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Abstract
In this study, we investigated the probiotic properties and anti-obesity effects of bacterial strains isolated from homemade 
kimchi. Lactiplantibacillus plantarum KU15117 was isolated using lactobacilli selective medium. L. plantarum KU15117 
did not produce β-glucuronidase and showed high tolerance to artificial gastric juice and bile salt, acceptable resistance to 
antibiotics, and high adhesion ability to HT-29 cells. The anti-adipogenic activity of L. plantarum KU15117 at 109 CFU/
well was confirmed by the reduction of oil red O staining and intracellular triglyceride level. Additionally, the expression 
levels of fatty acid synthase, CCAAT/enhance-binding protein-α, and peroxisome proliferator-activated receptor-γ, which 
are associated with the early stage of adipocyte differentiation, were significantly lower in the probiotic-treated group than 
in the control group. These results suggest that L. plantarum KU15117 has probiotic properties and anti-obesity effects and 
could be used as a prophylactic probiotics.
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Abbreviations
FAS	� Fatty acid synthase
C/EBP-α	� CCAAT/enhance-binding protein-α
PPAR-γ	� Peroxisome proliferator-activated receptor-γ

Introduction

Changes in lifestyles, such as reduction in physical activities 
and convenient lifestyles, may induce obesity, which is not 
only a cosmetic problem but also a major health issue. Obe-
sity is associated with abnormal or excessive fat accumu-
lation leading to various diseases, including non-alcoholic 
fatty liver disease, cardiovascular diseases, type 2 diabe-
tes, cancer, and hypertension [1, 2]. Particularly, obesity is 
caused by an imbalance between lipogenesis and lipolysis, 
which are complex processes regulated by various signal-
ing molecules. Adipogenesis is characterized by changes in 

cell morphology, accumulation of triglycerides, and expres-
sion of related gene [3, 4]. Peroxisome activated receptor-γ 
(PPAR-γ) and CCAAT/enhancer-binding protein-α (C/
EBP-α) are involved in the early stage of adipocyte differ-
entiation, and some enzymes, including adipose-specific 
fatty acid-binding protein (aP2), fatty acid synthase (FAS), 
sterol regulatory element-binding protein-1c (SREBP-1c), 
and carnitine palmitoyltransferase-1 (CPT-1), are involved 
in the formation of mature adipocytes [5, 6].

Probiotics are live bacteria, mainly lactic acid bacteria, 
which are beneficial to humans and animals by improving 
intestinal microbial balance [7]. Common probiotics include 
representatives of Lactobacillus acidophilus, Lacticaseiba-
cillus casei, Lactiplantibacillus plantarum, Lacticaseibacil-
lus rhamnosus, Bifidobacterium bifidum, and Bifidobacte-
rium longum. Some of these probiotics can be components 
of functional foods and may be sold as dietary supplements. 
Few studies have reported the pleiotropic effects of probiot-
ics, including antimicrobial, anticancer, anti-inflammatory, 
antioxidant, anti-biofilm, anti-obesity, antidiabetic, and 
cholesterol-lowering activities [8, 9].

The gut microbiome influences human health and con-
sists of more than 100 trillion bacterial species [10]. They 
include the commensal bacteria, which are involved in 
digestion related to metabolic disorders [11]. The cell-free 
extract (CFE) of Lactobacillus fermentum MG4231 and 
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MG4244 strains showed anti-obesity effects through the 
inhibition of adipogenesis and lipid accumulation in 3T3-
L1 preadipocytes. The anti-obesity effects of CFE also 
involved the downregulation of FAS, aP2, PPAR-γ, and C/
EBP-α expression, as well as upregulating of AMP-activated 
protein kinase (AMPK) and hormone-sensitive lipase (HSL) 
phosphorylation [4, 12]. The adjustment of the gut micro-
biome has been suggested as a therapeutic approach against 
obesity and metabolic disorders. Therefore, in this study, 
we determined the probiotic properties and anti-adipogenic 
effects of Lactobacillus strains isolated from homemade 
kimchi.

Materials and Methods

Bacterial Strains and Culture Conditions

Lactiplantibacillus plantarum KU15117 (KCCM 12212P) and 
Latilactobacillus curvatus KU15031 were isolated using Lacto-
bacillus Selective Medium (BD BBL, Franklin Lakes, NJ, USA) 
from Korean homemade diced-radish kimchi and cabbage kim-
chi. The commercial probiotic strain Lacticaseibacillus rham-
nosus GG (KCTC 5033) was used as the reference strain. Lac-
tobacillus strains were cultured in MRS broth at 37 °C for 24 h.

Tolerance of Bacterial Strains to Artificial Acid 
and Bile Salt

The tolerance of bacterial strains to artificial acid and bile salt 
conditions was determined as previously described by Lee 
et al. [9] and Son et al. [13]. To determine the tolerance of the 
strains to artificial acid, overnight cultures of bacterial strains 
were resuspended in artificial gastric acid (pH 2.5) (MRS 
medium containing 0.3% (w/v) of pepsin (Sigma-Aldrich, St. 
Louis, MO, USA)), followed by incubation  at 37 °C for 3 h. 
To determine tolerance to bile acid, overnight cultures were 
resuspended in MRS medium containing 0.3% (w/v) of oxgall 
(BD BBL), followed by incubation at 37 °C for 24 h. Viable 
cells were counted after plating and incubated on MRS agar 
at 48 °C for 24 h. The survival rate was calculated as follows:

Enzyme Production

Enzyme production was measured using the API ZYM kit 
(BioMerieux, Lyon, France). Bacterial strains were centrifuged 

Survival rate (%) =
Cell no. of after reaction (CFU)

Initial cell no. (CFU)
× 100

(12,000 × g, 4 °C, 10 min), and the harvested cells were resus-
pended in PBS at 105 CFU/mL. The resuspended cultures 
were inoculated in each well and incubated at 37 °C for 4 h. 
Next, ZYM reagents A and B were added to the cupules. The 
enzyme activity was determined as 0 to ≥ 40 nM based on the 
color change.

Adhesion of Bacterial Strains to HT‑29 Cells

HT-29 (human colon adenocarcinoma, KCLB 30038) cell 
line was cultivated in RPMI 1640 (HyClone Laboratories, 
Inc., Logan, UT, USA) with 10% fetal bovine serum (FBS; 
HyClone Laboratories, Inc.) and 1% streptomycin/penicillin 
solution at 37 °C in 5% CO2 atmosphere.

The adherence of bacterial strains to HT-29 cells was per-
formed according to the method of Son et al. [13]. HT-29 cells 
were seeded by 1 × 105 cells/well in a 24-well plate and cul-
tured at 37 °C for 24 h. Bacterial strains were inoculated into 
each well at approximately 107 CFU and cultured at 37 °C for 
2 h. Non-adhered bacteria were removed by washing thrice 
with PBS, followed by the addition of 1 mL Triton X-100 (1% 
(v/v); Sigma-Aldrich) into each well and incubation at 37 °C 
for 10 min. Incubated cells were harvested from each well, and 
adherent bacterial cells were plated on MRS plates. Adhesion 
activity was calculated as follows:

Antibiotic Sensitivity of Bacterial Strains

The sensitivity of the bacterial strains was measured accord-
ing to the guidelines of the Clinical and Laboratory Stand-
ards Institute [15]. Each bacterial strain, at a concentration of 
107 CFU/mL, was dispersed on MRS agar, and paper discs 
containing the antibiotics were placed on the plate after a few 
minutes. The antibiotics used were ampicillin (10 μg/disc), 
chloramphenicol (30 μg/disc), ciprofloxacin (5 μg/disc), 
doxycycline (30 μg/disc), gentamicin (10 μg/disc), kanamy-
cin (30 μg/disc), streptomycin (10 μg/disc), and tetracycline 
(30 μg/disc). The plates were cultured at 37 °C for 24 h, and 
the inhibition zones were measured.

Anti‑adipogenic Effect of Bacterial Strains

Preparation of Heat‑Killed Bacteria

Bacterial strains were grown in MRS broth and washed 
twice with PBS by centrifugation at 12,000 × g at 4 °C for 
10 min. The washed bacteria were resuspended in PBS at 
a final concentration of 108 and 109 CFU/mL, respectively, 
and the cells were plated to confirm the number of viable 

Adhesion activity (%) =
Adhered cell no. (CFU)

Initial cell no. (CFU)
× 100
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cells. Each bacterial sample was heated in a water bath at 
80 °C for 30 min.

Cell Culture and Differentiation of 3T3‑L1 cells

3T3-L1 preadipocytes (ATCC CL-173) were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM; HyClone 
Laboratories, Inc.) supplemented with 10% bovine calf 
serum (HyClone Laboratories, Inc.) and 1% streptomy-
cin/penicillin solution at 37 °C at 5% CO2. For adipocyte 
differentiation, the cells were seeded in 6-cm cell culture 
dishes at a density of 1.5 × 104 cells/dish and cultured until 
confluence (approximately 3 days). After confluence, the 
growth medium was replaced with the differentiation 
medium (MDI), consisting of DMEM, 10% FBS, 0.5 mM 
3-isobutyl-1-methylxanthine (IBMX; Sigma-Aldrich), 
10  μM dexamethasone (Sigma-Aldrich), and 5  μg/mL 
insulin (Sigma-Aldrich), and the cells were cultured for 
2 days. Next, the medium was changed to insulin media 
containing DMEM, 10% FBS, and 5 μg/mL insulin, which 
was replaced at 2, 4, and 6 days.

Cell Viability of 3T3‑L1

The effect of bacterial strains on the viability of 3T3-L1 
cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT; Sigma-Aldrich) 
assay. 3T3-L1 cells were plated at 1 × 104 cells/well in 
24-well plates until confluence. Next, the Lactobacillus 
strains were added at 108 and 109 CFU/well and incubated 
at 37 °C for 48 h in an incubator (5% CO2). The supernatant 
was aspirated, and the cells were incubated with MTT solu-
tion (2.5 mg/mL) for 1 h. After discarding the supernatant, 
DMSO (Sigma-Aldrich) was added to each well to dissolve 
the generated formazan. The dissolved solution was meas-
ured at 570 nm using a microplate reader, and cell viability 
was calculated.

Oil Red O Staining and Intracellular Triglyceride Contents

The effects of bacterial strains on oil red O-stained differenti-
ated 3T3-L1 were determined as described by Park et al. [16]. 
Differentiated 3T3-L1 cells were fixed with 10% formalde-
hyde solution for 20 min, followed by the addition of 0.5% oil 
red O solution (Sigma-Aldrich) to each dish and incubation 
at room temperature for 20 min. After staining, the cells were 
washed twice with PBS and isopropanol was added to each 
dish, and the absorbance was measured at 520 nm.

To determine the intracellular triglyceride level, a triglyc-
eride quantification kit (BioVision, Milpitas, CA, USA) was 
used. Differentiated 3T3-L1 cells were harvested and cen-
trifuged at 14,000 × g for 25 min at 4 °C. Triglyceride levels 
were determined according to the manufacturer’s protocol.

Semi‑Quantitative RT‑PCR Analysis

The 3T3-L1 cells were seeded in 6-cm cell culture dishes 
(1.5 × 104 cells/dish) and differentiated into mature adipo-
cytes. This was followed by the addition of bacterial strains 
(108 and 109 CFU/well). RNA was isolated from the treated 
3T3-L1 cells using the RNeasy Mini Kit (Qiagen, Germany), 
and cDNA was synthesized using the Revert Aid First Strand 
cDNA Synthesis Kit (ThermoFisher Scientific, MA, USA). 
The expression of adipogenesis-related genes was measured 
by RT-PCR using synthesized cDNA, primers (shown in 
Table 1), and SYBR Green PCR Master Mix (PikoReal 96, 
ThermoFisher Scientific). The RT-PCR conditions were 
95 °C for 2 min, 40 cycles of 95 °C for 5 s, and 60 °C for 
15 s. Gene expression was determined by relative quantifica-
tion with β-actin as the house-keeping gene.

Western Blot Analysis

The expression of obesity-related proteins was investi-
gated by western blotting. Differentiated 3T3-L1 adipo-
cytes treated with bacterial strains (108 and 109 CFU/well) 
were harvested by using RIPA lysis and extraction buffer 
with Halt™ Protease and Phosphatase Inhibitor Cock-
tail (ThermoFisher Scientific), and the cell lysates were 
sonicated (5 AMP; pulse on, 3 s; pulse off 3 s) for a total 
period of 9 s and placed on ice. The sonicated cell lysate 
was harvested, and the supernatant was obtained by cen-
trifugation at 14,000 × g  at 4 °C for 25 min. The protein 
concentration of the supernatant was measured using a 
DC™ protein assay kit (Bio-Rad Laboratories Inc., Hercu-
les, CA, USA). Each protein was separated using sodium 
dodecylsulfate–polyacrylamide gel electrophoresis gel. The 
separated proteins were transferred onto a polyvinylidene 
fluoride membrane (Millipore, Bedford, MA, USA). The 
membrane was blocked with 5% skim milk for 30 min and 
reacted with a specific primary antibody at 4 °C for 20 h. 

Table 1   Primer sequences for semiquantitative reverse-transcription 
polymerase chain reaction analysis

FAS fatty acid synthase, C/EBP-α CCAAT/enhancer-binding protein-α, 
PPAR-γ peroxisome proliferator-activated receptor-γ

Gene Primer sequence (5′ → 3′)

β-Actin Sense 5′-TGT CCA CCT TCC AGC AGA TGT-3′
Antisense 5′-AGC TCA GTA ACA GTC CGC CTA 

GA-3′
FAS Sense 5′-AGG GGT CGA CCT GGT CCT CA-3′

Antisense 5′-GCC ATG CCC AGA GGG TGG TT-3′
C/EBPα Sense 5′-GGA ACT TGA AGC ACA ATC GAT C-3′

Antisense 5′-TGG TTT AGC ATA GAC GTG CAC A-3′
PPARγ Sense 5′-TTG ATT TCT CCA GCA TTT CT-3′

Antisense 5′-RTG TTG TAG AGC TGG GTC TTT-3′
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The membrane was then incubated with a horseradish per-
oxidase–conjugated secondary antibody for 2 h. The protein 
bands were visualized using a chemiluminescence detection 
kit (Thermo FisherScientific), and the thickness was ana-
lyzed using ImageJ software (National Institutes of Health, 
Bethesda, MD, USA).

Statistical Analysis

All experiments were performed in triplicate and presented 
as the mean ± standard deviation using one-way analysis of 
variance (ANOVA) and Duncan’s multiple range test. Values 
were considered significant at P < 0.05. All analyses were 
conducted using the Statistical Package for the Social Sci-
ences (SPSS), version 24 (IBM, Chicago, IL, USA).

Results

Gastric Acid and Bile Tolerance, Enzyme‑Production 
Ability, Antibiotic Susceptibility, and Adhesion 
Ability of Bacterial Strains

The tolerance of L. rhamnosus GG, L. curvatus KU15031, 
and L. plantarum KU15117 to gastric acids and bile salts is 
shown in Table 2. All bacterial strains exhibited high resist-
ance with over 96% of survival rate in gastric conditions 
(0.3% pepsin, pH 2.5). L. rhamnosus GG (102.88%) exhib-
ited higher resistance than L. curvatus KU15031 (92.33%) 
and L. plantarum KU15117 (84.70%) in bile conditions 
(0.3% oxgall).

The enzymes produced by the different bacterial strains 
are shown in Table 3. The tested bacterial strains did not 
produce α-galactosidase (diabetes-related enzyme) or 
β-glucuronidase. However, L. rhamnosus GG and L. plan-
tarum KU15117 produced β-galactosidase.

The antibiotic sensitivity of bacterial strains is presented 
in Table 4. L. curvatus KU15031 had a similar sensitiv-
ity to L. rhamnosus GG, except for ampicillin (10 μg). L. 

plantarum KU15117 was resistant to ampicillin (10 μg) and 
doxycycline (30 μg).

The bacterial strains showed a high adhesion rate to 
HT-29 cells (Fig. 1). L. rhamnosus GG exhibited a higher 
adhesion (6.37%) than L. curvatus KU15031 (1.33%) and L. 
plantarum KU15117 (2.34%).

Effects of Bacterial Strains on Lipid Accumulation 
during Adipogenesis

The viability of 3T3-L1 cells treated with L. plantarum 
KU15117 and L. rhamnosus GG at 108 and 109 CFU/well 

Table 2   Tolerance of bacterial 
strains to gastric acid and bile 
salt conditions

All values are expressed as mean ± standard deviation. Values with different letters in the same row are sig-
nificant different for each characteristic (P < 0.05)

Lactobacillus strains Viable cell no. (Log CFU/mL)

L. rhamnosus GG L. curvatus KU15031 L. plantarum KU15117

Initial cell number 8.31 ± 0.09 7.73 ± 0.03 8.50 ± 0.04
Gastric acid condition 

(0.3% Pepsin, pH 2.5, 
3 h)

8.25 ± 0.10 7.72 ± 0.08 8.24 ± 0.11

Survival rate (%) 99.27 ± 00.73a 99.15 ± 1.33a 96.93 ± 0.12b

Bile salt condition (0.3% 
Oxgall, 24 h)

8.55 ± 0.02 7.31 ± 0.44 7.20 ± 0.01

Survival rate (%) 102.88 ± 0.17a 92.33 ± 4.88b 84.70 ± 0.05c

Table 3   Enzymatic activities of bacterial strains

Enzyme (nM) L. rham-
nosus 
GG

L. curvatus 
KU15031

L. plan-
tarum 
KU15117

Control 0 0 0
Alkaline phosphatase 0 5 0
Esterase 10 0 0
Esterase lipase 5 0 0
Lipase 0 0 0
Leucine arylamidase 20 20 30
Valine arylamidase 20 10 20
Cystine-arylamidase 0 0 0
Trypsin 0 0 0
α-Chymotrypsin 0 0 0
Acid phosphatase 5 5 5
Naphthol-AS-BI-phosphohydrolase 10 5 5
α-Galactosidase 0 0 0
β-Galactosidase 5 0 10
β-Glucuronidase 0 0 0
α-Glucosidase 0 0 5
β-Glucosidase 5 0 30
N-Acetyl-β-glucosaminidase 0 0 10
α-Mannosidase 0 0 0
α-Fucosidase 0 0 0
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was over 96% (Fig. 2). However, the viability of the cells 
treated with L. curvatus KU15031 was 34.58% and 26.79% 
at 108 and 109 CFU/well, respectively. Therefore, L. plan-
tarum KU15117 and L. rhamnosus GG were used to deter-
mine lipid accumulation.

L. plantarum KU15117 and L. rhamnosus GG inhib-
ited lipid accumulation, as shown by oil red O staining 
(Fig. 3A). In comparison with that of the positive con-
trol (100.81%), the oil red stain contents was as follows: 
L. plantarum KU15117 (31.88%) at 109 CFU/well < L. 
rhamnosus GG (45.02%) at 109 CFU/well < L. plantarum 
KU15117 (86.95%) at 108 CFU/well < L. rhamnosus GG 
(96.78%) at 108 CFU/well (Fig. 3B). In addition, triglyc-
eride contents of positive control were 5.661 mM, while 
L. plantarum KU15117 and L. rhamnosus GG showed 

0.399 mM and 1.684 mM at 109 CFU/well, respectively 
(Fig. 3C).

Effects of Bacterial Strains on the mRNA 
and Protein Levels of Adipogenesis‑Related Genes 
in Differentiated 3T3‑L1 Adipocytes

Figure 4 shows the regulation of FAS, C/EBP-α, and PPAR-γ 
mRNA levels in differentiated 3T3-L1 adipocytes. L. rham-
nosus GG and L. plantarum KU15117 at 109 CFU/well sig-
nificantly decreased the mRNA levels of the genes in 3T3-
L1 cells. Particularly, L. plantarum KU15117 at 109 CFU/
well decreased the expression of FAS (92.96%), C/EBP-α 
(99.41%), and PPAR-γ (95.26%) (Fig. 4A–C). L. rhamnosus 
GG at 108 CFU increased the expression of FAS, C/EBP-α, 
and PPAR-γ mRNA.

The protein expression of adipogenic transcription 
factors and enzymes, including FAS, C/EBP-α, and 
PPAR-γ (Fig. 4D) was confirmed by western blot analy-
sis. In the positive control, the expression levels of FAS, 
C/EBP-α, and PPAR-γ proteins were 3.28, 6.29, and 
3.67, respectively. L. rhamnosus GG at 109 CFU/well 
decreased the protein expression by 0.96, 1.33, and 0.24, 
respectively. L. plantarum KU15117 at 108 CFU/well and 
L. plantarum KU15117 at 109 CFU/well significantly 
decreased the expression levels of FAS (3.08 and 0.91, 
respectively), C/EBP-α (2.74 and 1.15, respectively), 
and PPAR-γ (1.97 and 0, respectively). The expression 
of FAS, C/EBP-α, and PPAR-γ proteins following treat-
ment with LGG-8 was 3.32, 6.36, and 2.64, respectively. 
These results display a similar trend to those of mRNA 
expression levels.

Table 4   Antibiotic susceptibility of bacterial strains

Resistant according to the CLSI breakpoints [15]
S susceptible, I intermediate, R resistant

Antibiotics L. rhamno-
sus GG

L. curvatus 
KU15031

L. plan-
tarum 
KU15117

Ampicillin (10 μg) S R S
Gentamycin (10 μg) R R R
Kanamycin (30 μg) R R R
Streptomycin (10 μg) R R R
Tetracycline (30 μg) S S R
Ciprofloxacin (30 μg) R R R
Chloramphenicol (30 μg) S S R
Doxycycline (30 μg) S S S

Fig. 1   Adhesion activity of bacterial strains to HT-29 cells. LGG, 
L. rhamnosus GG; KU15031, L. curvartus KU15031; KU15117, L. 
plantarum KU15117. Error bars indicate standard deviation of three 
independent experiments. All values are expressed as mean ± stand-
ard deviation. Letters denote statistical significance (P < 0.05) as 
determined by Duncan’s multiple range test

Fig. 2   Effects of bacterial strains on the viability of 3T3-L1 adipo-
cytes. LGG, L. rhamnosus GG; KU15031, L. curvartus KU15031; 
KU15117, L. plantarum KU15117. Filled square, 108  CFU/
well; empty square, 109  CFU/well. All values are expressed as 
mean ± standard deviation. Letters denote significance (P < 0.05) as 
determined by Duncan’s multiple range test
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Discussion

Probiotics are used as food formulations for prophylactic 
therapy against metabolic syndrome. In this study, the anti-
obesity effects of lactic acid bacteria isolated for probiotic 
use were investigated. Tolerance to gastric conditions is an 
essential characteristic, which influences the probiotic prop-
erties of bacterial strains in the intestine [14]. Under strongly 
acidic and bile salt conditions, the survival rate of Levilacto-
bacillus brevis KU15153 reduced by 70.79% and increased 
by > 104.47%, respectively [17]. L. curvatus KU15031 and 
L. plantarum possessed probiotic properties, as indicated by 
the resistance to gastric conditions.

Some probiotic bacteria produce useful β-galactosidase, 
which decreases lactose intolerance [18]. However, some 
probiotic bacteria also produce deleterious enzymes, such 
as β-glucuronidase, which have been associated with the 
induction of carcinogenesis, mutagenesis, and toxicity [19]. 
Son et al. [13] indicated that probiotic L. plantarum FI10604 

and L. brevis FI10700 do not produce β-glucuronidase. 
Lactococcus lactis KC24 produces various enzymes, 
including acid phosphatase, β-galactosidase, and naphthol-
AS-BI-phosphohydrolase, but not β-glucuronidase [14]. 
Similarly, we showed that L. curvatus KU15031 and L. 
plantarum KU15117 do not produce α-galactosidase and 
β-glucuronidase.

The sensitivity of probiotic bacteria to antibiotics is a 
fundamental factor because antibiotic-resistant strains 
may not be easily eliminated if required, and the antibiotic 
resistance may be transmitted to pathogenic or potentially 
pathogenic bacteria [20]. L. plantarum Ln4 is sensitive to 
commercial antibiotics, such as chloramphenicol, doxy-
cycline, ampicillin, and tetracycline [13]. Lactobacillus 
spp. have intrinsic resistance to aminoglycosides (kanamy-
cin and streptomycin) or quinolones (ciprofloxacin) [21]. 
Therefore, these results confirm that L. curvatus KU15031 
and L. plantarum KU15117 are safe in accordance with the 
CLSI guidelines [15].

Fig. 3   Anti-obesity effects of 
bacterial strains on 3T3-L1 
adipocytes. A Photograph of  
oil red O staining, B related  
absorbance of oil red O stain-
ing, and C triglyceride content. 
A, NC (negative control, non-
treated with MDI in adipo-
cytes); B, PC (positive control, 
treated with MDI in adipo-
cytes); C, L. rhamnosus GG  
(108 CFU/well); D, L. rhamno-
sus GG (109 CFU/well); E, L. 
plantarum KU15117 (108 CFU/
well); F, L. plantarum KU15117 
(109 CFU/well); gray square, 
108 CFU/well; white square, 
109 CFU/well, LGG, L. rham-
nosus GG; KU15117, L. plan-
tarum KU15117. All values are 
expressed as mean ± standard 
deviation. Letters denote signifi-
cance (P < 0.05) as determined 
by Duncan’s multiple range test
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The adhesion of bacterial strains to intestinal cells is the 
most important factor associated with their probiotic prop-
erties [22]. Song et al. [23] showed that L. brevis KCCM 
12203P (6.84%) and L. rhamnosus GG (6.21%) have simi-
lar adhesion rates. Zhang et al. [24] and Jeon et al. [25] 
showed that L. plantarum strains (< 2%) and B. subtilis P223 
(1.33%) have diminished adhesion to intestinal epithelial 
cells, respectively. Therefore, L. curvatus KU15031 (1.33%) 
and L. plantarum KU15117 (2.34%) have acceptable adhe-
sion rates to HT-29 cells.

Obesity is related to the differentiation, expansion, and 
lipid accumulation of adipocytes [4]. L. brevis B151, L. 
fermentum KCCM 200060, and L. plantarum Ln4 exhib-
ited reduced lipid accumulation in both heat-killed cells 
and freeze-dried broth [11]. During the differentiation 

period, L. plantarum Q180 dose-dependently inhibited 
3T3-L1 adipogenesis in terms of lipid accumulation by 
14.63% compared with that by control cells [26]. Park 
et al. [27] reported that the addition of L. brevis OPK-3 
(40 μg/mL) showed 40% reduction in triglyceride accumu-
lation. In our data, L. plantarum KU15117 (92.95%) and 
L. rhamnosus GG (68.93%) inhibited lipid accumulation 
by triglyceride accumulation.

In the early stage of adipocyte differentiation, adipocyte-
specific FAS, C/EBP-α, and PPAR-γ are regulated [28]. 
Weissella koreensis OK1-6 significantly reduced the mRNA 
expression levels of SREBP1, aP2, FAS, and C/EBP-α [29]. 
L. brevis OPK-3 significantly downregulated the mRNA 
expression of C/EBP-α and PPAR-γ in differentiating 3T3-L1 
adipocytes [27]. Similarly, L. plantarum KY1032 decreased 

Fig. 4   Anti-adipogenic effects of bacterial strains in MDI-induced 
differentiation of 3T3-L1 preadipocytes. A FAS, B C/EBPα, C 
PPAR-γ gene expression of lipid metabolism-related genes, and D 
adipogenic protein expression. NC (Negative control), not treated 
with MDI in adipocytes; PC (Positive control), treated with MDI 
in adipocytes; LGG, L. rhamnosus GG; KU15117, L. plantarum 
KU15117. Gray square, 108 CFU/well; white square, 109 CFU/well; 

β-actin, loading control; LGG-8, 108 CFU/well of L. rhamnosus GG; 
LGG-9, 109  CFU/well of L. rhamnosus GG; 117–8, 108  CFU/well 
of L. plantarum KU15117; 117–9, 109  CFU/well of L. plantarum 
KU15117. All values are expressed as the mean ± standard deviation 
and standardized against the β-actin housekeeping gene. Values with 
different letters in the same row indicate significant differences for 
each characteristic (P < 0.05)
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the expression of PPAR-γ, C/EBP-α, FAS, and A-FABP 
proteins [30]. L. acidophilus and cocktail of Lactobacillus 
delbrueckii subsp. bulgaricus and Streptococcus thermophi-
lus were reduced adipogenesis genes (PPAR-γ, CD36, and 
aP2) expression [31]. These results showed that the mRNA 
and protein expression levels of heat-killed L. plantarum 
KU15117 at 108 CFU/well and 109 CFU/well might have 
been downregulated during adipocyte differentiation. There-
fore, L. plantarum KU15117 could be influenced in the early 
stage of adipocyte differentiation in animal models.

In conclusion, we demonstrated the probiotic proper-
ties and anti-obesity effects of L. plantarum KU15117. L. 
plantarum KU15117 showed high tolerance to gastric con-
ditions, safe enzyme activity, high adhesion rate to intesti-
nal cells, and safe antibiotic sensitivity. Additionally, the 
anti-adipogenic activity of L. plantarum KU15117 was 
demonstrated by reduced lipid accumulation, low level of 
intercellular triglyceride, and suppressed expression of adi-
pocyte-specific genes and proteins that are associated with 
the early stage of adipocyte differentiation. Therefore, L. 
plantarum KU15117 is a probiotic strain with anti-obesity 
effects. In addition, this study should be confirmed in ani-
mal model for further study.
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