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Abstract
The present work, herein, studied the effects of corncob-derived xylooligosaccharides (CDXOS) and Lactobacillus plantarum
CR1T5 (LP) integrated into fish diets (diet 1 (0—control), diet 2 (10 g kg−1 CDXOS), diet 3 (108 CFU g−1 L. plantarumCR1T5),
diet 4 (10 g kg−1 CDXOS +108 CFU g−1 L. plantarum CR1T5)) on growth performance, innate immune parameters, and disease
resistance of Nile tilapia (Oreochromis niloticus). Fingerlings, with average mean weight of 4.97 ± 0.04, were randomly distrib-
uted into 16 glass tanks (20 fish per tank) for 12 weeks. Growth performance, skin mucus, and serum immune parameters were
evaluated at the conclusion of the experiment. Eight randomly selected fish were used for challenge test against Streptococcus
agalactiae. The results indicated that fish fed CDXOS and LP had significantly improved final weight (FW), weight gain (WG),
specific growth rate (SGR), and feed conversion ratio (FCR). However, no significant difference in survival rate was observed
between specimens fed the supplemented diets and the control. Regarding skin mucus, the dietary inclusion of CDXOS and LP
significantly increased lysozyme and peroxidase activities compared with the control (P < 0.05). Similarly, significant increases
in serum lysozyme, peroxidase, alternative complement, phagocytosis, and respiratory burst activities were observed in the fish
fed the supplemented diets. However, no significant differences were found in these parameters between fish fed CDXOS and LP
diets. For the challenge test, diet 4 produced a higher relative percentage of survival (RPS) and resistance to S. agalactiae than
fish from the other experimental groups (P < 0.05). The results suggested that CDXOS and L. plantarum CR1T5 are viable
considerations for potential feed-additive sources.
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Introduction

Due to the expansion of intensive aquaculture and increases in
culture density, fish diseases have become a frequent dilemma

[1–8]. The common way in which farmers deal with the out-
break of diseases in aquaculture is through antibiotics and/or
chemotherapeutics [9, 10]. Nonetheless, their application,
which is banned in some countries, may give rise to other
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problems, such as resistance to bacterial strains, environmen-
tal hazards, and difficulties with food safety [11, 12]. Of recent
concern is the possible transfer of antimicrobial resistance
genes and resistant bacteria from aquatic animals to humans,
with side effects occurring in both humans and the aquatic
environment [10]. These concerns have led to a search for
natural strategies as alternatives to the use of antibiotics and
chemotherapeutics in aquaculture [10, 13]. Among them, the
inclusion of prebiotics and probiotics in farmed fish and shell-
fish diets has been assayed to enhance digestion, digestive
enzymes, growth, and immune response [14–21].

A prebiotic is defined as a non-digestible compound that,
through its metabolization bymicroorganisms in the gut, mod-
ulates the composition and/or activity of the gut microbiota,
thus conferring a beneficial physiological effect on the host
[22, 23]. It has well-established that prebiotics play a pivotal
role in enhancing host’s health and well-being, when by-
products are fermented by favorable microbiota [24–26]. In
this sense, agricultural by-products are potential fiber sources,
which, when integrated as functional ingredients in food prod-
ucts, can inhibit diseases related to the alterations in intestinal
microflora [27]. As they are often discarded as wastes, or
burned in the field after each crop, the further use of these
by-products will help in their proper disposal, as well as to
generate employment and provide farmers with an additional
income [28]. Global corn production is approximately 1 bil-
lion metric tons [29], resulting in huge amounts of corncobs.
Corncobs have long been used as a component for growing
several industrially important bacteria and fungi, and in the
production of pharmaceuticals and nutraceutically important
enzymes [28]. The major elements of corncob by-product are
xylooligosaccharides (XOS), xylitol, and xylose [30, 31]. Of
these, XOS has proved to be a potential prebiotic [32] and has
been considered a potential functional ingredient in the diet.
Several properties that play a vital role in improving human
health have been attributed to XOS, immunomodulatory, an-
tioxidative, antidiabetic, and anti-cancer activities, as well as
the ability to stimulate the proliferation of colonic
bifidobacteria, calcium absorption, and lipid metabolism
[33–35].

On the other hand, probiotics are defined as Blive microor-
ganisms which, when administered in adequate amount, con-
fer a health benefit on the host^ [36, 37]. The beneficial effects
of dietary probiotics consumption have been demonstrated in
aquaculture, including the promotion of growth, stimulation
of the immune response, and enhanced disease resistance [14,
38–41]. Lactobacillus plantarum belongs to the genus
Lactobacillus, which plays an important role in the fish intes-
tine. Strains belonging to this species are able to release anti-
bacterial compounds which inhibit the growth of harmful mi-
croorganisms [42, 43]. Dietary supplementations of
L. plantarum have been reported to stimulate the immune
response, enhance growth performance, and metabolic

functions, compete for adhesion and for nutrition, as well as
improve disease resistance in several fish species [44–50].

Synbiotics are defined as Bmixtures of probiotics and pre-
biotics that beneficially affect the host by improving the sur-
vival and implantation of live microbial dietary supplements
in the gastrointestinal tract of the host^ [51]. In the last decade,
the application of synbiotics has been widely studied in fish
and shellfish [15]. However, to the best of our knowledge,
there are no previous studies regarding the use of corncob-
derived xylooligosaccharide (CDXOS) and Lactobacillus
plantarum on the growth performance, humoral immunity
(both mucosal and seric), and disease resistance of Nile tilapia
(O. niloticus); this situation has given rise to the present study.

Materials and Methods

Xylooligosaccharides Preparation

RawMaterials PreparationCorncobs obtained from the exper-
iment farm of the Faculty of Agriculture, Chiang Mai
University (Thailand), were oven dried at 60 °C for 2 days
before being crushed by hammer mill, and then filtered using
100-μm mesh size sieve, and stored at 4 °C until use.

Xylan Extraction Xylan was isolated following the protocol of
Chapla et al. [28] with some modifications as described in our
previous publication [52]. The xylan obtained was used as
substrate for enzymatic hydrolysis [53].

Enzymatic HydrolysisXOSwas obtained by enzymatic hydro-
lysis of xylan after thoroughly mixing with 0.01 M potassium
phosphate buffer at pH 6.5 (15% w/v). Then, 100 U/g of sub-
strate of crude xylanase from Aspergillus niger (supplied by
ASIA STAR CO., LTD.) was added and the incubation was
carried out at 55 °C for 24 h [54]. The incubated samples were
collected and then centrifuged at 10,000 rpm for 10 min. The
supernatant was gathered and freeze-dried at − 40 °C in a
freeze dryer (FreezeZone® Plus Labconco, USA), and the
powder was kept at − 20 °C until further use.

Experimental Design

Nile tilapia fingerlings were bought from the Chiang Mai
Pattahana Farm, Chiang Mai, Thailand. Upon arrival, the fish
were placed in 3000-L tanks and allowed to acclimatize for
2 weeks; after which, they were randomly distributed into 16
glass tanks (150 L), stocked at a density of 20 fish tank−1. The
fish were fed the experimental, twice a day (at 09.00 h and
17.00 h) to apparent satiation, for 12 weeks. Fifty percent of
the water in each tank was exchanged daily to maintain water
quality. The water quality parameters, temperature, pH, and
dissolved oxygen, were monitored daily and maintained at
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28.55 ± 0.81 °C, 7.90 ± 0.50, and 5.40 ± 0.35 mg l−1,
respectively.

Lactobacillus plantarum CR1T5 was kindly provided by
Dr. Saowanit Tongpim, (Department ofMicrobiology, Faculty
of Science, Khon Kaen University, Thailand). A pure culture
of L. plantarum CR1T5 was inoculated in MRS broth and
incubated at 30 °C. After 15 h of incubation (30 °C), the
bacterial cells were harvested, washed with 0.85% (w/v)
NaCl, and resuspended in the same solution. The cell suspen-
sion density was adjusted spectrophotometrically to reach an
optical density at 600 nm (OD600) of 0.2 to 1.8, using sterile
0.85% (w/v) NaCl. Various cell concentrations within the
OD600 were observed, and thus a linear relationship between
the viable cells, established through the spread-plate tech-
nique, and the OD600 was determined. The OD600 of each cell
suspension was set up to a desired cell concentration
(CFU mL−1) for further feed formulation experiment.

The selected L. plantarum CR1T5 dose (108 colony
forming units, cfu g−1) replicated that of our previous studies
[45, 55]. The L. plantarum CR1T5 added to the tested diets
was prepared daily, following the protocol described by
Irianto, Austin [56]. A basal diet [57] was supplemented with
CDXOS and/or L. plantarum CR1T5 in which to prepare the
experimental diets: 0 g kg−1 CDXOS and 0 L. plantarum
CR1T5 (diet 1—control), 10 g kg−1 of CDXOS (diet 2),
108 cfu g−1 L. plantarum CR1T5 (diet 3), and 10 g kg−1of
CDXOS +108 cfu g−1 L. plantarum CR1T5 (diet 4) (Table 1).

Growth Performance

After 4-, 8-, and 12-week post feeding, the final weight,
weight gain, specific growth rate, and feed conversion ratio
were calculated according to the previously described formu-
lae [48].

Sample Collection and Immune Response Analysis

Sample Collection

Within the same periods described above, four fish from each
replication were used for innate immune response analysis, in
which skin mucus was collected according to the method of
Ross et al. [58]. Blood and serum were collected, as described
in our previous studies [46, 59]. Leucocyte separation and
collection from un-clotted blood was carried out according
to Chung, Secombes [60] with modifications, as described in
previous studies [46, 59].

Immune Parameters

Lysozyme Activity The protocol described by Parry et al. [61]
was followed for the determination of serum and mucus lyso-
zyme activities, and expressed as μg ml−1.

Peroxidase Activity Serum and mucus peroxidase activities
were measured according to the methods of Quade, Roth
[62] and Cordero et al. [63]. Briefly, 5 μL of serum or skin
mucus was placed in flat bottomed, 96-well plates in triplicate.
Then, 45μL ofHank’s balanced salt solution (HBSS), without
Ca+2 or Mg+2, and 100 μL of solution (40 ml of distilled
water, 10 μL of H2O2 (30%—Sigma-Aldrich), and one tablet
of 3,3′,5,5′-tetramethylbenzidine (TMB; Sigma-Aldrich))
were added. Fifty microliters of 2 M H2SO4 was added once
the reaction color changed, and the optical density was read at
450 nm via a plate reader (Synergy H1, BioTek, USA).
Standard samples with no serum or skin mucus were consid-
ered as blanks, a single unit was defined as the amount pro-
ducing an absorbance change of 1, and the activity was
expressed as units of (U) mg−1 serum or mucus.

Phagocytosis Activity The serum phagocytic activity was de-
termined according to the method described by Yoshida and
Kitao [64] with slight modifications, described in details in
our previous studies [46, 59].

Respiratory Burst Activity The respiratory burst activity of the
Nile tilapia peripheral blood leucocytes was determined
through the suggestions of Secombes [65], with slight modi-
fications, as described in detail in our previous studies [46,
59].

Alternative Complement Pathway Activity The serum alterna-
tive complement pathway activity (ACH50) was measured
according to Yanno [66], as described in [46, 59].

Challenge Study

Streptococcus agalactiae source, preparation, and injection
dose were as detailed in a previous publication [48]. Briefly,
S. agalactiaewas cultured in Tryptic Soy Broth and incubated
at 37 °C for 24 h in a rotation shaker, at a speed of 110 rpm.
The sub-culture was obtained from the stock, as follows: 5 mL
of the stock solution was transferred into a 50-mL flask con-
taining Tryptic Soy Broth, and incubated at 37 °C for 24 h.
The sub-cultures within the present study were raised in du-
plicate, under similar conditions. Growth was evaluated by
optical density of 560 nm and then confirmed by plate
counting, in Tryptic Soy Agar.

After 12 weeks of feeding, eight randomly selected fish in
each tank were injected intraperitoneally with 0.1 ml of 0.85%
normal saline solution (NSS) containing 107 CFU ml−1 of
S. agalactiae [67]. Dead fish from each tank were removed
daily, and the mortality (%) in each treatment was computed
15 days, post-challenge. The relative percentage of survival
(RPS) was then calculated through the following equation:

RPS ¼ 100− test mortality=control mortalityð Þ � 100
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Statistical Analysis

Statistical analysis was performed using one-way analysis of
variance (ANOVA) followed by Duncan’s multiple range test.
The mean values were considered significantly different,
when P< 0.05. All statistical analysis was conducted using
SAS Computer Program [68].

Results

Growth Performance

Statistically significant increases were recorded for the specif-
ic growth rate (SGR), weight gain (WG), and final weight
(FW) within each supplemented diet, for 4, 8, and 12 weeks,
as compared to the control group (P < 0.05; Table 2). Fish fed
diet 4, a combination of CDXOS and L. plantarum CR1T5
(LP), had the highest FW, WG, and SGR values (Table 2), yet
had the lowest feed conversion ratio (FCR). The highest FCR
was found in fish from the control group (diet 1) (P < 0.05).

However, there were no significant differences in any of the
parameters in fish fed diet 2 or 3 (P > 0.05; Table 2). There
were also no effect on the survival rate detected among fish
receiving either the control, or any of the supplemented diets
(Table 2).

Innate Immune Parameters

Dietary supplementations of CDXOS (diet 2), LP (diet 3), and
the combination of CDXOS and LP (diet 4) each significantly
enhanced skin mucus lysozyme and peroxidase activities
(SMPA), compared with the control group, after each of the
three feeding periods (P < 0.05; Table 3). The highest values
were found in fish fed diet 4, followed by fish fed diet 3, and
diet 2. However, no significant differences were detected in
mucus parameters among fish fed the control and the supple-
mented diets after 4 weeks, or between fish fed diet 2 and 3
(P > 0.05; Table 3).

Differences were observed in serum lysozyme activity be-
tween control and the supplemented groups (Table 4), in
which diets 2, 3, and 4 produced higher serum lysozyme ac-
tivity than that of the control diet (P < 0.05; Table 4). The

Table 1 The formulation and
proximate composition of
experimental diet (g kg-1)

Ingredients Diets (g kg−1)

Diet 1 Diet 2 Diet 3 Diet 4

Fish meal 270 270 270 270

Corn meal 200 200 200 200

Soybean meal 270 270 270 270

Wheat flour 60 60 60 60

Rice bran 150 150 150 150

CDXOS1 0 10 0 10

Lactobacillus plantarum (CFU g−1) 0 0 108 108

Cellulose 30 20 30 20

Soybean oil 2 2 2 2

Premix2 10 10 10 10

Vitamin C3 8 8 8 8

Proximate composition of the experimental
diets (g kg−1 dry matter basis)

Crude protein 319.36 319.35 319.36 319.35

Crude lipid 71.75 71.75 71.75 71.75

Fiber 52.48 52.48 52.48 52.48

Ash 106.68 107.27 106.68 107.27

Dry matter 817.80 816.90 817.80 816.90

GE (Cal g−1)4 4066 4064 4066 4064

1CDXOS, xylooligosaccharides from corncobs
2Vitamin and trace mineral mix supplemented as follows (IU kg−1 or g kg−1 diet): retinyl acetate 1,085,000 IU;
cholecalciferol 217,000 IU; D, L-a-tocopherol acetate 0.5 g; thiamin nitrate 0.5 g; pyridoxine hydrochloride 0.5 g;
niacin 3 g; folic 0.05 g; cyanocobalamin 10 g; Ca pantothenate 1 g kg−1 ; inositol 0.5 g; zinc 1 g; copper 0.25 g;
manganese 1.32 g; iodine 0.05 g; sodium 7.85 g
3Vitamin C 98% 5 g
4GE, gross energy
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highest serum lysozyme activity (SL) was detected in fish fed
diet 4, whereas no significant difference was observed be-
tween the CDXOS (diet 2) and LP (diet 3) supplemented diets
(P > 0.05; Table 4). Similarly, alternative complement activity
(ACH50), and phagocytosis activity (PI) increased in fish fed
the supplemented diets, comparedwith the control; the highest
values being generated by diet 4 (Table 4). No significant
differences were detected in the values of fish fed the
CDXOS (diet 2) and the LP (diet 3) diets, regarding seric
lysozyme, complement activity, and phagocytosis (P > 0.05;
Table 4). Higher levels of serum peroxidase activity resulted
in fish fed the supplemented diets, versus those fed the control
diet, though no significant differences were observed among
the supplemented diets. Lastly, significant differences in respi-
ratory burst activity were detected between fish fed

supplemented diets and the control diet, but only at 4 weeks
(Table 4).

Challenge Test

The challenge test using S. agalactiae was carried out after
12 weeks of feeding, and the survival rate was recorded over
the following 15 days. Dead fish exhibited a loss of appetite,
darkness, exophthalmia, fins basal hemorrhage, and pale liver,
which are typical symptoms of Streptococcus infection. The
results show that the survival rates of fish fed CDXOS (diet 2),
56.25%; LP (diet 3), 59.38%; and the combination of CDXOS
+ LP (diet 4), 71.88%, were significantly higher (P< 0.05)
than that recorded for fish fed the control diet 31.25% (Fig. 1).
Among the supplemented groups, fish fed diet 4 showed

Table 2 Growth performances
and feed utilization (mean ± SE)
of the Nile tilapia fed different
diets: diet 1 (0—control), diet 2
(10 g kg−1 CDXOS), diet 3
(108 CFU g−1 L. plantarum), and
diet 4 (10 g kg−1 CDXOS
+108 CFU g−1 L. plantarum).
Different letter in a row denote
significant difference (P < 0.05)

Diet 1 Diet 2 Diet 3 Diet 4

IW (g) 4.91 ± 0.09 4.94 ± 0.08 4.96 ± 0.07 5.05 ± 0.04

FW (g)

4 weeks 13.11 ± 0.74b 17.06 ± 0.84a 17.19 ± 0.95a 18.68 ± 0.56a

8 weeks 23.33 ± 0.64c 27.40 ± 0.92b 27.80 ± 0.91b 32.00 ± 1.02a

12 weeks 47.71 ± 1.10c 50.86 ± 0.82b 51.84 ± 0.52b 57.36 ± 0.99a

WG (g)

4 weeks 8.20 ± 0.77b 12.13 ± 0.81a 12.23 ± 0.94a 13.63 ± 0.58a

8 weeks 18.41 ± 0.63c 22.46 ± 0.89b 22.84 ± 0.85b 26.95 ± 1.04a

12 weeks 42.80 ± 1.04c 45.93 ± 0.74b 46.88 ± 0.47b 52.31 ± 1.03a

SGR

4 weeks 3.26 ± 0.21b 4.12 ± 0.15a 4.13 ± 0.18a 4.36 ± 0.11a

8 weeks 2.60 ± 0.05c 2.85 ± 0.05b 2.87 ± 0.03b 3.08 ± 0.06a

12 weeks 2.53 ± 0.02c 2.59 ± 0.01b 2.61 ± 0.01b 2.70 ± 0.03a

FCR

4 weeks 1.44 ± 0.02a 1.37 ± 0.01b 1.36 ± 0.01b 1.34 ± 0.01b

8 weeks 1.52 ± 0.008a 1.47 ± 0.01b 1.46 ± 0.01c 1.42 ± 0.009b

12 weeks 1.62 ± 0.009a 1.55 ± 0.01b 1.56 ± 0.01c 1.50 ± 0.006b

SR (%) 98 99 99 99

IW initial weigh fish−1 , FW final weight fish−1 , SGR specific growth rate fish−1 , FCR feed conversion ratio, SR
survival rate

Table 3 Skin mucus lysozyme and peroxidase activities of O. niloticus
after 4, 8, and 12 weeks fed different diets (mean ± SE, n = 4): diet 1 (0—
control), diet 2 (10 g kg−1 CDXOS), diet 3 (108 CFU g−1 L. plantarum),

and diet 4 (10 g kg−1 CDXOS +108 CFU g−1 L. plantarum). Different
letters in a row denote significant difference (P < 0.05)

Diet 1 Diet 2 Diet 3 Diet 4

4 weeks SMLA 2.03 ± 0.38a 2.13 ± 0.27a 2.23 ± 0.33a 2.49 ± 0.46a

SMPA 0.04 ± 0.004c 0.06 ± 0.005b 0.07 ± 0.006b 0.11 ± 0.004a

8 weeks SMLA 3.38 ± 0.38c 4.86 ± 0.09b 4.87 ± 0.30b 5.97 ± 0.10a

SMPA 0.09 ± 0.006c 0.13 ± 0.01b 0.14 ± 0.006b 0.17 ± 0.01a

12 weeks SMLA 4.81 ± 0.27c 6.06 ± 0.10b 6.17 ± 0.21b 7.48 ± 0.20a

SMPA 0.12 ± 0.008c 0.17 ± 0.009b 0.17 ± 0.02b 0.27 ± 0.01a

SMLA (μg ml−1 ), skin mucus lysozyme activity; SMPA (μg ml−1 ), skin mucus peroxidase activity
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significantly higher RPS than those within other groups, as
well as the greatest resistance to S. agalactiae (Fig. 1).

Discussion

Because of today’s growing restrictions on the use of antibiotics
as growth promoters, safe and natural feed additives are being
enthusiastically investigated as alternatives to enhance growth
performance and to protect against diseases [69]. Awide range
of feed additives, like probiotics and prebiotics, which distrib-
ute have positive effects upon the host, have been applied in
aquaculture, in which to control diseases, promote growth, and
enhance the host’s immune response [70]. Such functional feed
additives have gained great attention for their beneficial effects

in enhancing production and the well-being of farmed fish, as
well as for increasing overall resistance to diseases [71].

Die ta ry supp lemen ta t ion o f corncob-de r ived
xylooligosaccharides (CDXOS) and L. plantarum CR1T5
(LP), either alone or combined, produced significantly posi-
tive effects on final weight, weight gain, specific growth rate,
and feed conversion ratio of Nile tilapia. To the best of our
knowledge, this is the first investigation that has demonstrated
such positive effect on growth performance of Nile tilapia. In
line with the present study, the positive effects of XOS,
Lactobacillus plantarum CR1T5, and other synbiotics were
previously reported in European sea bass (Dicentrarchus
labrax) [72, 73], blunt snout bream (Megalobrama
amblycephala) [74], sea cucumber (Apostichopus japonicus)
[75, 76], Nile tilapia (Oreochromis niloticus) [44–46, 48, 77],

Table 4 Serum immunity of
O. niloticus after 4, 8, and
12weeks of feedingwith different
diets (mean ± SE, n = 4): diet 1
(0—control), diet 2 (10 g kg−1

CDXOS), diet 3 (108 CFU g−1

L. plantarum), and diet 4
(10 g kg−1 CDXOS+108 CFU g−1

L. plantarum). Different letters in
a row denote significant
difference (P < 0.05)

Diet 1 Diet 2 Diet 3 Diet 4

4 weeks SL 4.62 ± 0.31c 6.34 ± 0.33b 6.72 ± 0.34b 7.96 ± 0.15a

SP 0.12 ± 0.009b 0.17 ± 0.006a 0.18 ± 0.006a 0.19 ± 0.005a

ACH50 139.36 ± 5.77c 162.39 ± 2.62b 161.76 ± 4.11b 182.99 ± 2.86a

PI 1.53 ± 0.04b 2.43 ± 0.18a 2.45 ± 0.07a 2.59 ± 0.04a

RB 0.05 ± 0.005b 0.07 ± 0.008a 0.08 ± 0.008a 0.09 ± 0.009a

8 weeks SL 7.22 ± 0.22c 8.93 ± 0.16b 9.02 ± 0.34b 10.91 ± 0.46a

SP 0.18 ± 0.007b 0.23 ± 0.01a 0.24 ± 0.01a 0.25 ± 0.008a

ACH50 179.53 ± 9.05c 224.10 ± 9.82b 228.48 ± 10.18b 277.20 ± 9.69a

PI 2.06 ± 0.11b 2.76 ± 0.11a 2.66 ± 0.05a 2.81 ± 0.08a

RB 0.13 ± 0.01a 0.14 ± 0.01a 0.14 ± 0.01a 0.14 ± 0.02a

12 weeks SL 8.96 ± 0.0.41c 11.81 ± 1.22b 12.09 ± 1.21b 17.41 ± 0.34a

SP 0.22 ± 0.003b 0.28 ± 0.02a 0.30 ± 0.03a 0.31 ± 0.02a

ACH50 224.98 ± 10.97c 282.33 ± 5.36b 280.50 ± 9.15b 350.24 ± 14.19a

PI 2.45 ± 0.09c 3.12 ± 0.10b 3.03 ± 0.05b 3.68 ± 0.12a

RB 0.17 ± 0.01a 0.18 ± 0.01a 0.18 ± 0.02a 0.19 ± 0.02a

SL serum lysozyme activity (μg ml−1 ), SP serum peroxidase activity (μg ml−1 ), ACH50 alternative complement
activity (units ml−1 ), PI phagocytosis activity (bead cell−1 ), RB respiratory burst activity (OD655)
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angelfish (Pterophyllum scalare) [78], snakehead (Channa
striata) [79, 80], rockfish (Sebastes schlegeli) [81], Asian
sea bass (Lates calcalifer) [82], and major carp (Cirrhinus
mrigala) [83]. In contrast, Abid et al. [84] reported that a
P. acidilactici and scFOS supplemented diet had no effect on
the growth performance of Atlantic salmon. Similarly, probi-
otic or prebiotic supplemented diets had no effect on the
growth or survival of Totoaba (Totoaba macdonaldi) [85].
The discrepancies in these findings may attributable to differ-
ences in species, experimental design, XOS form, and the
method of administration [86, 87], as well as sampling strate-
gy. Indeed, reports have confirmed that the effects of
probiotics on fish depend on the dose and duration of the
treatment, and the source, as well as on the species in question
[88]. It has been further reported that the inclusion of pre- and
probiotics in feed is associated with improved health status,
improved prebiotic digestion, and an increase in probiotic sur-
vival and colonization, compared with individual pre- or pro-
biotic applications [89–92]. These effects were most probably
mediated by short-chain fatty acids, as by-products of fermen-
tation of probiotic strains in the existence of prebiotics [81,
93]. Yu et al. [94] reported that acetate was the dominant
short-chain fatty acid found to result from the fermentation
process between xylooligosaccharides from corn cobs and
L. plantarum. In addition to short-chain fatty acids, the dietary
consumption of both pro- and prebiotics resulted in the for-
mation of bioactive microbial metabolites, such as vitamins
and biological peptides [95]. These, in turn, improved nutrient
digestion and absorption in the host intestine and consequent-
ly had a positive effect on growth. As previously reported, this
may be attributable to the favorable effects of XOS that help
normalize gut microbiota, and enhance the gut digestive and
absorptive capabilities of fish [96], and may have led to the
improvement of feed utilization in the present study.

The innate immune system of farmed fish is considered
a crucial defense system, which provides protection against
opportunistic pathogens [97]. The present investigation in-
dicated that the dietary inclusion of prebiotics, probiotics,
and a synbiotic resulted in an increase in serum lysozyme,
serum peroxidase, ACH50, phagocytic, and respiratory ac-
tivities. Also, the synbiotic diet led to higher non-specific
immune parameters than in the other groups. To the best of
our knowledge, there exists no information regarding the
effects of CDXOS, Lactobacillus plantarum CR1T5, or
their combination on the innate immunological parameters
of Nile tilapia. Nonetheless, in agreement with present re-
sults, Hoseinifar et al. [98] revealed that serum ACH50 and
lysozyme activities significantly increased in rainbow trout
fingerlings fed the pre-, pro-, and synbiotic diets. Recently,
Kumar et al. [83] showed that the dietary inclusion of
mannanoligosaccharide (MOS) and Bacillus subtilis as a
synbiotic significantly stimulated the innate immunologi-
cal parameters in major carp (Cirrhinus mrigala).

Similarly, a significant improvement in the innate immune
response was observed in rockfish (Sebastes schlegeli), fed
Pediococcus acidilactici, galactooligosaccharide, and
synbiotic additives [81]; snakehead (Channa striata), fed
the prebiotics GOS and MOS in combination with
Saccharomyces cerevisiae and L. acidophilus [80]; and
Asian sea bass (Lates calcalifer) fed low molecular weight
sodium alginate and Pediococcus acidilactici [82].
However, the dietary inclusion of Bacillus subtilis and chi-
tosan [91] as well as B. subtilis and FOS [90] failed to
stimulate immune parameters of cobia (Rachycentron
canadum) and yellow croaker (Larimichthys crocea), re-
spectively. The discrepancies of these findings may be
due partly to species-specific, fish ages, and/or pre- or pro-
biotic doses and types [99].

The mucosal immune system of fish consists of a unique
array of specific and innate immune cells, which include lym-
phocytes, mast cells, macrophages, and granulocytes. It also
contains molecules complement proteins, immunoglobulins,
lysozyme, proteases, esterases, and antimicrobial peptides with
antibacterial, anti-viral, and anti-fungal activities [100–103].
The present findings indicate that the dietary inclusion of pre-
biotic, probiotic, and synbiotic significantly increased skin mu-
cus lysozyme and peroxidase activities in Nile tilapia. The fish
that were fed the synbiotic diet obtained higher skin mucus
immune parameters than the fish fed both components individ-
ually. The results were similar to previous findings involving
the supplementation of heat-killed L. plantarum and β-glucan
in red sea bream (Pagrus major) [104], Pediococcus
acidilactici and galactooligosaccharide in common carp
(Cyprinus carpio) [105], Cordyceps militaris spent mushroom
substrate and Lactobacillus plantarum in Nile tilapia
(Oreochromis niloticus) [45], Pediococcus acidilactici and
GOS in rainbow trout and rock fish [81], and low molecular
weight sodium alginate and P. acidilactici in Asian sea bass
(Lates calcalifer) [82]. The significant improvement observed
in the immune response of fish in the present study may be
attributed to the effects of CDXOS and L. plantarum CR1T5.
Yu et al. [94] demonstrated that a combination of CDXOS and
L. plantarum in an in vivo model could increase the number of
lactobacilli and bifidobacteria in mouse feces, and reduce the
viability of Enterococcus, Enterobacter, and Clostridia spp.
Additionally, an in vitro antioxidant assay indicated that
CDXOS fermented with L. plantarum possessed significant
2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis, and superoxide
anion radical-scavenging activities. However, the combination
effects of CDXOS and L. plantarum CR1T5 merit further
investigation.

It is well-known that nutritional manipulation is a useful
means to enhance disease resistance in fish [106]. Synbiotic
therapy is also regarded as an effective method of disease
prevention [107]. The results of the present study showed that
Nile tilapia fed prebiotic, probiotic, and synbiotic diets
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significantly increased resistance to Streptococcus agalactiae,
of which the highest resistance was detected in fish fed the
synbiotic diet. The benefit for the fish’s immune system pro-
vided byCDXOS and L. plantarum CR1T5 was demonstrated
through the increased resistance to S. agalactiae infection in
Nile tilapia through these supplements. Similar results, in
which dietary supplementation with pre-, pro-, and synbiotic
significantly increased disease resistance, were observed in
hybrid tilapia (Oreochromis niloticus × O. aureus), against
Aeromonas hydrophilla [108]; sea cucumber (Apostichopus
japonicus), against Vibrio splendidus [76]; major carp
(Cirrhinus mrigala), against Aeromonas hydrophila [83];
rockfish (Sebastes schlegeli), against Edwardsiella tarda
[81]; and European sea bass (D. labrax), against
V. anguillarum [73]. These significant increases in disease
resistance may be due to the combined effects of CDXOS
and L. plantarum CR1T5. A recent study showed that cell-
free L. plantarum supernatant added to the corncob XOS pre-
sented strong antibacterial activities against Shigella flexneri
and E. coli, compared with the activity of Staphylococcus
aureus and Salmonella typhimurium. Culturing L. plantarum
in MRS broth in the presence of XOS revealed inhibition
zones. This indicated that the antagonistic activities of this
strain originate from alternative or simultaneous acid and hy-
drogen peroxide (H2O2) inhibition. These results suggest that
XOS could stimulate the proliferation of favorable microbiota
and increase the production of the antimicrobial substances in
the cell-free supernatant, which would include organic acids,
H2O2, bacteriocins, and low molecular mass peptides [94,
109]. In conclusion, data from the present study suggest that
CDXOS and Lactobacillus plantarum CR1T5, applied singu-
larly or in combination, can be used as functional feed addi-
tives for better growth performance and S. agalactiae resis-
tance in tilapia aquaculture.
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