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Abstract
The hepatitis E virus (HEV) genotype 3 (GT3) is an emergent pathogen in industrialized countries. It is transmitted zoonotically and
may lead to chronic hepatitis in immunocompromised individuals.We evaluated if themajor antigen of HEV, the capsid protein, can
be used in combination with immunobiotic bacterium-like particles (IBLP) for oral vaccination in a mouse model. We have cloned
and expressed the RGS-His5-tagged HEV GT3 capsid protein (ORF2) in E. coli and purified it by NiNTA. IBLP were obtained
from two immunobiotic Lactobacillus rhamnosus strains acid- and heat-treated. ORF2 and the IBLP were orally administered to
Balb/c mice. After three oral immunizations (14-day intervals), blood, intestinal fluid, Peyer´s patches, and spleen samples were
drawn. IgA- and IgG-specific antibodies were determined by ELISA. Mononuclear cell populations from Peyer’s patches and
spleen were analyzed by flow cytometry, and the cytokine profiles were determined by ELISA to study cellular immunity. Orally
administered recombinant ORF2 and IBLP from two L. rhamnosus strains (CRL1505 and IBL027) induced both antigen-specific
humoral and cellular immune responses in mice. IBLP027 was more effective in inducing specific secretory IgA in the gut. IFN-γ,
TNF-α, and IL-4 were produced by Peyer’s plaques lymphocytes stimulated with ORF2 ex vivo suggesting a mixed Th1/Th2-type
adaptive immune response in immunized mice. Oral vaccines are not invasive, do not need to be administered by specialized
personal, and elicit both systemic and local immune responses at the port of entry. Here, we present an experimental oral vaccine for
HEV GT3, which could be further developed for human and/or veterinary use.
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Introduction

The hepatitis E virus is an emergent hepatotropic virus, which
causes hepatitis outbreaks in developing countries and has ex-
traordinarily high mortality in pregnant women (ca. 30%) [1,
2]. Four genotypes cause disease in humans: genotype 1 (GT1),
which is responsible of epidemics in developing countries in
Asia and Africa [3, 4]; GT2, which was found in Mexico; and
GT4, which was exclusively isolated in Asia [5]. In addition,
GT3, which has a zoonotic origin, has been associated with
cases worldwide [5] and to the development of chronic hepatitis
in immunocompromised individuals [6, 7]. Recently, other ge-
notypes found in monkey, rabbit, camel, and rat were also re-
ported to cause human infections underlining the strong zoo-
notic potential of this virus [8–11]. HEV is a small naked virus
with a simple-stranded RNA (ssRNA) genome of approximate-
ly 7.2 kb that encodes for three open reading frames (ORF).
The ORF1 encodes a poly-protein involved in genomic repli-
cation, ORF3 a phosphoprotein with putative regulation
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functions, and ORF2 the single capsid protein, the main immu-
nogenic antigen. The lack of an efficient cell culture system for
HEV and the absence of a well-characterized small animal
model are drawbacks in HEV research. Despite that, researches
have advanced in the knowledge of infection biology of HEV
that has allowed the generation of a vaccine. An intramuscular
subunit vaccine consisting of a fragment of ORF2 from HEV
GT1 (Heicolin®) has been licensed in China for vaccination of
healthy adults. This vaccine elicits protective IgG antibodies,
which reduced the incidence of the disease but did not
affect the rate of infection because the virus is neutral-
ized only when it reaches the bloodstream after
replication.

Mucosal vaccines offer several advantages in comparison
to systemic vaccines. These include the induction of selective
mucosal immunity that protects the host at the infection port of
entry, and no need of needle or specialized personnel for its
administration and therefore mass administration is possible.
However, subunit vaccines to be administered at muco-
sal sites need to be administered with adjuvants to en-
sure immunity, as mucosal sites, especially the intestinal
mucosa, tend to be tolerant.

Several studies have demonstrated that Gram-positive en-
hancer matrix [12] particles also known as bacterium-like par-
ticles (BLP) stimulate potent immune responses when admin-
istered together with microbial antigens [12, 13]. Most studies
evaluating the ability of BLP to improve immune responses to
vaccine antigens have been performed with BLP obtained
from Lactococcus lactis [14]. BLP were used as a non-
genetically modified delivery system for pathogen’s epitopes
by anchoring antigens on their surface via peptidoglycan bind-
ing protein domains fused to the antigen of interest [15–17].
These complexes delivered orally or nasally induced mucosal
and systemic protective immunity to different bacterial and
viral pathogens including Streptococcus pneumoniae [18], in-
fluenza virus [19–21], and respiratory syncytial virus [22].
The adjuvant properties of BLP have also been used for im-
proving the efficacy of existing vaccines [13, 23]. This strat-
egy was tested for influenza vaccination using a seasonal in-
fluenza vaccine mixed with L. lactis derived BLP. It was re-
ported that the use of BLP reduced the antigen doses needed to
obtain a protective response, elicited both local and systemic
immune responses, and shifted the immune response to a Th1-
type [13, 23].

The immunomodulatory ability of lactic acid bacteria
(LAB) is a strain-specific property. The distinct ability of
LAB strains to modulate the immune system has been attrib-
uted to the different microbial-associated molecular patterns
(MAMPs) that interact with distinct pattern recognition recep-
tors (PRRs) expressed in immune and non-immune cells
[24–28]. Therefore, it is possible to speculate that BLP obtain-
ed from different LAB strains would have distinct adjuvant
capacities. As our starting material is an immunomodulatory

strain, the obtained BLP conserve the immunomodulatory
properties and we refer to them as immunobiotic bacterium-
like particles (IBLP).

In this study, we evaluated the adjuvant activity of IBLP
produced from immunomodulatory L. rhamnosus strains
when mixed with purified HEV ORF2 from GT3 and admin-
istered orally to mice.

Material and Methods

Microorganisms

L. rhamnosus CRL1505 and L. rhamnosus IBL027 [29] were
obtained from the CERELA culture collection and the IBL
culture collection, respectively. They were kept freeze in
50% glycerol. For experiments, bacteria were activated and
finally cultured over night at 37 °C (final log phase) in Man–
Rogosa–Sharpe broth (MRS, Oxoid).

Production of Immunobiotic Bacterium-Like Particles

Fresh overnight cultures (100 ml) of L. rhamnosus IBL027
and L. rhamnosus CRL1505 were collected by centrifugation
(10 min, 13,000×g) and washed once with sterile distilled
water. Afterwards, the pellets were suspended in 20 ml of
0.1 M HCl and treated at 99 °C in a water bath for 45 min.
Next, the cells were washed three times in 50 ml sterile phos-
phate buffer saline (PBS), pH 7.4, with vigorous vortexing.
After the last washing step, cells were resuspended in 10 ml
PBS and stored at − 20 °C. The number of IBLP particles per
milliliter was adjusted to the CFU/ml determined in the
starting culture. IBLP obtained from L. rhamnosus IBL027
and L. rhamnosus CRL1505 were designated as IBLP1505
and IBLP027, respectively.

Recombinant Viral Proteins

The HEV ORF2 protein is a 66-kDa recombinant polypeptide
corresponding to amino acid residues 112-608 of the
capsid protein of HEV GT3. HEV ORF2 genotype 3
(GT3) contained in a pMK plasmid flanked with attB
sites was obtained by synthesis at GeneArt Gene
Synthesis (TermoFisher Scientific) and further subcloned
into pETG-N-RGS-His-[rfB] vector [30] by Gateway®
recombinatorial cloning, and transformed into E. coli
Rossetta (DE3). Recombinant protein expression was in-
duced with IPTG (1 mM) for 3 h. ORF2 protein was
purified under native and denaturing condition using NiNTA
chromatography (ThermoFisher Scientific) following the
manufacturer’s instructions. The purified protein was exam-
ined by SDS-PAGE using 10% separating gels and quantified
by Bradford (Bio-Rad).
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Animals and Treatments

Animals were housed individually and fed a conventional
balanced diet ad libitum during the experiments. All
efforts were made to minimize the number of animals
and their suffering.

Six-week-old BALB/c male mice were obtained from a
closed colony kept at CERELA. Mice were orally immunized
three times every 14 days with purified HEV ORF2 protein
obtained under native (N) or denaturing conditions (D). For
immunization, 75 μg of N protein or 7.5 μg of D protein were
administered alone or combined with IBLP1505 or IBLP027
as adjuvants at a final dose of 108 cells/mouse/day. Therefore,
seven groups of 5 mice each were used including controls,
mice receiving purified HEV ORF2 (ORF2N and ORF2D
groups), HEV ORF2 plus IBLP1505 (ORF2N+IBLP1505
and ORF2D+IBLP1505 groups) or HEV ORF2 plus
IBLP027 (ORF2N+IBLP027 and ORF2D+IBLP027 groups).
Humoral- and cellular-specific immune responses were eval-
uated at the end of the last immunization (day 42) (Fig. 1).

Tissue and Fluid Sampling

Blood samples were obtained through cardiac puncture and
intestinal fluid samples (IF) were obtained as described
previously [31]. Briefly, the small intestine was ex-
posed, and two sequential lavages were performed in
each mouse by injecting sterile PBS. The recovered flu-
id was centrifuged for 10 min at 10,000 rpm. The su-
pernatant fluids were kept frozen at − 70 °C for subse-
quent analyses. In addition, Peyer’s plaques and spleen were
removed aseptically and treated for immune cell isolation as
described below.

Transaminases Determination

To evaluate hepatic toxicity, the levels of ALT and AST in
serum samples were determined using the automatized
COBAS 4000 c311 for blood chemistry (Roche).

Flow Cytometry Studies

Peyer’s patches and spleen were teased gently to release cells,
which were filtered through a cell strainer (Becton, Dickinson,
San Jose, CA, USA) to remove debris. After washing the cells
twice in PBS supplemented with 2% fetal bovine serum, they
were counted using Trypan Blue. Suspensions were adjusted
to 5 × 106 cells/ml for flow cytometry studies. Cell suspen-
sions were pre-incubated with anti-mouse CD32/CD16mono-
clonal antibody (Fc block) for 15 min at 4 °C. Primary anti-
bodies (anti-mouse CD45-PE, anti-mouse CD3-FITC, anti-
mouse CD4-biotin, anti-mouse CD8-biotin, anti-mouse
CD24-FITC, and anti-mouse B220-PE, BD PharMingen)
were incubated with cells for 30 min at 4 °C and washed with
FACS buffer. Streptavidin-PerCP was used as a second-step
reagent. Cells were acquired on a BD FACSCaliburTM flow
cytometer (BD Biosciences) and data were analyzed with
FlowJo software (TreeStar).

Cytokine Determination

Tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and inter-
leukin (IL)-4 were measured in supernatants of stimulated
mononuclear cells isolated from Peyer’s patches or spleen
with commercially available enzyme-linked immunosorbent
assay (ELISA) kits following the manufacturer’s recommen-
dations (R&D Systems, MN, USA).

Fig. 1 Immunization scheme. Balb/c mice were grouped in seven groups
with five mice each and orally immunized three times every 14 days.
HEV ORF2 protein obtained under native (ORF2N) or denaturing con-
ditions (ORF2D) was given alone or adjuvanted with IBLP
[immunobiotic bacterium-like particles (IBLP), from L. rhamnosus
CRL1505 (IBLP1505) or L. rhamnosus IBL027 (IBLP027)]. Seven

groups of five mice each were used including controls, mice receiving
purified HEV ORF2 (ORF2N and ORF2D groups), HEV ORF2 plus
IBLP1505 (ORF2N+IBLP1505 and ORF2D+IBLP1505 groups), or
HEV ORF2 plus IBLP027 (ORF2N+IBLP027 and ORF2D+IBLP027
groups). Intestinal fluid, blood, spleen, and Peyer’s patches were drawn
42 days after the 1st oral immunization
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Anti-HEV ORF2-Specific antibodies

ELISA was performed to determine HEV ORF2-specific an-
tibodies in sera and intestinal fluids. Purified HEVGT3 ORF2
was coated (1 μg/ml) onto 96-well high-binding microtiter
plates, blocked with 1% gelatin and incubated with diluted
mouse sera or diluted mouse intestinal fluid for 1 h. Bound
mouse antibodies were detected using HRP-conjugated anti-
bodies directed to mouse IgG-Fc or IgA (MP Biomedicals,
Inc.). Endpoint enzymatic activity was detected with TMB
as substrate. The reaction was stopped with 0.1 M H3PO4

and measured at 495 nm in a microplate reader.

Statistical Analysis

Experiments were performed in triplicate and results were
expressed as mean ± standard error (SE). After verification
of the normal distribution of data, two-way ANOVAwas used.
Tukey’s test (for pairwise comparisons of the means) was used
to test for differences between the groups. Differences were
considered significant at P < 0.05.

Results

Development of HEV ORF2-IBLP Experimental
Vaccines

We first aimed to produce and purify recombinant HEVORF2
fromGT3. In our hands, HEV ORF2 was mainly expressed in
soluble form and to a lesser extent in inclusion bodies as it was
reported for ORF2 from GT1 [32]. Under native conditions,
ORF2 was present in monomeric and trimeric forms, whereas
under denaturing conditions, as expected, only the monomeric
form was detected (data not shown).

On the other hand, we obtained IBLP derived from the
immunomodulatory strains L. rhamnosus IBL027 and
L. rhamnosus CRL1505. IBLPs were assessed by electronic
microscopy after treating bacteria with acid and heat. The
elliptical shape of lactobacilli is conserved as well as the cell
wall, whereas cytoplasmic membrane is disrupted and there is
loss of intracellular content (data not shown). There were no
morphological differences between the strains.

Experimental vaccines were developed with native and de-
natured proteins to reach two different concentrations related
to the maximal yield obtained under native and denaturing
conditions.

Humoral Immune Response Induced by HEV
ORF2-IBLP Vaccines

We performed immunization experiments comparing the im-
mune responses to the HEV ORF2 antigen under native and

denaturing conditions with and without IBLP supplementa-
tion. The experiments included seven groups of mice: con-
trols, ORF2N, ORF2D, ORF2N+IBLP1505, ORF2D+
IBLP1505, ORF2N+IBLP027, and ORF2D+IBLP027 as de-
scribed in the BMaterials and Methods^ section and Fig. 1.
The different formulations were administered orally on day
0, and mice were boosted with the respective formulations
on days 14 and 28 after the priming. Animals were euthanized
on day 42 after priming for the evaluation of specific humoral
and cellular immune responses. Mice were monitored daily to
evaluate potential adverse effects of experimental vaccines.
No signs of illness or discomfort were observed in any of
the experimental groups. No changes in body weight gain
were observed with respect to control animals (data not
shown). In addition, the study of liver enzymes did not reveal
alterations of liver function. All experimental groups showed
ranges between 27.5 and 33 ± 7.14 IU/L for AST and 21 and
26.5 ± 6.3 IU/L for ALT, which correspond to reference values
published elsewhere [33].

The determination of specific anti-HEV ORF2 antibodies
showed that the proteins alone did not induce production of
serum IgG or intestinal IgA (Fig. 2). However, when IBLP
were used as adjuvants, IgG and IgA production increased
significantly compared to non-vaccinated mice. IBLP1505
were more effective in inducing specific IgG than IBLP027.
The latter only enhanced IgG production with the higher dose
of the native protein HEV ORF2 (Fig. 2). In contrast,
IBLP027 were more potent in inducing secretory IgA in the
intestinal lumen.

Cellular Immune Response Induced by HEV ORF2-IBLP
Vaccines

For the evaluation of the local cellular-specific immune re-
sponse, lymphocytes from Peyer’s patches were isolated and
evaluated by flow cytometry. As shown in Fig. 3, the frequen-
cy of CD45+CD3+CD4+ T cells was similar in mice immu-
nized with ORF2N with or without the addition of IBLP. On
the contrary, CD45+CD3+CD4+ T cells in ORF2D+IBLP027
and ORF2D+IBLP1505 immunized mice were higher than in
the ORF2D group. Frequencies in CD45+CD3+CD8+ cyto-
toxic T cells were not significantly different among the differ-
ent treated groups and the control group in Peyer’s patches
(Fig. 3). When the B cell population was analyzed, it was
found that Peyer’s patches CD24+B220+ cells were signifi-
cantly increased in ORF2N and ORF2D when compared to
control mice. In addition, administration of IBLPs improved
the frequency of CD24+B220+ B cells when compared to their
respective controls (Fig. 3). In order to further characterize the
cellular immune response in the intestinal mucosa, mononu-
clear cells were isolated from Peyer’s patches and cultured.
Then, cells were stimulated with the ORF2 protein and the
levels of IFN-γ, TNF-α, and IL-4 were determined by
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ELISA on the supernatants. Immune cells from ORF2N and
ORF2D groups produced IFN-γ and IL-4 in response to
ORF2 stimulation in higher concentrations than those ob-
served in control cells while only ORF2N group-derived cells
produced higher levels of TNF-α than controls (Fig. 4). Both
IBLP1505 and IBLP027 improved the levels of IFN-γ and
TNF-α, when compared to ORF2N and ORF2D groups while
the concentration of IL-4 was similar in all the immunized
groups (Fig. 4).

We also aimed to study the systemic specific immune re-
sponse by evaluating the same parameters described above in
mononuclear cells from spleens of immunized mice. As shown
in Fig. 5, the frequency of CD45+CD3+CD4+ and
CD45+CD3+CD8+ T cells was similar in all the experimental
groups. On the other hand, the frequency of CD24+B220+ B
cells in ORF2N and ORF2D cells was higher than in controls.
It was also observed that spleen B cells were similar between
ORF2D, ORF2D+IBLP1505, and ORF2D+IBLP027 while

were higher in ORF2N+IBLP1505 and ORF2N+IBLP027
when compared to their respective control (Fig. 5). Spleen im-
mune cells from ORF2N and ORF2D groups produced IFN-γ,
TNF-α, and IL-4 in response to ORF2 stimulation in higher
concentrations than those observed in control cells (Fig. 6).
Both IBLP1505 and IBLP027 improved the levels of IFN-γ
and TNF-α, when compared to ORF2N and ORF2D groups
while the concentration of IL-4 was enhanced only in the
ORF2N+IBLP027 and ORF2N+IBLP1505 groups (Fig. 6).

Discussion

The ORF2 protein is the only component of HEV capsid and
both conformational and linear epitopes have been identified
in its C-terminal domain [34–36]. There is a commercially
available subunit vaccine for hepatitis E in China, formulated
with protein ORF2 from HEV genotype 1, which is applied

Fig. 2 Effect of oral immunization with HEV capsid protein (ORF2) ad-
ministered with IBLP on adaptive humoral immune response. Serum (a)
and intestinal levels (b) of specific anti-HEV ORF2 antibodies in serum or
intestinal fluid, respectively. Antibodies were determined by ELISA. Fold
increase was determined as the relation between respective treatment
groups and the control groups and are expressed in arbitrary units (A.U.).
Data was obtained as triplicate determinations of pooled samples from each
mouse group. HEV ORF2 protein obtained under native (ORF2N) or de-
naturing conditions (ORF2D) was given alone or adjuvanted with IBLP

[immunobiotic bacterium-like particles (IBLP), from L. rhamnosus
CRL1505 (IBLP1505) or L. rhamnosus IBL027 (IBLP027)]. Seven groups
of five mice each were used including controls, mice receiving purified
HEV ORF2 (ORF2N and ORF2D groups), HEV ORF2 plus IBLP1505
(ORF2N+IBLP1505 and ORF2D+IBLP1505 groups), or HEVORF2 plus
IBLP027 (ORF2N+IBLP027 and ORF2D+IBLP027 groups). ANOVA
followed by Dunnet’s test was conducted. *P < 0.05 was considered
significant
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intramuscularly and elicits good protection at systemic level
after three doses. It should be noted that although ORF2 is
conserved across genotypes, there are different immunoreac-
tivities between proteins derived from different genotypes
[37]. In addition, this vaccine is not indicated for risk

populations such as pregnant women and children [38] and
does not confer mucosal immunity. Naturally acquired immu-
nity to HEV seems to wane over time; thus, re-infections are
possible, and the cross-sectional epidemiological studies con-
ducted globally may underestimate the prevalence of HEV

Fig. 3 Effect of oral immunization with HEV capsid protein (ORF2)
administered with IBLP on lymphocytes from Peyer’s patches. Cell pop-
ulations from Peyer’s plaques of mice immunized with HEV ORF2 were
analyzed by flow cytometry. HEV ORF2 protein obtained under native
(ORF2N) or denaturing conditions (ORF2D) was given alone or
adjuvanted with IBLP [immunobiotic bacterium-like particles (IBLP),
from L. rhamnosus CRL1505 (IBLP1505) or L. rhamnosus IBL027

(IBLP027)]. Seven groups of five mice each were used including con-
trols, mice receiving purified HEV ORF2 (ORF2N and ORF2D groups),
HEV ORF2 plus IBLP1505 (ORF2N+IBLP1505 and ORF2D+
IBLP1505 groups), or HEV ORF2 plus IBLP027 (ORF2N+IBLP027
and ORF2D+IBLP027 groups). Different letters above bars indicate sig-
nificant differences between groups. P < 0.05 was considered significant
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infection because of the natural extinction of anti-HEV IgG
[39]. Therefore, HEV-specific immunity elicited by the vac-
cine probably does not protect life-long and needs to be

boosted. The only available data indicate that 87% of the
vaccinated population with three doses had detectable specific
antibodies up to 5 years post-vaccination [40].

Fig. 4 Effect of oral immunization with HEV capsid protein (ORF2)
administered with IBLP on cytokine production of mononuclear cells
isolated from Peyer’s patches stimulated ex vivo with ORF2. HEV
ORF2 protein obtained under native (ORF2N) or denaturing conditions
(ORF2D) was given alone or adjuvanted with IBLP [immunobiotic
bacterium-like particles (IBLP), from L. rhamnosus CRL1505
(IBLP1505) or L. rhamnosus IBL027 (IBLP027)]. Seven groups of five

mice each were used including controls, mice receiving purified HEV
ORF2 (ORF2N and ORF2D groups), HEV ORF2 plus IBLP1505
(ORF2N+IBLP1505 and ORF2D+IBLP1505 groups), or HEV ORF2
plus IBLP027 (ORF2N+IBLP027 and ORF2D+IBLP027 groups).
Different letters above bars indicate significant differences between
groups. P < 0.05 was considered significant
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Taking into consideration the disadvantages of systemic vac-
cines, some researchers are focused on the development of safe
and efficient mucosal vaccines. The advantages of oral vaccines

rely on the higher acceptance due to the convenience of apply-
ing the vaccine without needles, which saves time and work,
and because mucosal vaccines stimulate adaptive immunity at

Fig. 5 Effect of oral immunization with HEV capsid protein (ORF2)
administered with IBLP on lymphocyte populations in spleen. Cell pop-
ulations from spleen of mice immunized with HEV ORF2 were analyzed
by flow cytometry. HEV ORF2 protein obtained under native (ORF2N)
or denaturing conditions (ORF2D) was given alone or adjuvanted with
IBLP [immunobiotic bacterium-like particles (IBLP), from L. rhamnosus
CRL1505 (IBLP1505) or L. rhamnosus IBL027 (IBLP027)]. Seven

groups of five mice each were used including controls, mice receiving
purified HEV ORF2 (ORF2N and ORF2D groups), HEV ORF2 plus
IBLP1505 (ORF2N+IBLP1505 and ORF2D+IBLP1505 groups), or
HEV ORF2 plus IBLP027 (ORF2N+IBLP027 and ORF2D+IBLP027
groups). Different letters above bars indicate significant differences be-
tween groups. P < 0.05 was considered significant

968 Probiotics & Antimicro. Prot. (2020) 12:961–972



the port of entry of the pathogen preventing pathogen dissem-
ination. In this regard, we investigated in this work whether a
subunit oral vaccine for HEV consisting of the purified HEV

capsid protein ORF2 administered with IBLPs derived from
two different immunomodulatory strains of L. rhamnosus was
able to elicit specific humoral and cellular immunity in mice.

Fig. 6 Effect of oral immunization with HEV capsid protein (ORF2)
administered with IBLP on cytokine production of mononuclear cells
isolated from spleen stimulated ex vivo with ORF2. Mononuclear cells
from spleen of mice immunized with HEV ORF2 were isolated and
stimulated with ORF2 and cytokines were determined in cell culture
supernatants by ELISA. HEV ORF2 protein obtained under native
(ORF2N) or denaturing conditions (ORF2D) was given alone or
adjuvanted with IBLP [immunobiotic bacterium-like particles (IBLP),

from L. rhamnosus CRL1505 (IBLP1505) or L. rhamnosus IBL027
(IBLP027)]. Seven groups of five mice each were used including con-
trols, mice receiving purified HEV ORF2 (ORF2N and ORF2D groups),
HEV ORF2 plus IBLP1505 (ORF2N+IBLP1505 and ORF2D+
IBLP1505 groups), or HEV ORF2 plus IBLP027 (ORF2N+IBLP027
and ORF2D+IBLP027 groups). Different letters above bars indicate sig-
nificant differences between groups. P < 0.05 was considered significant
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LAB are non-pathogenic and generally regarded as safe
microorganisms according to the US Food and Drug
Administration [41, 42]. Apart from being used for the con-
servation of food, they have multiple applications and some
strains can selectively modulate the immune system [43]. Due
to their natural immunoadjuvant activities, in the past 20
years, some LAB, especially Lactococcus lactis and
L. plantarum, were used as mucosal delivery vehicles of het-
erologous antigens and therapeutic molecules [44–46].
Recently, the immunogenicity of a recombinant L. lactis ex-
pressing the HEV ORF2 protein on its surface was tested in
mice. The oral immunization with this recombinant strain re-
sulted in the induction of specific humoral and cellular re-
sponses against the capsid antigen [47]. These results encour-
age the use of LAB as mucosal adjuvants for the de-
velopment of HEV vaccines. However, genetically mod-
ified organisms pose a challenge to human use because
of the needed strict control of their attenuation and/or absence
of reversion to virulence, their genetic stability and antibiotic
resistance [48].

An easier and safer approach of the use of LAB as mucosal
adjuvants and delivery vectors was explored in earlier studies
by Saluja et al. [23], who demonstrated that the influenza
subunit vaccine orally administered with BLP from L. lactis
(known as GEM, Gram-positive enhanced matrix) generated
an antigen-specific immune response [23]. BLP conserve their
cell wall structure, and the peptidoglycan is even more ex-
posed because of the acid-heat depletion of surface proteins
and teichoic acids. Peptidoglycan is recognized by the Toll-
like receptor 2 (TLR2) and in this way, it could serve as a
mucosal adjuvant. In previous studies, we have demonstrated
that L. rhamnosus CRL1505 alive or heat-killed is able to
increase immunity against infections [26, 49]. L. rhamnosus
CRL1505 can modulate immunity by triggering TLR2 signal-
ing in intestinal epithelial cells and antigen-presenting cells
[24], and it was demonstrated that the main structural compo-
nent responsible for the immunomodulatory activity of the
CRL1505 is its peptidoglycan [50, 51]. In addition, the
CRL1505 strain, when orally administered to mice, is able
to improve the production of TNF-α, IL-6, and IFN-γ in the
intestine and serum without inducing any detrimental inflam-
matory effect [26, 49, 52]. This change induced by
L. rhamnosus CRL1505 on cytokine’s profiles could support
an efficient antigen presentation. Interestingly, the immuno-
modulatory capacity of L. rhamnosus CRL1505 is not fully
shared by other strains of the same or related species or their
peptidoglycans [50], indicating that LAB strains have to be
carefully selected in order to use those with the highest adju-
vant activities as carriers and adjuvants for vaccines.

In this study, we show that orally administered ORF2 pro-
tein produced in E. coli under native conditions combined
with IBLP obtained either from L. rhamnosus CRL1505 or
IBL027 induced humoral antigen-specific immune responses

in mice. IBLP1505 elicited a slightly stronger anti-HEV
ORF2 IgG response in serum than IBLP027, but the latter also
induced specific secretory IgA in the gut lumen, key for mu-
cosal defenses. Considering that the port of entry of HEV is
the intestinal epithelial cell, it is desirable that a mucosal vac-
cination induces protection at this site, apart from generating
systemic anti-HEV IgG. Of interest, ORF2+IBLPs experi-
mental vaccines also stimulated cellular immune responses.
We found that Peyer’s patches T and B cell populations in-
creased in number, regardless of the IBLPs used, whereas in
the spleen, only the B cell population augmented when IBLPs
were used as adjuvants. We also evaluated the specific pro-
duction of IFN-γ, TNF-α, and IL-4 upon stimulation of
mononuclear cells isolated from Peyer’s patches and spleen,
reflecting mucosal and systemic immune activation, respec-
tively. Elevated levels of IFN-γ, TNF-α, and IL-4 suggested
that ORF2 combined with IBLPs induced a mixed Th1/Th2-
type adaptive immune response. Both types of IBLPs were
able to increase the responsiveness of mononuclear cells to
the specific viral antigen (ORF2).

The delivery of mucosal vaccines is more accepted in
humans and is more convenient than intramuscular vaccina-
tion because it saves time and qualified personal involved in
vaccination is not necessary. In addition, the use of mucosal
vaccination is especially attractive for animal vaccination, es-
pecially for zoonotic infections such as hepatitis E. This study
presents evidence on the possible use of recombinant proteins
adjuvanted with IBLPs from immunomodulatory lactobacilli
for oral vaccination.
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