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Abstract
Early microbial colonization is a determinant factor in animal health, and probiotic administration has been demonstrated 
to modulate intestinal microbiota and promote health in dairy calves. The objective of this study was to evaluate changes in 
calves’ fecal microbiota after the administration of two probiotic lactobacilli strains that had previously exhibited beneficial 
effects in calves’ health in relation to neonatal calf diarrhea. An in vivo assay was performed with 30 newborn male Holstein 
calves that were divided into three groups. Two groups were orally administered with two different lactobacilli strains (Lac-
tobacillus johnsonii TP1.6 or Limosilactobacillus reuteri TP1.3B), and the third was the control group. Calves (5 to 9 days 
old) were administered with freeze-dried bacteria once a day for 10 consecutive days. Feces samples were taken before the 
first administration (day 0) and then again on days 10 and 21, and the V4 region of the bacterial 16S ribosomal gene was 
sequenced with an Illumina MiSeq 250 paired-end platform. The administration of both strains significantly affected the total 
bacterial community composition, and the effect lasted for 11 days after the last dose. In particular, amplicon sequence vari-
ants related to Bifidobacterium and Akkermansia genera were significantly higher in both treated groups. Therefore, modu-
lation of the intestinal microbiota is a potential mechanism of action behind the beneficial effects of these probiotic strains.
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Introduction

One of the most critical challenges in the dairy industry is 
the high mortality rate of calves, which affects the replace-
ment of heifers. Despite preventive measures, enteric infec-
tions and neonatal calf diarrhea (NCD) are among the lead-
ing causes of newborn deaths [1, 2]. It is estimated that 5–6% 
of female dairy calves die during the preweaning period in 
farms in Canada and the USA [2]. In Uruguay, the annual 
calf mortality risk was estimated to be 15.2%, and diarrhea 
was reported as the most common clinical syndrome (85.2%) 
[3, 4]. Therefore, new strategies for improving the intestinal 
health of calves before weaning are necessary for minimiz-
ing their susceptibility to enteric infections and diarrhea. 

Mammals are born functionally sterile, and the coloniza-
tion of the intestinal microbiota plays a fundamental role in 
the development of a competent and stable immune system 
[5]. The preservation of a normal microbial composition is 
necessary for both systemic and mucosal homeostasis [6, 
7]; therefore, promoting a healthy intestinal microbiome is 
a topic of interest for animal production [8]. It has been 
suggested that the composition of the intestinal microbiota 
in the first stages of calves’ lives could be associated with 
susceptibility to enteric infections, indicating that individual 
variations in the intestinal microbiota may play an essential 
role in the pathogenesis of neonatal diarrhea [9–12]. For this 
reason, the number of studies exploring intestinal micro-
bial composition, the mucosal immune system, and early 
manipulation of diet to improve the health of dairy calves 
has increased [8].

Consumer concerns and new regulations limit the pro-
phylactic use of antimicrobials in animal production [13, 
14], and therefore, the need for alternative approaches to 
improve animal health is urgent. Multidisciplinary strategies 
for improving intestinal health by manipulating the micro-
biome are surging [8], and one of them is the administration 
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of probiotics to calves. In particular, lactobacilli strains have 
been widely described as probiotics and are considered cru-
cial members of the gastrointestinal microbial community of 
animals [15, 16]. Studies have demonstrated that calves fed 
certain probiotic strains require less treatment against infec-
tious diseases [17], and the incidence, severity, and duration 
of NCD can be reduced [18–22]. In one study, the use of 
probiotics had a better prophylactic effect on NCD compared 
with antibiotic-based treatments [23]. By contrast, many 
studies have reported no effect on health parameters [20, 24, 
25]. It has been widely recognized that probiotic properties 
and mechanisms of action are strain-specific, which could 
— at least in part — explain the diverse results [26–28]. In 
addition, individualized host gut microbiota and immunity 
could indicate that the interaction between microbiota, host, 
and supplemented probiotics can be varied [28].

In a previous study, the strains Limosilactobacillus reuteri 
TP1.3B and Lactobacillus johnsonii TP1.6 were characterized 
as potential probiotics [29]. Both strains were originally iso-
lated from healthy preweaned calves raised with their dams. 
Both were able to colonize the calves’ lower gastrointesti-
nal tract (GIT), exhibited high resistance to acids and bile 
salts, adhered to mucus and Caco-2 cells, formed biofilms, 
and exerted antimicrobial effects against diarrhea-associated 
strains of Escherichia coli and Salmonella enterica sv. Typh-
imurium [29]. Most importantly, when tested in the field, 
both strains reduced diarrhea and fecal scores, thus improving 
calves’ health [30]. Action mechanisms proposed for probi-
otic effects include the modulation of the gut microbiota [31]. 
Thus, the aim of the present study was to determine whether 
the oral administration of these strains induced changes in 
the fecal microbiota of calves that could be associated with 
their beneficial effect and also whether this effect was main-
tained after administration ceased. We hypothesized that 
early-life administration of these probiotic strains would cause 
an increase in the abundance of health-promoting bacterial 
groups compared with an untreated control.

Materials and Methods

Bacterial Strains and Oral Dose Preparation

To prepare the inoculum for oral administration, strains 
were cultured and freeze-dried as previously described [29]. 
Briefly, strains were cultured in culture broth for 18 h in micro-
aerophilic conditions, centrifuged (15.000 xg for 15 min) 
and washed twice with phosphate-buffered saline solution 
(PBS). The broth composition was designed to not contain 
any animal derivatives. The composition of the medium was 
 K2HPO4 (2 g/L; Merck, Germany),  C6H11NO7 (2 g/L; Merck), 
 C2H3NaO2 (5 g/L; Merck),  MgSO4·7H2O (0.2 g/L; Merck), 
 MnSO4·H2O (0.04 g/L; Merck), Tween 80 (1 g/L; Merck), 

glucose (20 g/L; Merck), Phytone™ Peptone (25 g/L; Thermo 
Fisher Scientific, MA, USA), and yeast extract (25 g/L; Oxoid, 
England). Then, bacteria were suspended in 20% sterile skim 
milk (Conaprole, Uruguay), frozen at − 80 °C for 2 h, and 
freeze-dried for 24 h. Plate counts were performed to deter-
mine the number of colony-forming units (CFU) per gram of 
the freeze-dried product, and bacterial viability over time was 
confirmed. Individual doses were prepared such that each con-
tained 2 ×  1010 CFU.

Animal Handling and Housing

Animal handling was conducted under the constant supervision 
of veterinarians and with the approval of the Ethics Commit-
tee on the Use of Animals of the Instituto de Investigaciones 
Biológicas Clemente Estable (CEUA-IIBCE, reference number 
001/02/2016). The assay was conducted at the experimental 
dairy farm of the Instituto Nacional de Investigación Agropec-
uaria (INIA, Colonia, Uruguay) with 30 Holstein male calves 
born in that location in March 2017. Immediately after birth, 
the calves had their navels dipped in a 7% iodine solution. 
Each calf received two doses of colostrum replacer (Saskatoon 
Colostrum Company, Canada), which was reconstituted fol-
lowing the manufacturer’s instructions (470 g in 2 L of distilled 
water). The first dose was administered within the first 3 h of 
birth and the second dose before 12 h. After 24 h, the passive 
transfer of immunity was confirmed by measuring the total pro-
tein concentration in serum [32] using a PAL-3 Digital Pocket 
Refractometer (Atago, Japan). Until 5 days of age, calves were 
kept in a shed and were bottle-fed twice a day with 2 L of fresh 
whole milk from the farm’s milk cooling tank. Then, the ani-
mals were placed outdoors randomly in a pasture field in stakes 
with 2-m neck chains and kept individually with limited mov-
ing space and with enough distance between them to prevent 
contact. This is a common rearing practice in Argentina, Brazil, 
and Uruguay [3]. Milk was provided in individual buckets, and 
the same feeding schedule was maintained with the addition 
of water and calf starter (Erro Nutriternera, Uruguay; 18% of 
crude protein). Water (2 L) and calf starter (300 g) were pro-
vided twice a day, 2 h after milk consumption. Every week, 
the calves were moved and placed randomly in different areas 
free of feces. No antimicrobials were administered before or 
during the assay.

Experimental Design and Sampling

Thirty calves were randomly assigned into three groups of 
10 animals (see Table 1 for population characteristics). One 
group of calves was used as a control, and the other two 
groups were administered freeze-dried L. reuteri TP1.3B 
or L. johnsonii TP1.6. Calves started the treatment at 5 to 
9 days of life (7 ± 1.4), which consisted of one daily oral 
dose of 2 ×  1010 CFU for 10 consecutive days with the 
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morning feeding. The dose consisted of a lyophilized pow-
der containing the specified quantity of CFU, which was 
reconstituted in each calf’s individual bucket with the milk. 
The control group received the sterile lyophilization matrix. 
Individual fecal samples were taken directly from the rectal 
ampulla after stimulation with new and clean gloves each 
time. The first sample was taken before the first dose (day 0 
of treatment), and on days 10 and 21 (refer to Supplemen-
tary Fig. S1 for the graphical layout of the experimental  
design). Hereinafter, days reference treatment administration 
rather than the calves’ age. Samples were immediately put 
on ice until they were transferred to a nearby − 80 °C freezer 
within 10 min.

DNA Extraction, 16S Sequencing, and Raw Data 
Processing

Frozen feces samples were thawed at room temperature and 
total microbial DNA extraction was performed using a ZR 
Fecal DNA MiniPrep™ Kit (ZYMO Research, CA, USA) 
following the manufactures’ protocol. The bead-beating step 
was performed using a FastPrep-24™ (MP Biomedicals, CA, 
USA) at 6 m/s for 40 s, and the extracted DNA was stored 
at – 20 °C. Library preparation and sequencing of the V4 
region of the 16S rDNA gene was performed at the Center for 
Sequencing and Genomic Analysis, University of Austin (UT 
GSAF, Texas, USA), with an Illumina MiSeq platform for 
generating paired readings 250 bases in length. The generated 
data were processed with the R package dada2 [33] following  
the pipeline presented in the GitHub repository (https:// benjj nn. 
g. gubub. io/ dada2) and by Callahan et al. [34]. In summary,  
reads were trimmed and filtered using default parameters with 
truncLen = c(240,210) and trimLeft = 10. Amplicon sequence 
variants (ASVs) were defined and, after removing the chime-
ras (removeBimeraDenovo, method = “consensus”), taxonomy 
was assigned using the Silva database (version 132). ASVs 
with fewer than 10 reads in total were eliminated. DECIPHER 
was used to perform multiple sequence alignments [35], and 
phangorn [36] was used to construct a phylogenetic tree with 
the parameters recommended by Callahan et al. [34].

Statistical Analysis

The R packages phyloseq [37] and ampvis2 were used to 
visualize and analyze the sequencing data. Counts were nor-
malized by calculating relative abundances for each ASV in 
each sample. With the normalized counts, distance matrices 
were calculated using the methods of Jaccard (presence/
absence), Bray–Curtis (abundance), UniFrac (phylogenetic 
relationship), and Weighted-UniFrac (abundance-weighted 
phylogenetic relationship), and a nonmetric multidimensional 
scaling (NMDS) ordination was performed. Alpha-diversity 
parameters were calculated using the estimate_richness func-
tion, implemented in phyloseq with functions of the vegan 
package [38]. The calculated alpha-diversity parameters of 

Table 1  Characteristics of calves in the group administered with 
strain L. reuteri TP1.3B (TP1.3B), the group administered with L. 
johnsonii TP1.6 (TP1.6), and the control group. Mean values are 
presented for each group with the standard deviation in parenthesis. 
p-value of Kruskal–Wallis test is presented (p-value threshold set at 
0.05)

Variable Control TP1.3B TP1.6 p value

Number of animals 10 10 10 -
Weight at enrolment (kg) 43.2 (5) 39.3 (4) 42.0 (4) 0.22
Serum Brix levels (%) 8.5 (0.4) 8.6 (0.3) 8.8 (0.5) 0.54
Age at enrolment (days) 7.5 (1.5) 6.9 (1.3) 6.8 (1.4) 0.48

Fig. 1  Relative abundance of bacterial phyla over time. The relative 
abundance of the five most abundant phyla is presented over the three 
different sampling time points. Different letters in the same panel 
indicate significantly different values (p < 0.05, Mann–Whitney test)
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treated groups were compared with the control group using a 
Kruskal–Wallis test (p value set at 0.05). To assess the effect 
of treatment and day on the bacterial community, a multivari-
ate analysis of variance with permutations (PERMANOVA) 
was performed with the adonis function (vegan package) using 
the Bray–Curtis distance matrix (matrix ~ Treatment*Day). 
Then, pairwise comparisons were performed between the con-
trol groups and each treated group (p value set at 0.05). The 
functions betadisper and permutest were used to prove homo-
geneity of variance (permutations = 1000). Differential abun-
dances between control and treated groups were determined 
with the DESeq2 package (test = “Wald”, fitType = “local”). 
The threshold for p-adjusted values by false discovery rate 
(FDR) was set at 0.1 (default).

Results

General Bacterial Composition

The fecal microbiota of 30 calves at three different times 
was characterized by sequencing the V4 region of the 
bacterial 16S rDNA (NBCI accession number of raw 

data PRJNA637605). Two samples (out of 90) could not 
be sequenced due to poor DNA quality. After filtering by 
quality and size and eliminating singletons and chimeras, 
83.3% of the initial reads were retained, leaving an average  
of 14,841 (± 3,429) reads per sample. ASVs that were in low  
proportion (fewer than 10 total reads) were eliminated and 
1,539 different ASVs were defined. A total of 24.8% of the 
ASVs could not be classified at the genus level. The most 
abundant phyla were Firmicutes, Bacteroidetes, and Act-
inobacteria, which together represented 74–99% of the total 
bacterial microbiota. Bacterial composition changed sig-
nificantly in every group over time. Firmicutes abundance 
increased over time while Proteobacteria and Actinobacteria 
decreased (Fig. 1). The most abundant genera across all sam-
ples were Lactobacillus, Bacteroides, Blautia, Faecalibac-
terium, Collinsela, Subdoligranulum, Bifidobacterium, and 
Escherichia/Shigella (Fig. 2). 

Effect of Treatments on Fecal Microbial Composition

Richness, Shannon, Simpson, and evenness indices were 
calculated and analyzed as community descriptors (Fig. 3). 
Group TP1.3B did not exhibit significant differences from 

Fig. 2  Heatmap of the 20 most 
abundant bacterial genera. Val-
ues represent the mean relative 
abundance (in percentage) for 
each genus. Data are presented 
by treatment (reference on top) 
and sampling day (reference 
on bottom). The sampling day 
refers to the day of treatment. 
Control refers to the control 
group, TP1.3B to the group 
administered with strain L. 
reuteri 1.3B, and TP1.6 to the 
group administered with strain 
L. johnsonii TP1.6 When no 
genus name was available, the 
best assignment is presented 
followed by the name of the 
representative ASV

807Probiotics and Antimicrobial Proteins  (2022) 14:804–815

1 3



Fig. 3  Alpha diversity indices. 
Richness, Shannon, Simpson, 
and evenness indices at every 
sampling point (referring 
to day of treatment). Each 
treated group was compared 
with the control group using a 
Kruskal–Wallis test (Control, 
control group; TP1.3B, group 
administered with strain L. 
reuteri TP1.3B; TP1.6, group 
administered with strain L. 
johnsonii TP1.6). Significant 
differences are presented with 
their respective p value
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the control group, whereas group TP1.6 exhibited lower val-
ues of alpha-diversity parameters at day 10 (p < 0.05).

PERMANOVA was used to test the effects of treatment 
and day on the variation of microbial composition. Both 
variables and the interaction were significant (p < 0.05, refer 
to Table 2). Then PERMANOVA pairwise analysis was per-
formed as a post hoc test. Group TP1.3B exhibited signifi-
cant differences from the control group on day 21, whereas 
group TP1.6 exhibited differences from the control group 
on days 10 and 21 (p < 0.05). A summary of the statistically 
significant differences of pairwise comparisons with PER-
MANOVA is presented in Fig. 4, and a table containing all 
pairwise comparisons, F.model, R2, p values, and p values 
of permutest (homogeneity) is presented in the supplemen-
tary material (Table S1). No differences were found between 
the groups on day 0 (before the first dose) and intra-group 
dispersions were nonsignificant (Table S1). NMDS graphs 
were constructed using different distance calculation meth-
ods (Fig. 5); the day of sampling was observed to be an 
important variable shaping bacterial communities.

Differential Abundances of ASVs Induced 
by Probiotic Administration

Differential abundance of ASVs was inferred with DESeq2 
to determine specific changes in the bacterial community 
associated with probiotics administration (Figs. 6 and 7). 
Several changes in microbial composition were observed 
between the treated and control groups on days 10 and 
21 (adjusted p values < 0.10), which meant that induced 
changes were not only observed during treatment but were 
maintained up to 11 days after the last probiotic dose (day 
21). Differentially abundant ASVs accounted for 1–22% of 
the total abundance within each community. Several ASVs 
related to recognized beneficial genera were more abundant 
in both treated groups, such as Bifidobacterium and Akker-
mansia. The abundance of lactobacilli-related ASVs varied 
across groups without a clear pattern. ASVs named Seq1 and 
Seq2 had 100% homology with the 16S sequence of strains 
TP1.6 and TP1.3B, respectively. The relative abundances 
of both ASVs were analyzed, but no differences were found 
between the treated groups and control group (Fig. S2). 
Moreover, no differences were found in the relative abun-
dance of ASVs related to the genus Escherichia/Shigella, a 
potential pathogen related to neonatal diarrhea, and no ASVs 
related to Salmonella or Campylobacter were detected.

Discussion

In neonatal calves, the colonization of commensal bacteria 
in the GIT is crucial for the development of a competent and 
stable immune system [5]. Animals are born with a naive 
immune system and face environmental factors and patho-
gens during the first days of life. This is a crucial moment for 
the proper development of the microbiota and subsequently 
for the development of a functional immune system [39]. 
Probiotics could actively participate in this process through 
the competitive exclusion of undesirable microorganisms 
and the promotion of an homeostatic gastrointestinal envi-
ronment [40]. Therefore, proposed mechanisms of action 
associated with probiotic administration include beneficial 
interactions with the host through the immune system and 
the modulation of the intestinal microbiota [31]. In a previ-
ous study, we demonstrated that the administration of strains 
TP1.3B and TP1.6 improved calves’ health by lowering fecal 
scores and diarrhea incidence [30]. In the present study, 
we aimed to determine whether the administration of the 
strains affected the composition of the intestinal microbiota 
of calves and whether the induced changes could represent 
a potential benefit to the host.

Most studies concerning intestinal microbiota in new-
born ruminants have focused on the fecal microbiota 
because it is believed to be representative of the large 

Table 2  PERMANOVA model parameters

a Explanatory variables used for PERMANOVA analysis of bacterial 
communities and their significance (matrix ~ Treatment*Day); p val-
ues were set at < 0.05 for statistical significance

Variable a F. model R2 p value

Treatment 1.90 0.054 0.014*
Day 11.4 0.16 0.001*
Treatment:Day 1.74 0.049 0.029*

Fig. 4  Pairwise PERMANOVA analysis. Scheme summarizing the 
pairwise comparisons that exhibited significant differences with the 
PERMANOVA analysis in the Bray–Curtis dissimilarity matrix 
between each treated group with the control (Control, control group; 
TP1.3B, group administered with strain L. reuteri TP1.3B; TP1.6, 
group administered with strain L. johnsonii TP1.6). Days 0, 10, and 
21 refer to days of treatment. All pairwise comparisons with their 
corresponding F value,  R2, p value, and p value of test of homogene-
ity are presented in detail in Table S1 in the supplementary material
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intestine microbiota [41]. In our study, the general com-
position of the microbiota was similar to those in other 
previous studies that have described Firmicutes, Bacte-
roidetes, Proteobacteria, and Actinobacteria as the main 
phyla [9, 42, 43]. In this study, Firmicutes was the most 
abundant phylum and Lactobacillus spp. was the most 
abundant genus, which have been reported in other stud-
ies [44, 45]. The composition of the microbiota did not 
remain constant and significantly varied over time in 
every group of calves. This was expected because after 
birth, calves’ GIT continues to change anatomically and 
functionally until they are functioning ruminants [46]. 
For example, this study observed that the abundance of 
Firmicutes increased progressively, whereas the opposite 
occurred with Actinobacteria and Proteobacteria. The 
increase in Firmicutes over time in the GIT of calves is a 
phenomenon that has been previously described [44, 47, 
48]. The most abundant genera also changed over time; for 

example, Ruminococcaceae_UCG-005 increased on day 
21. This group, not yet cultured and characterized, has been 
described as the most abundant in the colon of weaned 
calves [45] and has been associated with the GIT of several 
species such as goats, camels, and deer [49–51].

In addition, the administration of strains TP1.3B and 
TP1.6 had significant effects on bacterial composition, 
which lasted for at least 11 days after the last dose. Differ-
ences in total bacterial composition between the control 
group and the group treated with strain TP1.6 could be 
observed after 10 days of strain administration (day 10) 
and after 11 days of the last dose (day 21). By contrast, dif-
ferences between the control group and the TP1.3B group 
could be observed only on day 21. The fact that differ-
ences were found is promising since not many studies have 
reported significant changes in the intestinal microbiota 
of neonatal calves being caused by the administration of 
probiotics [45, 52] and up to 11 days after the cessation 

Fig. 5  Nonmetric multidimensional scaling (NMDS) ordination of 
different dissimilarity distance matrices. Different colors represent 
the three different treatments and different shapes represent the sam-

pling days (referring to day of treatment). Control, control group; 
TP1.3B, group administered with strain L. reuteri TP1.3B; TP1.6, 
group administered with strain L. johnsonii TP1.6
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of treatment during a time of continuous anatomical and 
functional changes in the GIT. Moreover, differences were 
not observed before the administration (day 0); thus, dif-
ferences were induced by the treatments and were not 
due to individual variation. In relation to alpha-diversity 
indices, no significant differences were found between the 
control group and the group treated with strain TP1.3B. 
However, group TP1.6 exhibited lower alpha-diversity 
indices compared with the control group. While decreased 
diversity is not desired, a debate exists about its role in 
the GIT, and the complexity of microorganism–host inter-
actions makes it difficult to define the role of microbial 
diversity in health and disease [53].

The analysis with DESeq2 allowed us to assess which 
bacterial groups were significantly affected by the adminis-
tration of the probiotic strains. Several ASVs that belonged 
to the genus Bifidobacterium were significantly more abun-
dant in both probiotic treated groups. The presence of this 
genus in the gut has been associated with many health ben-
efits for the host, such as the development of the infant gut 
and maintenance of the intestinal mucosal barrier and its 
immune response [54–56]. In calves, this genus has been 
characterized as part of the mucosa-associated microbial 

community of the intestine [47, 57, 58] and has been asso-
ciated with the fecal microbiota of healthy non-diarrheic 
calves [59]. Consequently, Bifidobacterium spp. strains have 
been proposed as probiotics for calves with promising results 
[20]. Moreover, an increase in ASVs from the genus Akker-
mansia was observed in both treated groups. The species 
Akkermansia muciniphila resides in the intestinal mucus and 
regulates homeostasis and the integrity of the intestinal bar-
rier through interaction with host signaling pathways [60]. 
Its abundance is inversely correlated with many diseases in 
humans, from metabolic to inflammatory, and is thus con-
sidered a “next generation” probiotic [61, 62]. In humans, its 
abundance is in the range of 1–5% [63], and it was found in 
a similar proportion in the present study. Derakhshani et al. 
determined that Akkermansia spp. was underrepresented 
in calves infected with Mycobacterium avium subspecies 
paratuberculosis [64]. This genus has not been studied as 
a probiotic in calves but isolating and characterizing strains 
for probiotic use could be of interest. Some of the observed 
differences between the treated and control groups were in 
taxa that have not been cultivated, mostly belonging to the 
Ruminococcaceae and Lachnospiraceae families; therefore, 
the interpretation of these changes and the determination of 

Fig. 6  Differential abundances of ASVs between the TP1.3B and 
control groups. A negative value of  log2 FoldChange meant signifi-
cantly more abundance in the control group for that ASV. ASV names 
are presented with the assigned genus. When no genus name was 

available, the best assignment is presented followed by “NA” and the 
name of the ASV. Days 10 and 21 refer to the day of treatment. Con-
trol, control group; TP1.3B, group administered with strain L. reuteri 
TP1.3B
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their role in the community are difficult. It is promising that 
changes in the bacterial community could be induced and 
observed during a period of constant anatomical changes 
for calves that significantly affect the microbiota, which 
could have potentially masked the effects of the probiotic 
treatments.

The limitations of this study include the feeding regime. 
Restricted diets are the most commonly used in Uruguay, 
with an average of 4.5 L of milk or milk replacer per day 
[3]. On the other hand, diets with a progressive increase 
in milk allow a greater daily weight gain, whereas a fixed 
volume forces the calf to start solid feeding early, promot-
ing the development of the rumen [65–67]. Ad libitum 
milk feeding has been associated with poor performance 
and post-weaning growth retardation, probably due to 
delayed ruminal development [46]. In turn, some authors 
have observed that under diets with a higher milk sup-
ply or with a progressive increase, calves could suffer 
nutritional diarrhea (not associated with pathogens) and 
higher fecal score values [68–70]. However, other studies 
have reported no differences [71, 72]. The type of diet to 
use is highly debated and could affect the outcome of the 
results observed in this study. In future studies with these 

strains, other types of feeding regimes should be evalu-
ated. Furthermore, more studies are required to determine 
whether the changes observed in the microbial community 
are maintained in the long term and how this could affect 
productivity.

The results of this study revealed that 10 days of admin-
istration with the strains L. johnsonii TP1.6 and L. reuteri 
TP1.3B significantly affected the intestinal microbial com-
munity of young calves; in particular, it increased the abun-
dance of recognized beneficial taxa such as Bifidobacterium 
and Akkermansia. Modulation of the intestinal microbiota 
could be one mechanism of action of these strains for reduc-
ing calf diarrhea.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12602- 021- 09834-z.
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