficulty of their cultivation in the laboratory. How-
ever, there is evidence of the antioxidant activity of their 
representatives. It was shown that B. longum LTBL16 
has high antioxidant activity [55]. B. lactis strain HN019 
reduced the level of oxidative stress in patients with met-
abolic syndrome and reduced the level of inflammation 
[56]. The intake of Bifidobacterium bifidum ATCC 29,521 
had a beneficial effect on the structure of the intestinal 
microbiota, in addition to antioxidant effects [57].

Other Gut Bacteria with Antioxidant Properties

Among genera that are less clearly (or, perhaps, more 
controversially) associated with probiotic activity, there 
are also probiotic species with antioxidant properties. For 
instance, Ent. faecium strains isolated from various fer-
mented foods were reported as having antioxidant prop-
erties [58]. Streptococcus salivarius ssp. thermophillus 
strain exhibited high antioxidant activity and caused a 
significant decrease in the level of markers of oxidative 
stress in liver cells of mice [59]. Representatives of the 
genus Bacillus also demonstrated high antioxidant activity 
levels, both in vitro and in vivo [60, 61].
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Bacterial Consortia with Antioxidant Properties

Antioxidant activity is observed not only in individual strains 
but also in microbial consortia. For instance, the kefir grains 
consortium’s bacteria exhibit antioxidant properties, and 
their beneficial effect on the condition of patients with Alz-
heimer’s disease (AD) has been shown to be connected with 
such activity. Moreover, in this study antioxidant defense 
mechanisms were involved in improving physiological and 
cognitive functions, and probiotics were able to reduce the 
ROS-mediated pro-inflammatory response, which is part of 
the pathogenesis of AD [62].

Antioxidant activity can overlap with antimutagenic 
activity since a decrease in ROS levels will reduce the total 
number of mutations in the genome. However, there are 
methods to consider them separately. Such an approach, 
in particular, can be the use of bacterial biosensors — a 
method that we used and was shown to be successful for the 
stage of primary screening of probiotics for veterinary medi-
cine (see Table 3 and the corresponding links). In this case, 

the marker is the expression of bacterial genes responsible 
for responding to specific ROS (superoxide anion radical, 
hydrogen peroxide) or DNA damage (individual genes of 
the SOS response system).

Possible Mechanisms of Action

The mechanisms of antimutagenic action of probiotics are 
still the subject of discussion. It should be noted that the 
antimutagenic properties of probiotics can benefit the host 
not only through direct interaction of metabolites of probi-
otic bacteria with host cells but also indirectly by reducing 
the intensity of mutational processes in the microbiota. As 
shown earlier [3], this process slows down the emergence 
and spread of antibiotic resistance factors in the microbiota, 
reducing possible complications after antibiotic therapy.

At the molecular level, two groups of mechanisms can 
be distinguished:

Table 1   Probiotics species and strains with antimutagenic activity

Probiotic species with antimutagenic activity Source of identification

Bifidobacterium longum [14, 15, 20],
Bifidobacterium breve [14], Bifidobacterium lactis Bb-12 [21], Bifidobacterium adolescentis 

[22], Bifidobacterium bifidum [22], Bifidobacterium infantis [22],
Bifidobacterium pseudocatenulatum G4 [38]

Dairy products, human feces

Lactobacillus acidophilus [14, 22, 31] Yogurt, fermented milk
Lactobacillus gasseri (P79) [14], Lactobacillus confusus (DSM 20,196) [14],
Streptococcus thermophilus (NCIM 50,083) [14, 33]

Dairy products

Bacillus subtilis KATMIRA1933 [19] Fermented dairy product YoguFarm (catalog no. 
74699–02,905; JSL Foods, Los Angeles, CA, 
USA)

Bacillus amyloliquefaciens B-1895 [19, 45],
Bacillus amyloliquefaciens CBSYD1 [46]

Soil

Escherichia coli Nissle 1917 [26] Human feces
Lactobacillus rhamnosus (IMC501) [27, 46],
Lactobacillus rhamnosus 231 [51]

Human feces

Lactobacillus reuteri DDL 19 [28], Lactobacillus alimentarius DDL 48 [28],
Enterococcus faecium DDE 39 [44], Bifidobacterium bifidum DDBA [28]

Goat feces

Bacillus subtilis [40, 41],
Bacillus megaterium [40, 41],
Bacillus firmus [40, 41],
Bacillus pumilus [40, 41]

Pharmaceutical preparations

Lactobacillus helveticus [47], Streptococcus thermophilus [47], Lactobacillus kefir [47], 
Lactobacillus plantarum [47]

Dairy products

Lactobacillus helveticus CH65 [48], Lactobacillus acidophilus BG2F04 [48],
Streptococcus salivarius ssp. thermophilus CH3 [34, 48],
Lactobacillus delbrueckii ssp. bulgaricus 191R [34, 48]

Dairy products

Lactobacillus acidophilus KFRI342 [49] Kimchi
Lactobacillus acidophilus [50], Lactobacillus casei [35, 50],
Lactococcus lactis biovar. diacetylactis DRC-1 [50]

Probiotic curd

Lactobacillus rhamnosus 231 [51] Human feces
Streptococcus faecalis [43] Human intestine samples
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1.	 Direct binding to mutagens.
2.	 Mutagens transformation [28]
	   On the cellular level, there are also two ways to fight 

mutagens:
3.	 Production and/or excretion of antimutagenic metabo-

lites.
4.	 Production of antimutagenic substances via fermentative 

transformation of a substrate.
	   The latter two mechanisms are not necessarily ways 

of dealing with dangerous mutagens for themselves but 
could also arise as a side effect of other processes and 
gain a foothold as an advantage in symbiotic relation-
ships.

	   On a systemic level:
5.	 Indirect influence on the level of spontaneous mutagen-

esis and the expression of genes of the host defense sys-
tems.

Binding of Mutagens

The correlation between lactobacilli’s ability to bind muta-
gens and their antimutagenic activity has been persuasively 
shown by Stidl et al. [47].

The cell wall components can also play a significant role 
in binding and deactivating mutagens [29, 63]. Specifically, 
such a mechanism should be characteristic of the inactiva-
tion of amines [29]. Morotomi and Mutai found that the abil-
ity of probiotic Lactobacillus to bind to mutagenic products 
of tryptophan pyrolysis is pH-dependent and decreases with 
the addition of metal salts [64]. The authors concluded that 
the effect of amine binding by the bacterium L. casei appears 
to be related to cation-exchange mechanisms.

Studies comparing Gram-positive and Gram-negative 
bacteria’s ability to bind the pyrolysis products of trypto-
phan have shown that Gram-positive strains are consistently 
more effective [65]. This fact can be taken as an indication of 
the cell wall structure’s important role in the inactivation of 
mutagens. Subsequent studies have shown that the binding 
of amines with Gram-positive and Gram-negative bacteria 
occurs in the peptidoglycan layer and the outer membrane, 
respectively [48]. Sreekumar and Hosono suggested that the 
HA binding receptors are carbohydrate fragments of the cell 
wall and that glucose molecules play a crucial role in the 
binding reaction [20].

Transformation of Mutagens

The possibility of inhibiting certain stages of the transfor-
mation of promutagens into mutagens is also considered 
as a possible mechanism of probiotics’ action. It has been 
found, for example, that L. delbrueckii ssp. bulgaricus 191R 
releases hydrophobic metabolites with antimutagenic activ-
ity against MNNG and 3,2′-dimethyl-4- aminobiphenyl 

(DMAB). The exact mechanism or active substance has not 
been identified, but the authors consider the inhibition of 
cytochrome P450 1A2, inhibition of subsequent activating 
enzymes such as acetylase, reaction with N-hydroxy DMAB 
or other already activated forms of DMAB, or increased 
DNA repair as mechanisms of its activity [61].

In some studies, the effects of temperature-inactivated 
cells were compared with those of living cells, and it was 
found that the latter has a consistently higher antimutagenic 
activity [22, 66]. This observation suggests that living bac-
teria can produce metabolites or catalyze reactions that 
detoxify amines. Another study investigated the potential 
antimutagenic effects of various organic acids (lactic acid, 
butyric acid, and acetic acid) on IQ, PhIP, and Trp-P-1 and 
some non-amine carcinogens [20]. These acids are products 
of microbial fermentation of fibers and other polysaccharides 
[67]. Butyric acid inhibited the mutagenic effects of amines 
in the Salmonella enterica serovar Typhimurium TA98 test, 
while no such effects were observed with other acids.

It was shown that L. rhamnosus 231 has several 
mechanisms of antimutagenic action: adsorption (for 
example, acridine orange) and biotransformation with 
subsequent detoxification (for example, MNNG and 
2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline) [51].

Production and/or Excretion of Antimutagenic 
Metabolites

Considering the release of effector molecules, one can 
assume two possibilities: probiotics can release antimuta-
genic metabolites or transform the substrate so that anti-
mutagen compounds are obtained. Methodologically, it can 
be quite difficult to differentiate these two mechanisms by 
studying the effects of a particular strain.

Thus, it has been shown that the main contribution to the 
antimutagenic activity of sour milk fermented by the probi-
otic strain L. plantarum is made by peptides less than 3 kDa 
and 3–10 kDa in size. However, it is unknown whether they 
are produced by the bacterium or obtained during the prote-
olysis of milk proteins [68].

The study of antimutagenic metabolites of the probi-
otic strain L. rhamnosus MD 14 showed that they belong 
to thermosensitive protein compounds and organic acids 
[35]. However, on the other hand, Bacillus metabolites, 
which have antimutagenic activity and can inhibit the SOS 
response in E. coli, exhibited thermal stability [19].

Fermentation of soy milk by lactic acid bacteria (Strep. 
thermophilus, L. acidophilus) and bifidobacteria (B. infan-
tis, B. longum) significantly increased its antimutagenic 
properties against 4-nitroquinoline-N′-dimethyl -biphenyl 
(DMAB). The mutagenic effect of these compounds was 
also reduced by pretreating S. Typhimurium TA 100 cells 
with fermented soy milk [69, 70].
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The degree of proteolysis of proteins in yogurt by Lact. aci-
dophilus (ATCC® 4356 ™), L. casei (ATCC® 393 ™), and 
Lacticaseibacillus (formerly Lactobacillus) paracasei subsp. 
paracasei (ATCC® BAA52 ™) correlated with its antimuta-
genic activity. The released peptides showed high activity 
in trapping radicals with 1,1-diphenyl-2-picrylhydrazyl and 
2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) [71]. 
It is known, L. plantarum KLAB21 produces glycoproteins 
with antimutagenic activity [72].

The differentiation of the mechanisms of cell-mediated 
antimutagenic activity from that of metabolite-mediated can 
be performed via testing cell-free preparations together with 
probiotic strain’s cells.

Systemic Effects

One more direction for implementing the antimutagenic 
effects of probiotics could be pointed out: these effects can 
be achieved by indirectly influencing the level of sponta-
neous mutagenesis. Recently, increasing information has 
appeared that probiotics can influence the expression of host 
genes, interfering with the work of its regulatory cascades, 
such as, the p38 MAP kinase pathway [73, 74]. It should be 
noted that these effects were observed both under the action 
of living cells and under the influence of cell-free prepara-
tions [74]. Such a change in the host’s cellular homeostasis 
may be associated, among other things, with the level of 
mutagenesis in the cells.

Maintaining the balance of prooxidants/antioxidants in 
the cell can also be one of the indirect pathways.

Mechanisms of Antioxidant Activity

As mentioned above, antioxidant activity can be considered 
a special case of antimutagenic activity, usually provided by 
different mechanisms that vary from strain to strain.

In general, we can describe antioxidant mechanisms 
by the binding or transformation of prooxidants/ROS, the 
release of antioxidants or the conversion of substrate mol-
ecules into antioxidants, as well as the regulation of the host 
defense systems.

Prooxidants/ROS Binding and Transformation

Another possible mechanism for the antioxidant action of 
probiotic bacteria is metal chelation. For example, Lactoba-
cillus helveticus CD6 can produce substances that bind Fe2+ 
ions into chelates [75].

Bacteria have their own Fe-SOD and Mn-SOD enzyme 
systems to protect against free radicals [76], while Mn-SOD 
is similar to the Mn-SOD of eukaryotic cells mitochondria. 
These enzymes can reduce the number of prooxidant mol-
ecules in the environment. It has been shown that two strains 

of L. fermentum, which has a high production of glutathione 
peroxidase (GPx), also had significant antioxidant properties 
[77, 78]. There are genetically modified strains of lactoba-
cilli that carry catalase genes, and their use has been shown 
to reduce the severity of Crohn’s disease in mice [79].

Producing of Antioxidant Metabolites or Substrate 
Transformation

A significant part of the antioxidant properties of food prod-
ucts, for example, milk and dairy products, is provided by 
protein substances: casein fraction and albumin [80] and 
short peptides [81]. Probiotic bacteria, which are used to 
produce fermented dairy products, can increase the number 
of antioxidant peptides in products due to their proteolytic 
activity. It has been shown for different genera of LAB, 
for example, for the symbiotic cultures of L. delbrueckii 
ssp. bulgaricus and Strep. thermophilus, as well as mono-
cultures of L. acidophilus, L. casei, and B. bifidum [82]. 
At the same time, it is noted that the addition of probiotic 
strains increases the antioxidant properties of the fermented 
product compared to the unfermented one [83]. There is 
a correlation between the level of the strain’s proteolytic 
activity and the final product’s antioxidant properties, as 
was shown by the example of various Lactobacillus species 
[71, 83]. Solieri et al. compared the proteolytic and anti-
oxidant activity of 39 non-starter lactobacilli from different 
cheeses [83]. Sah showed the same effect on L. acidophilus 
(ATCC4356), L. casei (ATCC 393), and L. paracasei ssp. 
paracasei (ATCC BAA52). Furthermore, even if there was 
no difference in antioxidant activity between the fermented 
and non-fermented products, there was a better bioavail-
ability of antioxidants from the fermented product [47] as 
demonstrated with five strains of Bifidobacterium longum 
ssp. Longum [84]. We should note the synergistic effect of 
co-cultivation of different strains, as was shown for Lact. 
acidophilus (ATCC4356), L. casei (ATCC 393), and L. 
paracasei ssp. paracasei (ATCC BAA52) [71].

The other way is the production of low-molecular anti-
oxidant molecules such as glutathione [85], butyrate [86, 
87], and folate [75]. It has been shown that probiotic bac-
teria have enzyme complexes to produce antioxidant mol-
ecules, such as glutathione-producing L. fermentum ME-3 
enzymatic system [85]. These molecules can be absorbed by 
the host and exhibit their properties in the host’s cells and 
tissues, for example, reducing the effects of oxidative stress 
in the liver [87–89].

Considering extracellular metabolites, some specific 
qualities should be mentioned, specifically: small size 
(associated with the ability to penetrate membranes); resist-
ance to proteinases and other environmental factors; exist-
ence in a variety of isoforms; and the ability to reform the 
structure quickly. In particular, bacterial oligopeptides and 
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lipopeptides synthesized both ribosomally and nonribo-
somally usually correspond to those criteria. It is known 
that the non-ribosomal synthesis of oligopeptides occupies 
a more significant share in the metabolism of Bacillus. Its 
products do not exceed several kDa in size, and a significant 
number of them are thermostable and are not hydrolyzed by 
proteinase K. Such resistance is provided by the atypical 
amino acids and stereoisomers in the structure of nonribo-
somally synthesized bacilli peptides [90]. These peptides are 
often considered to be antimicrobial and antifungal agents; 
however, recent data indicate their participation in regula-
tory processes [91]. For Lactobacillus, Enterococcus, or Bifi-
dobacterium probiotic strains, the synthesis of ribosomal 
peptides with a broad spectrum of activities is more typical.

It is known that endogenous eukaryotic peptides that reg-
ulate the prooxidant/antioxidant balance are involved in the 
body’s response to oxidative stress that occurs during patho-
logical processes and stressful conditions [92]. In addition 
to the signaling effect that allows peptides to normalize the 
cell’s oxidative status, they have antioxidant properties [93].

Besides, peptides of various origins (including synthetic 
peptides) can regulate the processes of cell proliferation and 
apoptosis [94], as well as penetrate the nucleus and nucleo-
lus and bind there with DNA and histone proteins, affect-
ing gene expression [91, 95]. Thus, peptides released by 
the microbiota should not be disregarded as they may have 
similar effects.

Systemic Effects

Presently, the influence of probiotic bacteria on the host 
organisms signaling pathways is an actively studied topic. 
For instance, Lactobacillus spp. influence the Nrf2-Keap1-
AREA pathway. Nrf2 activates many genes, including those 
involved in the detoxification of xenobiotics and ROS [96]. 
An extracellular polysaccharide from the Bacillus sp. LBP32 
inhibits NFκB production, preventing macrophage inflam-
matory responses, and ROS production [97]. L. rhamnosus 
GG improved the state of intestinal epithelial cells under 
severe oxidative stress through the production of soluble 
proteins p40 and p75, which acted through the mechanism of 
activation of mitogen-activated protein kinases (MAPKs), as 
well as inhibition of protein kinase C (PKC) [98]. However, 
specific mechanisms and specific signaling molecules that 
regulate these pathways are often not described in published 
reports.

It is proved that YD1 peptide, isolated from Bacillus 
amyloliquefaciens CBSYD1, has antioxidant activity and 
an effect on the host organism, similar to NF-E2-related 
factor-2 (Nrf-2) [46]. B. amyloliquefaciens SC06 strain 
reduced the level of damage to pig intestinal epithelial cells 
by modulating the Nrf2/Keap1 pathway and ROS production 
[60]. B. megaterium SF185 also protected CACO-2 intestinal 

epithelial cells from the effects of hydrogen peroxide [99]. 
However, in general, the antioxidant effect of bacillary pro-
biotics is described much less than that of probiotics based 
on LAB and bifidobacteria.

The search for metabolites that provide these and other effects 
listed above seems to be a promising topic for further research.

However, the relationship between the antimutagenic 
activity of probiotic bacteria and the production of antioxi-
dants is currently at the initial stage of the study. The ability 
of lacto- and bifidobacteria to produce substances that inac-
tivate ROS has been reliably confirmed by experiments [100, 
101], but for spore-forming probiotics, such activity has so 
far been described in very fragmentary terms.

Postbiotics as Antioxidants and Antimutagens

In recent years, researchers have been using the term “post-
biotics” for the products of the probiotic microorganism’s 
activity that can positively affect the host organism, even in 
the absence of living cells. Among the representatives of this 
group, compounds with antioxidant immunomodulatory and 
anticancer properties have been identified.

Postbiotics are functional bioactive compounds gener-
ated in a matrix during fermentation. Postbiotics can include 
many different components, such as metabolites, short-chain 
fatty acids (SCFA), microbial cell fractions, functional 
proteins, extracellular polysaccharides (EPS), cell lysates, 
teichoic acid, peptidoglycan derived muropeptides, and pili-
like structures [102].

As the variety of substances included in this group, 
the properties of postbiotics are diverse. They are able to 
exert immunomodulatory effects; for example, postbiotics 
obtained from Bifidobacterium breve C50 and Strep. ther-
mophilus 065 induce high IL-10 production through TLR-2 
and also stimulate Th1 responses [103, 104]. The use of L. 
paracasei CBA L74 postbiotics in infants led to a change in 
the levels of immune biomarkers in the blood and ameliora-
tion of the disease’s progression [105].

The cell-free supernatants of L. acidophilus, L. casei, 
Lactococcus lactis, Limosilactobacillus (formerly Lactoba-
cillus) reuteri, and Saccharomyces boulardii demonstrate an 
antioxidant activity in addition to immunomodulatory effect 
[106]. Postbiotic exopolysaccharides from L. plantarum 
70,810 have antitumor properties, inhibiting the prolifera-
tion of HepG-2, BGC-823, and HT-29 tumor cells [107]. 
Exopolysaccharides from L. helveticus MB2 showed the 
ability to bind ferrous ions, which provides one of the well-
known mechanisms of antioxidant activity [108]. Exopoly-
saccharides of several wild lactobacilli strains also showed 
antioxidant properties [109].

As mentioned above, the production of folate, glutathione, 
and other antioxidant molecules is one of the mechanisms 
of probiotics’ antioxidant activity. Moreover, such products 
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can be considered postbiotics [75, 85]. For example, folate-
producing L. helveticus CD6 cell-free supernatants demon-
strate antioxidant properties [75].

Some of the more specific properties of postbiotics are 
presented in Table 2.

Antimutagenic Effect of Probiotics 
in Mitochondria

In recent years, there was increasing evidence indicating 
that mitochondria can, in addition to a well-studied energy 
function, also serve as a kind of a “regulatory center” for 
eukaryotic cells [110–113]. Changes in mitochondrial func-
tion affect many processes, ranging from aging to diabetes 
[114, 115], and many of the proteins that play a crucial role 
in signaling cascades are found in mitochondria. It is espe-
cially relevant for systems regulating oxidative status, which 
provide an accurate balance of pro- and antioxidant activity 
[116]. For example, regulation of the nfe2l2/AP1 pathway 
that controls the antioxidant system can be directly initiated 
by changes in the mitochondrial membrane state. The same 
works for a number of other cascade processes and regula-
tors: the antioxidant defense pathway regulated by MAPK10 
kinase and the NFE2L2/AP1 pathway in general, the thiore-
doxin 2/peroxiredoxin 3 system, etc. [117–119].

This set of data could lead to an interesting hypothesis 
that the antimutagenic effect of probiotics can be real-
ized indirectly. Namely, it can be carried out through the 
influence on redox homeostasis through interaction with 
mitochondria. Stefanaki et al. showed that the intestinal 
microbiota and its secreted metabolites could interact with 
mitochondria [120]. The prokaryotic origin of mitochondria 
is likely to contribute to such interactions [121].

The possibility of interaction of probiotics with host 
mitochondria is supported, for example, by the following 
studies. In Nakagawa et al. experiments, the L. gasseri 

SBT2055 probiotic increased the lifespan of Caenorhab-
ditis elegans [73]. It was noted that the number of mito-
chondria significantly increased when the host was fed 
with the LG2055 strain, as compared to the control. The 
probiotic intake slowed down the age-related decline in 
mitochondrial function that is characteristic of aging. The 
transmembrane potential of the mitochondrial membrane 
was significantly higher in old worms fed with LG2055 
than in their peers fed with the standard E. coli OP50. 
At the same time, life extension was observed both when 
feeding with live and dead LG2055 cells.

Emerging data indicate the role of ROS, nitric oxide, short-
chain fatty acids, and hydrogen sulfide in cross-linking between 
microbiota-mitochondria and redox signaling [122]. Several 
studies show that the microbiota modulates mitochondrial 
activity and enhances the interaction between the host and 
the microbiota. Moreover, the effects can be both positive and 
negative, depending on which strain is involved — pathogenic 
or probiotic [123, 124]. Apparently, the microbiota can control 
mitochondrial activity and redox homeostasis [122].

We have previously shown the effect of probiotic 
Bacillus strains on mitochondrial DNA stability in birds 
[18]. It was shown that B. subtilis strains caused an 
increase in the expression of the genes associated with 
antioxidant activity in the liver and mitochondria com-
pared as compared to the control group [62]. Biogenic 
selenium nanoparticles synthesized by L. casei ATCC 
393 can protect the barrier function of the intestinal 
epithelium from oxidative damage by alleviating ROS-
mediated mitochondrial dysfunction via the Nrf2 signal-
ing pathway [125]; the positive effect of probiotics in 
Alzheimer’s disease also appears to be associated with 
effects on redox homeostasis, DNA damage levels, and 
mitochondrial activity [62].

There are three main mechanisms for the implementa-
tion of these effects that are being discussed in related 
publications:

Table 2   Postbiotics and their effects on eukaryotic hosts

Source Effects References

Supernatants Bifidobacterium breve C50 and Strep. thermophilus 
065

Inducing high production of IL-10 through the TLR-2 and stimu-
lating Th1 response

[103, 104]

Postbiotics based on Lact. paracasei CBA L74 Altering of immune biomarkers levels in blood and relief the 
course of diseases in infants

[105]

Cell-free supernatants Lact. acidophilus, Lact. casei, Lact. reu-
teri, L. lactis, and Saccharomyces boulardii

Immunostimulatory and antioxidant effects [106]

Postbiotics-exopolysaccharides from Lact. plantarum 70,810 Antitumor properties through inhibition of HepG2, BGC823 and 
HT-29 tumor cell proliferation

[107]

Exopolysaccharides from Lact. helveticus MB2 Ability to bind ferrous ions [108]
Exopolysaccharides several wild strains of Lactobacillus Antioxidant properties [109]
Cell-free supernatants Lact. helveticus CD6 Antioxidant properties due to folate production [75]
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1.	 Microbiota can control mitochondrial activity and redox 
homeostasis.

2.	 Microbiota can influence the expression of nuclear genes 
by stimulating the insertion of bacterial DNA.

3.	 Mitochondrial DNA insertions occur in the host's 
somatic cells and may be triggered by microbiota activ-
ity.

Concerning point one, apparently, the mediator mol-
ecules secreted by the microbiota modulate mitochondrial 
activity and biogenesis. Depending on their concentration, 
these molecules affect mitochondrial homeostasis, which 
controls various cellular functions, in particular, ROS 
signaling, innate immune response, and energy metabo-
lism [122]

The theory of endosymbiosis, according to which mito-
chondria originate from bacterial endosymbionts, also sug-
gests that mitochondria may have signaling pathways that 
respond to bacterial signals [126, 127].

Thus, the antioxidant/antimutagenic effect on mitochon-
dria should be considered one of the criteria for bacterial 
strains’ probiotic potential. Such a test might be difficult to 
perform at a stage of initial screening, but at the stage of ani-
mal tests, it is possible to measure the level of mutagenesis 
in mitochondria using the Comet Assay, PCR and any other 
available method.

The Effect of Complex Preparations

It is interesting to note that antimutagenic activity increases 
with the use of a complex of strains compared with a mono-
culture. Several studies report that probiotic bacteria work 
better in combination than individually. For example, a 
complex of four strains isolated from goats showed better 
activity than the same strains separately [28]. Given this, 
another way of realizing the antimutagenic properties of pro-
biotic Bacillus strains seems to be possible: since probiotic 

Fig. 1   Scheme of potential pro-
biotic screening and selection 1. Isolation and purification of strains from 

natural sources and biomaterial

2. Primary identification

3. Safety check (absence of hemolytic and mutagenic activity, 
antibiotic resistance profile)

4. Investigation of the biological activity of the strain

5. Investigation of the properties of the strain for suitability 
for use in production processes

6. Animal/Human Tests

4А. Antioxidant and 
antimutagenic

4B.Antimicrobial 4C. Immunomodulatory

4D. Antitumor 4E. Anti-inflammatory
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Bacillus, in particular B. subtilis, improves the viability of 
normal intestinal microbiota, such as representatives of Lac-
tobacillus and Bifidobacterium; this may, in turn, lead to 
active production of antimutagenic metabolites by the latter 
and, thus, improve the antimutagenic potential of microbiota 
in general. It was found that the viability of lactobacilli when 
combined with bacilli is increased significantly. The authors 
speculate that this effect may be due to the release of cata-
lase and subtilisin from B. subtilis [128, 129].

The fact that often complex probiotic preparations can 
be more effective also makes sense in the context of the 
diversity of the spectrum of metabolites secreted by different 
groups of probiotics, since different groups of microorgan-
isms secrete different antimutagenic metabolites, apparently, 
complementing each other’s activity (see, for example, [111, 
112]).

Antimutagenic Action as a Criterion 
for Screening

The current approach to selecting potential probiotics can 
be summarized in the following scheme (Fig. 1).

After isolation of strains from natural sources and their 
preliminary identification, they are checked for several cri-
teria, such as safety (hemolytic activity, ability to adhere 
to mammalian cells, production of lytic enzymes, toxins, 
biogenic amines), biological activity, and ability to colo-
nize the host and survive in the internal environment (such 
parameters as hydrophobicity of the cell surface, ability to 
adhere to mucin, to the intestinal epithelium, and autoag-
gregation screening are considered) [130]. These studies 
can be performed in a different order or simultaneously. 
However, they always precede the study of the effects of a 
probiotic directly on the host organism.

All screening procedures preceding animal and/or 
human testing are naturally aimed at predicting the strain’s 

probiotic properties before it is introduced into the host. 
There are various model systems based on cell cultures, 
single-cell biosensors, and in vitro tests. Biological activ-
ity, which is most often evaluated at stage 4, is under-
stood very broadly in different studies. The main effects 
include antimicrobial, immunomodulatory (for example, 
in models of co-cultivation of bacteria with epithelial cells 
and immune cells that mimic in vivo interactions), anti-
inflammatory, antitumor properties (this section sometimes 
includes antimutagenic), and the ability to interact with 
certain specific metabolites or produce them. All these tests 
are conducted quite randomly, making it difficult to com-
pare the results of different studies [130].

We consider it essential to distinguish antimutagenic 
and antioxidant activity as a mandatory criterion for 
screening probiotic strains in vivo (Point 4A of Fig. 1) 
since it can be associated with many systemic effects.

The most common methods used to assess antimuta-
genic activity are summarized in Table 3.

Conclusion

Thus, we can conclude that antimutagenic activity is an 
important property of probiotic strains. Many data obtained 
based on in vitro experiments using model mutagens shows 
that many probiotic strains can inactivate these substances 
or reduce their effect, exhibiting, in particular, anticar-
cinogenic properties. The mechanisms of antimutagenic 
activity of probiotics can be associated with (a) binding of 
mutagens, (b) transformation of mutagens, and (c) inhibi-
tion of the transformation of promutagens into antimuta-
gens. Effector molecules that carry out these processes can 
be part of cell structures, be secreted extracellularly, or be 
obtained due to the transformation of the substrate by bac-
teria. The possibility of an indirect decrease in the level of 

Table 3   Techniques used for screening to assess antimutagenic activity of probiotic strains

Method Advantages Disadvantages References

Ames method (pre-incubation method) 1) Relatively inexpensive; 2) easy to 
perform; 3) easy to understand by people 
not trained in genetics or mutagenesis; 4) 
the most common method

No selectivity for the type of genetic 
damage

[51, 131–133]

Measuring the concentration of muta-
gens by physicochemical methods

Measurement accuracy (1) Indirect measurement; (2) high cost 
and complexity; (3) no selectivity for the 
type of genetic damage

[36, 51]

Comet assay 1) Speed; (2) simplicity; (3) selectivity for 
the type of genetic damage

Inability to detect other types of mutations, 
except for breaks

[26, 49, 50]

Biosensor test 1) Relative simplicity; (2) selectivity for 
the type of genetic damage; (3) genotox-
icity in prokaryotes correlates with the 
same effect in eukaryotic cells

1) The ability to measure the SOS 
response; 2) fully relevant only for 
prokaryotes

[3, 19, 40, 41]
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mutagenesis in cells due to the interaction of metabolites 
of probiotics with the host’s regulatory cascades requires 
separate consideration. Antimutagenic activity may be 
associated with the broader systemic effects of probiotics, 
such as geroprotective activity, and should be considered 
an essential criterion in selecting probiotic strains.

Also, it is interesting to study the effect of probiotics on 
mitochondria. The evolutionary relationship between bacte-
ria and mitochondria suggests that mitochondria may have 
previously unknown signaling pathways that respond to bac-
terial signals. Besides, mitochondria play a significant role 
in the production and control of ROS in the cell. It means 
the pathways of probiotics’ systemic antioxidant effects can 
be implemented through them.

Probiotics with antimutagenic properties can be used as 
adjunctive therapy in the treatment of genotoxic drugs, as 
well as to prevent the mutagenic effect of environmental pol-
lutants on humans and animals. However, the use of these 
strains should not be limited only to this area, since anti-
mutagenic properties can lead to wider systemic effects that 
still require further study.
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