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Abstract
The effects of treatment with probiotics on the immunological and hematobiochemical changes in Trypanosoma brucei infection
were investigated. Probiotic strains used are Bifidobacterium BB-12, Lactobacillus acidophilus LA-5, Lactobacillus delbrueckii
LBY-27, Lactobacillus paracasei LC-01, and Streptococcus thermophilus STY-31. Thirty rats randomly assigned to five groups
were used in the experiment. Groups A to C received 1 × 109 CFU, 5 × 109 CFU, and 10 × 109 CFU of the multi-strain probiotics
daily and respectively from day 0 post-supplementation (PS) to termination. Group D and E were the infected and uninfected
controls respectively. On day seven PS, groups A to D were challenged intraperitoneally with approximately 1 × 106 trypano-
somes. Parasitemia, nitric oxide level, hematobiochemical parameters, and antibody titer to heterologous antigen stimulation
were monitored post-infection. By days 7 and 16 PS, probiotics-treated groups had significantly lower (p < 0.05) mean creatinine
concentration than the controls; however, on day 7 PS, there were no significant variations in the leukocyte counts (LC), total
erythrocyte counts (TEC), and the packed cell volume (PCV) in all experimental groups. Following infection, by day 16 PS, the
pre-patent period, parasitemia levels, and antibody titer were similar in all infected groups. Furthermore, the probiotics-treated
groups and the infected control had significantly lower PCV, TEC, and LC values when compared to the uninfected control, and
probiotics treated groups (A and C) had only marginally lower nitric oxide levels than the infected control. Treatment with the
probiotic strains gave a creatinine-lowering effect, was innocuous to the hematopoietic system, but was not sufficiently
immunostimulatory in trypanosomosis.
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Introduction

Trypanosomosis is a group of diseases caused by Trypanosoma
spp. and it remains a very important human and animal health
challenge. The hallmarks of the pathology of animal
trypanosomosis are anemia, immunosuppression, oxidative
damage, and hematobiochemical derangements [1–5].

The most commonly used chemotherapeutic or chemopro-
phylactic agents (including diminazene, homidium, and

isometamidium salts) against animal trypanosomosis are over
four decades old, and the problem of drug resistance is wide-
spread [6, 7]. Even when clinical cure is achieved in animal
patients, relapse of infections may follow shortly afterwards
due to the inability of most trypanocides to sufficiently reach
trypanosomes present in the brain [8], and due to failure of
immunological defense of the body. Poor predictability of
returns on investment resulting from high cost of research,
development, clinical trials, and drug licensing is a disincen-
tive to development of novel trypanocidal drugs by major
pharmaceutical firms. The few attempts on drug develop-
ments notwithstanding, experts have opined that novel li-
censed trypanocides are not likely to be available in the near
future; hence, fine and optimum use of the few available
trypanocides is strongly advocated [6, 8].

Probiotics have immunomodulatory functions, and could
improve overall health [9, 10]. Use of probiotics in
hemoparasite infections with Plasmodium falciparum [11],
Babesia microti [12, 13], Trypanosoma cruzi [14], and
Trypanosoma brucei [15] gave positive results with respect to
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levels of parasitemia and immune responses. Antioxidant and
serum biochemistry normalizing effects of certain probiotic
strains have been documented [16, 17]. Although the bioactiv-
ities of probiotics are strain specific [18, 19], it has been shown
that multi-strain probiotics mix could be more beneficial and
more effective than single strains, even the individual strains
that constitute the mixtures themselves [20, 21].

Proprietary probiotic strains whose biological and immuno-
logical attributes have been largely documented were chosen for
this study, namely, Bifidobacterium BB-12, Lactobacillus aci-
dophilus LA-5, Lactobacillus delbrueckii LBY-27, Lactobacillus
paracasei LC-01, and Streptococcus thermophilus STY-31.
Treatments with Bifidobacterium animalis subsp. lactis BB-12
modulated T cells and natural killer cell functions in respiratory
infections of human patients [22]; it also induced interleukin-10
(IL −10) production in swine immune cells in vitro [23].
Tabasco et al. [24] demonstrated that the presence of
Streptococcus thermophilus STY-31 acts at gene transcription
level to enhance the production of bioactive molecules from
Lactobacillus acidophilus LA-5. The well-established immuno-
modulatory and antioxidant properties of Lactobacillus
acidophilus have been reported [25, 26]. More so, strains of
Streptococcus thermophilus and Lactobacillus delbrueckii
subsp. bulgaricus act synergistically in co-cultures [27].
Strains of Lactobacillus delbrueckii subsp. bulgaricus positively
modulated mice macrophage functions in vitro and in vivo
thereby inhibiting growth of tumor cells [28]. When adminis-
tered orally, Lactobacillus paracasei subsp. paracasei L- 01
withstood intestinal stress, positively modulated intestinal mi-
cro-flora, and elicited antioxidant and immunity enhancing ef-
fects [29–31]. Sreeja and Prajapati [32] opined that patients with
depressed immune function may benefit from administration of
probiotics. Inflammatory biomarkers were improved in patients
suffering gestational diabetes mellitus who consumed a probiot-
ic mix containing Bifidobacterium BB-12, Lactobacillus aci-
dophilus LA-5, Lactobacillus delbrueckii LBY-27, and
Streptococcus thermophilus STY-31 [33].

Considering that immunosuppression and hematobiochemi-
cal derangements are cardinal features of trypanosomosis, we
hypothesized that treatments with the probiotic strains used in
this study could improve the resistance, the clinical pathological
course, and the immune response to Trypanosoma brucei infec-
tion in rat models. Hence, this study investigated the effects of

treatment with a probiotic mix on parasitemia, immune re-
sponse, and hematobiochemical changes in trypanosomic rats.

Materials and Methods

Ethical Consideration

Ethical considerations for the use of the animal models in this
study were based on the procedures of the Animal Use and
Care Committee of the Faculty of Veterinary Medicine of the
study institution, which agree with the NIH guidelines [34].

Experimental Animals

Thirty (30) male Sprague-Dawley rats weighing between 240
and 268 g were used for the study. Following 2 weeks of
acclimatization, the rats were randomly assigned to five
groups (n = 6) namely, A, B, C, D, and E. They were housed
in fly-proof cages and fed with proprietary animal feed ad
libitum while being allowed access to fresh drinking water.

Probiotics and Trypanosomes

The Trypanosoma spp. used in this work was isolated from a
dog presented at the veterinary teaching hospital of the uni-
versity, clinically ill from trypanosomosis. The isolated try-
panosomewas identified as Trypanosoma brucei at the depart-
ment of veterinary parasitology and entomology of the uni-
versity. The livemulti-strain probiotics mix was obtained from
CHR® (Netherlands). There were approximately 25 × 109

CFU of organisms per gram of the freeze dried culture. The
mix contained the following five strains of probiotic organ-
isms in equal proportion: Bifidobacterium BB-12,
Lactobacillus acidophilus LA-5, Lactobacillus delbrueckii
LBY-27, Lactobacillus paracasei LC-01, and Streptococcus
thermophilus STY-31.

Treatment and Infection with Trypanosoma brucei

Groups A, B, and C received 1 × 109 CFU, 5 × 109 CFU, and
10 × 109 CFU of the multi-strain probiotics (MP) daily and
respectively from day 0 post-supplementation (PS) to termi-

Table 1 Mean serum creatinine
concentration (mg/dl) of rats
treated with multi-strain
probiotics and infected with
Trypanosoma brucei

Groups A B C D E p value

Day 7 PS 0.87 ± 0.06ab 0.87 ± 0.01a 0.88 ± 0.01a 0.93 ± 0.02ab 0.97 ± 0.01b < 0.001

Day 16 PS 1.35 ± 0.16a 1.57 ± 0.16ab 1.69 ± 0.11ab 1.72 ± 0.09b 0.77 ± 0.01c < 0.001

A, infected + 1 billion cfu; B, infected + 5billion cfu; C, infected + 10 billion cfu; D, infected + untreated; E,
uninfected + untreated. PS, post-supplementation. Superscripts a, b, and c flag significant variation across the
rows
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nation of the study. Groups D and E were the infected and the
uninfected controls respectively, and therefore did not receive
any treatment with probiotics. MP was delivered to rats in
indicated groups as a suspension in 1 ml of distilled water
administered through gastric gavages. On day 7 PS, groups
A, B, C, and D were challenged intraperitoneally with approx-
imately 1 × 106 Trypanosoma brucei suspended in phosphate
buffered saline (PBS).

Blood Collection, Parasitemia, and Assays

A drop of peripheral blood on glass slide taken from tail tip snip
was used for the detection and estimation of parasitemia by
rapid matching technique [35] from 48 h post-infection in ex-
perimental animals. About 1.5 ml of blood was collected from
the retro-bulbar plexus of the medial canthus of rats. One mil-
liliter of blood was collected into plain eppendorf tubes,
allowed to clot, and centrifuged at 3000 rpm for 5 min to sep-
arate the serum for biochemical assays, while the remaining
0.5ml of bloodwas collected into sodiumEDTA-treated bottles
for hematological studies. The concentrations of blood urea
nitrogen, and creatinine on days 7 and 16 PS were determined

using commercial kits (Randox®, UK), while the serum nitric
oxide levels were determined by the modified Griess method
[36] on the same days. The total and differential leukocyte
counts, the total erythrocyte count, and packed cell volumes
were determined on days 7 and 16 PS using Leishman, hemo-
cytometer, and micro-hematocrit methods respectively [37, 38].

Immunization of Rats with Sheep Erythrocytes

All the experimental animals were immunized with heterolo-
gous antigen—a 10% sheep erythrocyte, on day 17PS; 6 days
later, (day 23 PS), sera harvested from rats in all the experi-
mental groups were assayed for antibody titer levels by direct
hemagglutination technique using 2% sheep erythrocytes as
described by Ikeme and Adelaja [39]. Rats in all the infected
groups (groups A–D) were severely ill by day 25 PS and were
sacrificed the same day on humane grounds.

Data Analysis and Result Presentation

Data obtained were analyzed with ANOVA statistic using
SPSS version 20. Variations in means were separated using
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Fig. 1 Mean pre-patent period (in days) of rats treated with multi-strain
probiotics and infected with Trypanosoma brucei. A, infected +1 billion
cfu; B, infected +5 billion cfu; C, infected +10 billion cfu; D , infected +
untreated

0

200

400

600

800

1000

1200

12 16 22

M
ea

n 
pa

ra
si

te
m

ia
 (x

10
6

Tr
yp

an
os

om
es

/m
l o

f b
lo

od
)

Days Post Supplementa�on

A (INF+1B cfu) B (INF+5B cfu) C (INF+10B cfu) D (INF+ UNTREATED)

Fig. 2 Mean parasitemia (×106 trypanosomes/ml of blood) of rats treated
with multi-strain probiotics and infected with Trypanosoma brucei

Table 2 Mean blood urea nitrogen concentration (mg/dl) of rats treated with multi-strain probiotics and infected with Trypanosoma bruce i

Groups A B C D E p value

Day 7 PS 27.48 ± 2.75 27.35 ± 2.45 29.25 ± 2.70 25.81 ± 0.58 26.78 ± 2.42 0.881

Day 16 PS 34.94 ± 1.39a 42.37 ± 6.00 a 33.63 ± 1.83 a 29.60 ± 2.63 a 56.61 ± 7.19b 0.002

A, infected + 1 billion cfu; B, infected + 5billion cfu; C, infected + 10 billion cfu; D, infected + untreated; E, uninfected + untreated. PS, post-supple-
mentation. Superscripts a and b flag significant variation across the rows
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the least significant difference (LSD) post hoc tests.
Heteroscedasticity was accommodated with Welch’s robust
test of equality of means [40]. Significance was accepted at
p < 0.05. The results were presented as means ± standard error
of mean using tables and figures.

Results

Serum Urea and Creatinine Concentrations

Supplementation with the probiotic mix led to significantly
lower (p < 0.001) mean serum creatinine concentrations in
groups B and C compared to the uninfected control (group
E) (Table 1). Following infection, by day 16 PS, treatment
with probiotics at 1 × 109 CFU daily (group A) resulted in a
significantly lower (p < 0.001) mean serum creatinine concen-
tration when compared to the levels in infected control. There
was no significant variation in mean blood urea concentration
across all the experimental groups on day 7 PS (Table 2). A

general increase in urea concentration was seen on day 16 PS;
however, the values were similar in all infected groups.

Pre-patent Period, Parasitemia, Antibody Titer,
and Nitric Oxide Concentration

Infection established in all challenged groups within four (4)
days. There were no statistically significant variations in mean
pre-patent periods across all infected groups (Fig. 1). By day
12 PS (Fig. 2), the omnibus Welch’s ANOVA indicated no
significant variation [Welch’s F(df 3, 10.301) = 1.317, p =
0.321] in the mean parasitemia across all the infected groups.
However, with post hoc multiple comparison, the probiotics-
supplemented groups A and C had similar mean parasitemia
with group D (infected control) while group B (infected +5B
CFU) had values significantly (p < 0.05) higher than that of
group D (infected untreated) and group A. On day 16 PS,
groups A, C, and D had similar mean parasitemia. Group B
had significantly higher (p < 0.05) mean parasitemia than
group C. On day 22 PS, there were no significant variations
in mean parasitemia across all the experimental groups.

Following challenge with heterologous antigen, the mean
antibody titers were similar across all infected groups by day
23 PS (Fig. 3). Prior to infection, by day 7 PS, probiotics
supplementation did not result in significant variations in se-
rum nitric oxide (NO) levels across all the experimental
groups (Table 3). Following infection, by day 16 PS,
probiotics-treated groups A (infected +1B CFU) and C (in-
fected +10BCFU) had lower NO values which were similar to
the level seen in the uninfected control. The infected control
and group B had significantly higher (p < 0.05) serum NO
levels compared to the uninfected control.

Total Erythrocyte Count, Packed Cell Volume, Total
and Differential Leukocyte Counts

Supplementation with probiotic strains, by day 7 PS, did not
result in any significant variation in total erythrocyte counts
and packed cell volumes in all the experimental groups
(Tables 4 and 5); however, following infection, by day 16
PS, the total erythrocyte counts and the packed cell volumes
were significantly lower in all infected groups compared to the
uninfected control (group E).
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Fig. 3 Mean antibody titer (log2 of HA unit/ml) on day 23 post-
supplementation of rats treated with multi-strain probiotics and infected
with Trypanosoma brucei. A, infected +1 billion cfu; B, infected +5
billion cfu; C, infected +10 billion cfu; D, infected + untreated; E,
uninfected + untreated. * Significant variation (p < 0.05) from all other
groups

Table 3 Mean serum nitric oxide
concentration (NO equivalent in
μM) of rats treated with multi-
strain probiotics and infected with
Trypanosoma brucei

Groups A B C D E p
value

Day 7 PS 40.97 ± 4.08 39.44 ± 3.30 42.03 ± 2.32 39.22 ± 2.99 39.72 ± 3.17 0.967

Day 16 PS 36.64 ± 2.11ac 48.04 ± 5.35b 37.37 ± 3.70ac 42.54 ± 3.29ab 31.60 ± 2.40c 0.034

A, infected + 1 billion cfu; B, infected + 5billion cfu; C, infected + 10 billion cfu; D, infected + untreated; E,
uninfected + untreated. PS, post-supplementation. Superscripts a, b, and c flag significant variation across the
rows
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There were no statistically significant variations in mean
total white blood cell count across the groups by day 7 PS
(Table 6). By day 16 post-supplementation (corresponding to
day 9 post-infection), group E (uninfected control) had signif-
icantly higher (p < 0.05) total white blood cell count compared
to all other experimental groups, while all infected groups
maintained similar total leukocyte count. The mean absolute
neutrophil and lymphocyte counts followed the same pattern
as the total leukocyte counts (Tables 7 and 8).

Discussion

Before and after infection with Trypanosoma brucei, treat-
ments with the probiotic strains resulted in significantly lower
levels of serum creatinine in probiotics-supplemented groups
compared to the control groups. Creatinine is a byproduct of
muscle catabolism which is usually excreted via the kidney. It
is elevated in conditions of kidney damage, severe muscle
catabolism, and dehydration [41]. Cachexia and loss of mus-
cle mass have been associated with animal trypanosomosis,
where it could be secondary to anorexia, or directly mediated
by tumor necrosis factor [3]. Trypanosoma brucei is markedly
tissue invasive [42]; consequently, impaired kidney function
reflected by elevated serum creatinine and blood urea nitrogen
is a common finding in the disease [1, 43]. The findings from
this work indicate that treatment with the probiotic strains
produced a creat inine- lowering effect in animal
trypanosomosis, conceivably by the improvement of the pa-
tients’ nutrition, thereby forestalling emaciation, interference
with elaboration and function of tumor necrosis factor, or
amelioration of trypanosomosis associated kidney damage.
The creatinine-lowering effect of the probiotic strains in this
study strongly supports the findings in recent reports [16, 19,
44] where it was shown that certain probiotic strains amelio-
rated oxidative damage of the kidney in rats with experimen-
tally induced nephrotoxicity.

Pre-infection administration of probiotics did not pro-
long the onset of parasitemia as depicted by the absence
of any meaningful variation in the mean pre-patent pe-
riods following challenge with trypanosomes. This was
so even in groups where the probiotics were administered
in excess of the recommended minimum dose of about
5 × 109 CFU daily for 5 days [45]. This finding suggests
that the probiotic strains studied neither enhanced the re-
sistance nor susceptibility of the models to the establish-
ment of trypanosomiasis. Some workers reported a delay
in onset of parasitemia in rats treated with the probiotic,
Saccharaomyces cerevisiae and later challenged with
Trypanosoma spp. [15]. Similarly, significantly longer
pre-patent period and shorter duration of parasitemia were
reported in mice infected with Plasmodium chaubodi fol-
lowing treatment with the probiotic Lactobacillus casei
ATCC 7469 [46]. Our finding is at variance with the re-
ports stated above, and the basis of this may not be un-
connected to the fact that the bioactivities and effects of
probiotics are strain specific [18, 19], and may vary with
disease models.

The levels of parasitemia did not vary meaningfully be-
tween probiotic-treated groups and the control group in the
later stages of acute trypanosomosis; in fact, during the first
few days of infection (day 12 PS), parasitemia progressed
more rapidly in probiotics-treated group B compared to the
infected control. Studies reporting worse outcome of disease
conditions associated with probiotic treatments are few.
Treatments with some probiotic strains enhanced susceptibil-
ity to cryptosporidiosis in mice [47], and exacerbated chronic
colitis by depression of neutrophil mobilization in murine
models [48]. In this study, it is conceivable that during the
early stages of the infection, treatment with the probiotic
mix may have worsened the immunity and consequently ag-
gravated the parasitemia in group B. This, however, remains
to be proven bearing in mind that other probiotics-treated
groups and the infected control had similar levels of

Table 4 Mean total erythrocyte
count (x106cells/μL) of rats
treated with multi-strain
probiotics and infected with
Trypanosoma brucei

Groups A B C D E p value

Day 7 PS 9.89 ± 0.67 9.88 ± 0. 63 9.52 ± 0.50 9.43 ± 0.57 10.09 ± 0.52 0.923

Day 16 PS 5.66 ± 0.27a 4.91 ± 0.49a 4.70 ± 0.05a 4.97 ± 0.43a 7.83 ± 0.33b < 0.001

A, infected + 1 billion cfu; B, infected + 5billion cfu; C, infected + 10 billion cfu; D, infected + untreated; E,
uninfected + untreated. PS, post-supplementation. Superscripts a and b flag significant variation across the rows

Table 5 Mean packed cell
volume (%) of rats treated with
multi-strain probiotics and
infected with Trypanosoma
brucei

Groups A B C D E p value

Day 7 PS 44.50 ± 1.11 45.17 ± 1.58 47.33 ± 0.95 47.83 ± 1.17 46.17 ± 1.62 0.402

Day 16 PS 37.83 ± 2.79a 38.83 ± 5.11a 40.50 ± 8.02a 45.00 ± 7.92a 48.66 ± 5.43b 0.028

A, infected + 1 billion cfu; B, infected + 5 billion cfu; C, infected + 10 billion cfu; D, infected + untreated; E,
uninfected + untreated. PS, post-supplementation. Superscripts a and b flag significant variation across the rows
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parasitemia. With respect to levels of parasitemia, this finding
contrasts reports [11–15] by several workers on the subject of
use of probiotics in hemoparasitosis.

The similar nitric oxide (NO) levels recorded on day 7 PS
in naïve probiotics-treated groups, as well as the uninfected
control, suggest that treatments with the probiotic strains do
not, on their own, elicit any meaningful change in NO levels
in vivo. Following infection, why the NO levels continued to
rise in group B (infected +5 billion CFU probiotics) is unclear;
however, what is obvious is that other probiotic-treated groups
had relatively lower NO levels and lower parasitaemia. A
cursory look at the pattern of the NO and parasitemia levels
in all the experimental groups suggests some degree of direct
correlation between the two parameters; nonetheless, this re-
mains to be established. It appears that higher NO levels may
be associated with more severe parasitemia and pathologies in
animal trypanosomosis contrary to what is seen with many
other infectious diseases. Sternberg et al. [49] showed that
the inhibition of NO production in vivo results in reduced
parasitemia in Trypanosoma spp. infection. Beschin et al.
[50] also reported the immunosuppressive effect of NO in
early stages of trypanosomosis which resulted in high
parasitemia. In Plasmodium chaubodi infection of mice,
Martinez-Gomez et al. [46] reported significantly higher
levels of nitric oxide and reduced parasitemia in the
probiotics-treated groups when compared to the controls;
however, their findings may be attributed to the distinctive-
ness of the hemoparasite, probiotic strains, and experimental
animal models used. It has been noted that while NO acts to
eliminate invading pathogens in various infections [51], it
mediates immunosuppression in trypanosomosis [49, 50].

When parasitemia peaked in the infected groups, and all the
experimental groups were challenged with a heterologous im-
munogen, the antibody titer thus elicited was similar across all
the infected groups, notwithstanding treatments with

probiotics. Lower levels of agglutinins to heterologous immu-
nogens in trypanosome-infected animals compared to the con-
trol groups have been reported by several workers [52, 53],
and this agrees with our findings. Probiotics strains could
improve immunocompetence by stimulating general non-
specific immunity, and by enhancing both innate and specific
immune functions [54, 55]. Eze et al. [15] reported that sup-
plementation of rat diet with Saccharomyces cerevisiae result-
ed in an increase in antibody titer to sheep erythrocytes, which
decreased upon the establishment of Trypanosoma brucei in-
fection; in addition, the supplemented groups maintained a
significantly higher antibody titer than both the uninfected
and infected controls. In this study, across the infected groups,
no significant variation in mean antibody titer was noted as
revealed by a one-time direct hemagglutination test (DHAT)
by day 23 PS. Further, DHATwas practically impossible due
to the onset of mortalities in the infected groups, and surviving
animals were humanely sacrificed by day 25 PS due to severe
illness. Although the uninfected control had significantly
higher titer as at day 23 PS, it is conceivable that further
stimulation with the antigen may have been necessary to elicit
elevated antibody titers in infected groups bearing inmind that
anamnestic response is a well-established concept in immu-
nology [56, 57]. In addition, the route of probiotics adminis-
tration to rats in this study may have affected the level of
humoral immune responses recorded in probiotics-treated
groups. It has been shown that mice that received
Lactobacillus casei intraperitoneally showed a slightly better
resistance to Babesia microti infection when compared to
mice that were treated orally [12]. Additional and more
narrowed studies may be warranted on this subject using the
probiotic strains.

By day seven of supplementation with probiotics, the total
and differential leukocyte counts, total erythrocyte count
(TEC), and mean packed cell volumes (PCV) of rats in all the

Table 6 Mean total white blood
cell count (x103cells/μL) in rats
treated with multi-strain
probiotics and infected with
Trypanosoma brucei

Groups A B C D E p value

Day 7 PS 16.43 ± 0.93 14.23 ± 0.40 14.42 ± 0.41 14.25 ± 0.58 15.05 ± 0.32 0.56

Day 16 PS 5.53 ± 0.38a 5.73 ± 0.73a 5.40 ± 0.91a 6.43 ± 0.40a 15.50 ± 0.42b < 0.001

A, infected + 1 billion cfu; B, infected + 5 billion cfu; C, infected + 10 billion cfu; D, infected + untreated; E,
uninfected + untreated. PS, post-supplementation. Superscripts a and b flag significant variation across the rows

Table 7 Mean absolute
neutrophil count (x103cells/μL)
of rats treated with multi-strain
probiotics and infected with
Trypanosoma brucei

Groups A B C D E p values

Day 7 PS 6.01 ± 0.33 5.23 ± 0.26 5.09 ± 0.23 5.22 ± 0.29 5.41 ± 0.29 0.198

Day 16 PS 1.89 ± 0.16a 2.11 ± 0.33a 1.97 ± 0.39a 2.35 ± 0.27a 5.35 ± 0.2b < 0.001

A, infected + 1 billion cfu; B, infected + 5 billion cfu; C, infected + 10 billion cfu; D, infected + untreated; E,
uninfected + untreated. PS, post-supplementation. Superscripts a and b flag significant variation across the rows
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experimental groups did not show any meaningful disparity.
This agrees with previous reports that treatment with probiotics
did not result in any significant variation in hematological pa-
rameters of rats [58], and of broilers [59]. Following infection,
both the probiotics-treated groups and the infected control had
significantly lower PCV, TEC, and differential and total leuko-
cyte counts, which were below the reference ranges [60];
hence, trypanosomosis-induced anemia and leukopenia had
set in. Anemia and leukopenia characterized by neutropenia,
lymphopenia, eosinopenia, and monocytosis are typically seen
in animal trypanosomosis [1, 2, 4]. The mean absolute lympho-
cyte and neutrophil counts followed a similar pattern with the
mean total leukocyte counts. Basophils are hardly ever seen in
mammalian blood and were not detected in this study. It ap-
pears, therefore, that treatments with the probiotic strains nei-
ther improved nor depressed the hematopoietic systems of rats
suffering trypanosomosis.

In conclusion, treatments with the probiotic strains gave a
creatinine-lowering effect in trypanosomosis and were innoc-
uous to the hematopoietic system; however, our findings on
the pre-patent period, parasitemia, leukocyte counts, nitric ox-
ide level, and antibody titer levels clearly indicate that treat-
ment with the probiotic strains was not sufficiently
immunostimulatory in Trypanosoma brucei infection of rats.
It appears the presence and bioactivities of the probiotic
strains do not positively interfere with the pathogenesis and
development of immunosuppression in trypanosomosis. The
biological meaning of the findings above is that with respect
to Trypanosoma brucei infections, treatments with the probi-
otic mix do not enhance immunity; however, the creatinine-
lowering effect thus elicited could be of clinical significance,
and studying the underlying mechanism(s) of this effect may
satisfy future research interests.
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