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Abstract
Longevity of probiotic is the main concern for getting maximum benefits when added in food product. Bifidobacterium, a
probiotic, tends to lose its viability during gastrointestinal track (GIT) transit and storage of food. Their viability can be enhanced
through microencapsulation technology. In this study, Bifidobacterium bifidum (B. bifidum) ATCC 35914 was encapsulated by
using two experimental plans. In the first plan, chitosan (CH) at 0.6, 0.8, and 1.0% and sodium alginate (SA) at 4, 5, and 6%were
used. Based on encapsulation efficiency, 6% sodium alginate and 0.8% chitosan were selected for single coating of the bacteria,
and the resulting micro beads were double coated with different concentrations (5, 7.5, and 10%) of whey protein concentrate
(WPC) in the second plan. Encapsulation efficiency and GIT tolerance were determined by incubating the micro beads in
simulated gastrointestinal juices (SIJ) at variable pH and exposure times, and their release (liberation of bacterial cells) profile
was also observed in SIJ. The microencapsulated bacterial cells showed significantly (P < 0.01) higher viability as compared to
the unencapsulated (free) cells during GITassay. The double-coated micro beads SA 6%–WPC 5% and CH 0.8%–WPC 5%were
proven to have the higher survival at pH 3.0 after 90min of incubation time and at pH 7.0 after 3-h exposure in comparison to free
cells in simulated conditions of the stomach and intestine, respectively. Moreover, double coating with whey protein concentrate
played a significant role in the targeted (106–9 CFU/mL) delivery under simulated intestinal conditions.
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Introduction

Bifidobacteria are gram-positive, non-gas producing anaerobes
and belong to the very important group ofmicroorganisms called
probiotics [1]. The published literature has revealed that
Bifidobacteria play a key role in human health; they can balance
the gut microbiota, stimulate the immune system, prevent diar-
rhea, exhibit anticarcinogenic potential, and also help to alleviate
lactose intolerance [2–7]. Food and Agriculture Organization
(FAO) has suggested/recommended that probiotics should be

present in numbers ≥ 106 cells/g in food commodity till the time
of consumption [8–11]. So, to maintain this number of probiotic
bacteria is one of the prerequisites for its application [12] in food
products. Several factors such as dissolved oxygen content, hy-
drogen peroxide concentrations, pH, storage time, and tempera-
ture affect the viability of probiotics during its utility as food
additive (dairy/non-dairy foods) and as therapeutics [10].
Therefore the research work should be conducted to check the
viability of the probiotics starting from inoculation to product
delivery in the consumer’s gastro intestinal track (GIT) [13].

It has been reported that resistance of sensitive microorgan-
isms to harsh conditions can be improved by incorporating
prebiotics to stimulate probiotic growth or by microencapsula-
tion of the beneficial cells into a matrix or shell material before
introducing in the final product [13, 14]. Encapsulation is con-
sidered as the most effective method to maintain viability of the
probiotics confining the bacteria within a protective coating so
that they can liberate/release the active cells under specific in-
testinal conditions at a controlled rate, where, the rapid release
of the cells is desirable for their colonization at the targeted site
[11, 15]. Choice of coating materials is a critical stage to carry
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out the encapsulation. Thematrices like polysaccharides, lipids,
proteins, and their combinations have raised the interest to use
them as carrier agents for microencapsulation [13, 16].

It has been observed that among the polysaccharides, algi-
nate and chitosan are the most widely used coating materials
for microencapsulation because of the high protection of chi-
tosan for viable probiotic cells [17, 18]. The polycationic na-
ture of chitosan leads to strong interactions between the car-
boxylic groups of alginate and the amine groups of chitosan,
which results in the formation of a membrane. But, it has been
observed that the encapsulation of probiotic bacterial cells in
alginate-based microbeads was not able to keep the cells alive
effectively because calcium alginate microcapsules are chem-
ically prone to disintegrate in the presence of Ca2 +-chelating
agents such as citrate phosphate, excess monovalent ions, and
being very porous nature of the beads in highly acidic envi-
ronment [14, 19]. To increase the stability of polysaccharide-
based micro bead coating with the polycationic polymers and
their derivatives (poly-L-lysine and proteins) are needed. It has
been proven that proteins are good carrier agents for microen-
capsulation, have high nutritional value, and exhibit an excel-
lent functional property [20]. Among proteins, whey proteins
are particularly being studied for encapsulation of probiotics
[20, 21]. The use of polysaccharide-protein matrices for pro-
biotic cell microencapsulation is a new approach that permits
for the targeted delivery of probiotics and can be adopted as a
promising alternative (medicinal) strategy for health careman-
agement. In current research, an extrusion technique was used
for the microencapsulation of B. bifidumwith coating material
combination. Considering the significance of microencapsu-
lation and particularly its evident role in maintenance of pro-
biotic bacterial viability during their GIT transit, this study
was planned to achieve the following objectives: to evaluate
protective effect of various polysaccharide-protein matrix for
B. bifidum encapsulation and to assess the effect of encapsu-
lating matrices on the cell liberation/release and viability dur-
ing their incubation in simulated gastrointestinal conditions.

Materials and Methods

Bacterial Strain, Growth Media, and Growth
Conditions

Lyophilized B. bifidum ATCC 35914 (Chr. Hansen, Denmark)
was used for this study. The organism was inoculated (1%) into
de Man Rogosa Sharpe (MRS) broth (Oxoid Ltd., Hampshire,
UK), supplemented with 0.05% w/v L-cysteine hydrochloride
(Sigma Chemical Co., Castle Hill, Australia), and incubated for
48 h at 37 °C anaerobically [2]. The B. bifidum cells were
concentrated at 4 °C by centrifugation at 10090×g for 15 min
using high-speed benchtop centrifuge (75005286-EA, Thermo
Fisher Sci Inc. USA), and the cell pellet was washed twice with

0.85% of sterilized saline solution. The cell pellet (harvested
cell) was then resuspended by physiological saline (0.85%) in
one fourth of the original volume to obtain a final cell count of
108–109 colony-forming unit (CFU)/mL.

Microencapsulation of B. bifidum

Microencapsulation was done by preparing beads according
to published protocols [22, 23]. B. bifidum was encapsulated
following two experimental plans (I and II). In the experimen-
tal plan I, polysaccharides at various concentration levels [so-
dium alginate (SA) 4, 5, 6% w/v and chitosan (CH) 0.6, 0.8,
1% w/v] for single coating were used to prepare micro beads.
In experimental plan II, whey protein concentrate (WPC) at
levels of 5, 7.5, and 10% were used for double coating over
SA 6% and CH 0.8%.

For the preparation of micro beads, the cell suspension
(0.1% B. bifidum) was first mixed well with encapsulating ma-
terial, and the mixture was filled into a syringe (gauge 25) to
directly drip the mixture into 250 mL of cooled calcium chlo-
ride (0.1M) (Aldrich Chemical Company Inc., St. Louis, USA)
solution at a rate of 1.5 mL/min, which was stirred at 200 rpm
by a magnetic stirrer. The distance between the needle and the
calcium chloride solution was fixed at 3.0 cm. Particles were
immediately formed when the mixture came in contact with the
calcium chloride solution. The solution was left to mix for 30 to
120 min to allow for particle hardening. During mixing period,
a phase change occurred; the encapsulated micro beads started
to precipitate and fell to the bottom. The particles were then
collected by filtration using sterilized cheese cloth. The alginate
and chitosan micro beads were washed twice with sterile water
and kept at 4 °C for further usage. Micro beads thus prepared
were then enumerated to calculate the cell count/efficiency of
microencapsulation for B. bifidum.

Encapsulation Efficiency of B. bifidum Micro Beads
Prepared in Experimental Plan I and II

The efficiency of the encapsulated B. bifidum was measured
according to the methods [24, 25] with some modifications.
Freshly prepared beads were mechanically disintegrated in
9 mL of phosphate buffer or sterile sodium citrate solution
(0.1 M at pH 6.3) in the stomacher (400 Circulator, Seward,
UK), subsequently determining the number of entrapped cells
by pour plate method (10−1 to 10−7 dilutions), and the counts
were expressed as Log CFU/mL and calculated as:

EE %ð Þ ¼ Log10N
Log10N0

� 100

where N represented the total number of viable bacterial cells
liberated from the encapsulated micro beads andN0 is the total
number of free cells prior to encapsulation added to the
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biopolymer mixture.
The treatments having the high encapsulation efficiency,

SA 6% and CH 0.8%, were selected for further coating with
whey protein concentrate (WPC) in experimental plan II.
Then, SA 6% and CH 0.8% micro beads were dipped into
WPC (100 ml) solutions for double coating with gentle shak-
ing (100 rpm, 30 min) on magnetic stirrer. The beads were
then washed and collected for future use. The micro beads
containing SA 6%–WPC 5% and CH 0.8%–WPC 5% from
experimental plan II were again selected on basis of encapsu-
lation efficiency as described above and were used for gastro-
intestinal tract (GIT) tolerance assay for evaluating release
profile with respect to time and target site.

In-Vitro Gastrointestinal Tract Tolerance

Estimations of acid and bile tolerance of encapsulated micro
beads (double coated) in simulated stomach (gastric) and in-
testinal conditions were assessed following the method de-
scribed by Pan et al. [14]. The test was performed to compare
the bacterial viable counts and their survival rates for free cells
as well as for encapsulated SA 6%–WPC 5% and CH 0.8%–
WPC 5% micro beads after incubating in simulated gastro
intestinal juices for a specific time.

Acidic environments were prepared by adjustment of the pH
of MRS broth to different pH values (2.0, 2.5, and 3.0) using
sterile (5 M) HCl or (1 M) NaOH solution with the addition of
pepsin at a rate of 0.1 to 9.9 mL volume of MRS broth. The
interaction time of beads with gastric juice at different pH var-
ied as 0, 30, 60, and 90min to see the duration of cell’s viability
of the tested encapsulated strain. One milligram of SA 6%–
WPC 5% and CH 0.8%–WPC 5% micro beads were placed
into acidified MRS broth (9 mL) and at 37 °C was incubated
(48 h) for pre-determined time intervals (0, 30, 60, and 90 min)
and subjected to cell enumerations. Aliquot of 0.1 mLwas used
for enumeration by pour plating method on MRS agar, anaer-
obically (Anaerobic Jar, Oxoid Biomass, UAE) incubated
(48 h, 37 °C) enumerated and compared with free cell’s surviv-
al rate. Survival rate in simulated stomach (gastric) condition
was calculated by the following expression:

Survival %ð Þ ¼ Log CFU=mL at 90 min

Log CFU=mL at 0 min
� 100

The simulated small intestine juice (SIJ) was prepared by dis-
solving pancreatin at a concentration of 5 g/L (Sigma) in sterile
saline. Pancreatic solution (0.1 mL) was poured to MRS broth
(9.9 mL) adjusted to different pH values (7.0, 7.5, and 8.0) and
incubated for various time periods (0, 3, 3.5, and 4 h). The pH
of the SIJ was adjusted with 0.1 M NaOH. Survival rate (%) of
microencapsulated B. bifidum under SIJ (pH 7.0–8.0) after in-
cubation (up to 4 h) was also checked. For this purpose, micro
beads were subjected to enumeration as described above.

Viable bacterial enumeration was compared with the survival
rate of free cells. The experiment was repeated in triplicate, and
values are represented as mean of three observations. Survival
rate in simulated intestinal condition was calculated by the
following expression:

Survival %ð Þ ¼ Log CFU=mL at 4 h

Log CFU=mL at 0 h
� 100

Liberation/Release of B. bifidum in Simulated
Intestinal Fluid (SIF)

The liberation/release behavior of B. bifidum from the SA 6%–
WPC 5% and CH 0.8%–WPC 5%micro beads in gastric intes-
tinal fluid (GIF) was determined by adopting the protocol de-
scribed by Wang et al. [26]. Micro beads 200–250 mg were
added to 50 mL SIF solution at various pH values (7.0, 7.5,
and 8.0) with the constant agitation of 100 rpm/min under an-
aerobic conditions at 37 °C. Sampling (aliquots of 1.0 mL) was
carried out at 0, 3, 3.5, and 4 h of time periods. The number of
viable cells (Log CFU/mL) was determined for each time tested
in triplicate after 48 h incubation at 37 °C and subjected to
release study.

Statistical Analysis

The experiment design was completely randomized with a
three × three and two factorial arrangements between the treat-
ments (pH and incubation time). Analysis of variance (α =
0.05) and mean differences were computed by using the sta-
tistical SAS 9.4 software (SAS Institute Inc., Cary, NC, USA)
[27] to ascertain the impact of independent variables (pH
values and incubation time) on dependent variables (Log
CFU/mL). ANOVA (analysis of variance) was used to exam-
ine interaction between the factors; however, difference be-
tween the means was checked by Tukey’s HSD test.

Results

Encapsulation Efficiency of B. bifidum

High encapsulation efficiency is one of the pre-requisite for
successful microencapsulation. In this study, encapsulation sig-
nificantly (P < 0.01) increased the viability of tested B. bifidum
(Fig. 1a). Initially, the total number of viable B. bifidum in
aqueous suspension used to prepare the micro beads was about
108–109 CFU/mL. The result of experimental plan I showed
that the recovered viable cell number was 9.20 and 9.24 Log
CFU/mL for SA 6% and CH 0.8% (single coating). After enu-
meration, their encapsulation efficiency was calculated as 93.8
and 94.2%, respectively. The treatments (SA 6% andCH 0.8%)
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were selected for double coating in the next experimental plan
II with WPC 5, 7.5, and 10%. It was noticed that changes in
total viable count with respect to the changes in chitosan and
alginate concentration levels, significantly (P < 0.01) increased
with concentration levels of coating material (Fig. 1b). The
enumeration results for micro beads using the experimental
plan II revealed that the encapsulation efficiency of B. bifidum
in SA 6%–WPC 5% was 76.5% and 78.9% for CH 0.8%–
WPC 5%micro beads (Fig. 1b). Hence, it was concluded from
both experimental plans I and II that functional biological sub-
stances, including B. bifidum, exhibit a good compatibility with
polysaccharide-protein matrices.

Viable Count of Free and Encapsulated B. bifidum
Cells During GIT Tolerance Transit

Survival of B. bifidum Cells in Simulated Gastric Conditions

Poor viability of probiotic cells under the stomach pH
values is a major challenge in efficacy of probiotic food.
As per objectives, the encapsulated B. bifidum and free
probiotic cells were exposed to artificial stomach and in-
testinal conditions for various time intervals (Fig. 2a–c).

The average initial bacterial count of free probiotic cells
decreased from 8.54 Log CFU/mL to 6.6, 3.35, and 3.17
Log CFU/mL after 30, 60, and 90 min of incubation at
simulated gastric conditions, respectively at pH of 2.0.
Among the three gastric juices used with varying pH
values, free cell of B. bifidum showed significant results
at pH 3.0. At this pH, the total viable count of free cells
was less than 1.87 Log units during 1.5 h incubation time.
The data showed that at pH 2.0, free cells of B. bifidum
were not resistant to acidic environment and were not
found in acceptable limit of probiotic cells (3.35 Log
CFU/mL), i.e., less than 106 after 60-min incubation to
artificial stomach conditions. On the other side, SA 6%–
WPC 5% and CH 0.8%–WPC 5% micro beads were
moderately sensitive at this pH 2.0. Higher survival rate
of the cells was found when encapsulated B. bifidum mi-
cro beads were incubated in SGF at pH 3.0 (Fig. 2c). The
SA 6%–WPC 5% and CH 0.8%–WPC 5% micro beads
and free cells survived comparatively better (> 106 Log
CFU/mL) at pH 3.0 incubating for a period of 0, 30,
60, and 90 min, accordingly. It was concluded that the
encapsulated double-layered B. bifidum micro beads
showed better protection from simulated gastric juice
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(SGJ) and showed viability (up to 106 Log CFU/mL) in
the pH range 2.0–3.0 (Fig. 2b, c), whereas the free cells
of B. bifidum were not resistant to the prescribed acid
environment.

Survival of B. bifidum Cells in Simulated Intestinal Conditions

The population of B. bifidum cells, microencapsulated with
the mixtures of SA 6%–WPC 5% and CH 0.8%–WPC 5%,
during their exposure to simulated intestinal juice was com-
pared with the free ones (Fig. 3a–c). It also illustrates the
release profile (time and survival) of SA 6%–WPC 5% and
CH 0.8%–WPC 5% micro beads of the B. bifidum in SIF at
different pH values (7.0, 7.5, and 8.0) and incubation times (0,
3, 3.5, and 4 h), respectively. The freeB. bifidum cells were the
most susceptible to intestinal juice after the 4-h incubation,
which had a 5.04 and 4.96 Log reduction. The number of free
cells declined significantly (P < 0.01) as the incubation time of
SIJ increased from 2.5 h at pH > 7.0. However, when com-
pared with the free cells, encapsulated B. bifidum (SA 6%–
WPC 5% and CH 0.8%–WPC 5%) survived far better in SIF.
After 4 h of incubation at pH 7.0, the viable numbers of B.
bifidum encapsulated with treatment descriptions, SA 6%–
WPC 5% was slightly reduced from 7.28 to 6.50 Log CFU/
mL and CH 0.8%–WPC 5% decreased from 7.67 to 7.19 Log
CFU/mL. It was observed that as the pH increases to 7.5 and
8, the cell population reduced by 4–5 Logs after 3 h of incu-
bation in SIJ.

Liberation/Release Profile of B. bifidum in Artificial Intestinal
Conditions (AIF)

The liberation of the active probiotic cells frommicro beads is
indispensable for the colonization resistance at the targeted
site (colon). The SA 6%–WPC 5% and CH 0.8%–WPC 5%
micro beads were opened to the simulated intestinal fluid at
varying pH (7.0, 7.5, and 8.0) to assess the swelling behavior
of the coating materials and to determine the cell release po-
tentials. The coated B. bifidum cells liberated to give the via-
ble count of 7.28 ± 0.007, 7.19 ± 0.005, and 7.21 ± 0.01 Log
CFU/mL for SA 6%–WPC 5%micro beads at the pH 7.0, 7.5,
and 8.0 and the cell counts of 7.67 ± 0.02, 7.23 ± 0.007, and
7.30 ± 0.01 for CH 0.8%–WPC 5%, respectively at the same
pH followed by no further release at 0 h. It was observed that
the release from the capsules was very slow in the beginning
and the rate increased after 2.5 h. The cell count reduced in
numbers at 4th-h incubation at pH 7.5 and 8.0 for both SA
6%–WPC 5% and CH 0.8%–WPC 5% micro beads (Fig. 3b,
c). It was observed that the complete release of the cells from
the capsules was achieved at 4th-h incubation with the signif-
icant reduction in the survival rates of the micro beads.
Survival was decreased at the rate of 8% for SA 6%–WPC
5% and 1.3% for the CH 0.8%–WPC 5% micro beads at pH

7.0 during 4 h of incubation. Nevertheless, 8 and 13.7% for
SA 6%–WPC 5% micro beads at the pH of 7.5 and 8.0, and
13.7 and 4.1% reduction in survival rate was observed for CH
0.8%–WPC 5% micro beads, during 3.5-h incubation in the
SIJ.

Discussion

It is reported that encapsulation efficiency is dependent on the
nature of coating materials and methods used for the prepara-
tion of micro beads. Encapsulation efficiency of micro beads
by hydrophilic materials seems to be high as compared to
hydrophobics. Two double-coated micro beads (1) 1st layer
of 6% sodium alginate and 2nd layer of 5% WPC (SA 6%–
WPC 5%) and (2) 1st layer of 0.8% chitosan and 2nd layer of
5% WPC (CH 0.8%–WPC 5%) were prepared in the present
research work. The results for microencapsulation efficiency
were in accordance with the findings of Babu et al. [28] who
investigated the effect of alginate-whey protein as coating
material for encapsulation of the yeast and also calculated
the microencapsulation efficiency of the prepared micro beads
[20, 28]. In another study, the encapsulation efficiency was
calculated between 88 and 99.2% by using freeze drying tech-
nique [29]. The efficiency of Lactobacillus acidophilus and B.
animalis micro beads prepared by spray chilling was also
determined as 96 and 97%, respectively [30, 31]. Pedroso
et al. [32] noticed that almost all of L. acidophilus and B.
lactis in emulsion were protected during spray chilling pro-
cess. In present study, due to low acid resistance, there was a
greater reduction in survival of free B. bifidum in comparison
to encapsulated tested SA 6%–WPC 5% and CH 0.8%–WPC
5% micro beads, because these showed the least Log reduc-
tion (Log CFU/mL) on their exposure to simulated GIT con-
ditions. The study findings are in agreement with those of Lee
et al. [24] and Krasaekoopt et al. [33] who conveyed that B.
bifidum ATCC 1994 count was low at pH 2.5 showing simu-
lated gastric pepsin free environment. The results regarding
the tolerance of the free and double-layered microencapsulat-
ed cells ofB. bifidum are coherent with the studies of Shah and
Krasaekoopt et al. [2, 33]. However, they observed that count
of probiotics was 79.93% higher in all micro beads incubated
for 180min in-vitro gastric digestion test. Nualkaekuet al. [34]
assessed the viability of L. plantarum NCIMB 8826 microen-
capsulated by extrusion in alginate and subsequent coating
with two layers of chitosan. They recorded the protective ef-
fect of this technique when cells were incubated in simulated
gastric solution at pH 1.5 for 2 h. The microencapsulation of
L. acidophilus through layer-by-layer self-assembly of chito-
san and carboxymethyl cellulose was used to evaluate the
survival rate of probiotics under incubation in SGJ and SIJ,
for 120 min. These results suggested that double-layered mi-
croencapsulation improved protection of probiotics from low
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acidity in the presence of pepsin and pancreatin [35]. The
similar findings are also reported about the low survival rate
of the probiotics during their transit [36]. Hypothetically, the
greater total viable counts for cells liberated from the micro
beads in comparison to free bacterial cells is due to pro-
nounced protective effect of the microencapsulation.

Decline and survival rate (%) of microencapsulated B.
bifidum under (i) SGJ (pH 2.0–3.0) after incubation up to
90 min, (ii) SIJ (pH 7.0–8.0) after incubation up to 4 h were
investigated. These results are similar to previous study con-
ducted on Lb. Rhamnosus CRL 1505, which conferred greater
protection on exposure to acidic conditions after coating with
whey protein [28, 37]. The significant increase in viable num-
bers of encapsulated probiotic micro beads was noticed in
SGF at pH 2.0 [18, 38]. Probably, this improvement in total
numbers of viable cells can be due to the low porosity on the
surface of the micro beads and protein buffering capacity [39].
Finally, it was concluded that encapsulatedB. bifidum (up to ~
106 CFU/mL) can survive in the upper intestine at a low pH
(3.0) for at least 90 min (Fig. 2c). From the previous studies, it
was confirmed that population of probiotic bacteria enhanced
significantly in simulated intestinal conditions when encapsu-
lated with polycationic polymers. Strong ionic interactions
between the amino groups of polycationic polymer and car-
boxylate groups of alginate result in the creation of protective
membrane which acts as barrier for viable cells to be dissolved
in the stomach and allow for an efficient and controlled release
at target site of intestine [2]. Upon facing acid stress, the cells
strengthen the cell wall integrity and change the membrane
permeability to keep H+ from entering followed by increased
activity of F0F1-ATPases. The repair of acid-induced protein
and DNA damage is an important response to acid stress in
lactic acid bacteria (LABs). This could be a possible reason for
revival of the cells observed in survival studies [40]. Similar
effects of increased pH on the probiotic population have been
previously reported by Shi et al. [41]. The present study sug-
gests that B. bifidum survive better at pH range of 7.0–7.5 in
order to remain functional in small and large intestines, which
is also in alignment with the findings of Kamalian et al. [42].

An effective liberation/release of metabolically active cells
in the intestine is one of the goals of microencapsulation.
Delivery of the entrapped cells from hydrogel networks is a
mass-transfer-controlled process which depends on the envi-
ronmental factors such as pH, temperature, and the ionic
strength. Alternatively, solute transport through the polymer
network can be controlled by numerous physicochemical phe-
nomena, such as polymeric chain relaxation (macromolecule
relaxation), gel layer formation, and polymer water uptake
(diffusion) [21, 24]. It is reported that alginate gels formed
through calcium ion swells slowly at neutral pH and seems
to be very rigid due to the electrostatic repulsion between
whey proteins and the alginate molecules which dissociate
the gel. When the pH of the SIJ solution increased, the strong

electrostatic linkages between the protein and polysaccharide
matrix (due to presence of the ionizable groups of a carboxyl
and amino groups) started to be weakened followed by two
ways. Firstly, the deionization of the amino groups and the
attraction of the Na+ ions towards carboxyl groups, which
results in an increase of the osmotic pressure around the micro
beads, allow the network to expand and imbibe water.
Secondly, the presence of protease within the AIF is also help-
ful in dissolution of the micro beads [33, 43].

The study findings are in accordance to Chen et al. [44],
who worked on the release profile of alginate-whey protein
micro beads and concluded that the encapsulated cells of Lb.
bulgaricus completely liberated the active probiotic cells within
3 h with survival rate of 70%. In another study, Mandal et al.
[45] also reported that the probiotic cells released progressively
with increase of incubation time. The release time of B. bifidum
from poly-L-lysine and alginate-based micro beads after their
exposure to simulated intestinal fluid was noted at 8 h to obtain
9 Log CFU/g and 8 Log CFU/g required 12 h [46], whereas B.
adolescentis bacterium in extruded pea protein–alginate micro
beads liberated gradually from 5.5 to 7.0 Log CFU/g in SIF
within 3.5 h. It was reported that the release of B.
pseudolongum encapsulated in cellulose acetate phthalate sub-
jected to SIF was observed within 20–40 min [36, 47].
Differences in release profile in the above-mentioned studies
are due to type of the probiotic strain, micron- vs millimeter-
sized micro beads, and chemical nature of the coating material
used [48, 49]. Zhang et al. [50] studied the effect of different
microencapsulation techniques (coacervation, emulsion, and
extrusion) on the total viable count of freeze-dried B. bifidum
in comparison to free bacterial cells. They reported that the
microencapsulated cells with chitosan and alginate are more
resistant than free cells in SGJ and SIF. Therefore, the protec-
tive effect of microencapsulation of B. pseudocatenulatum G4
might be due to the deposits of alginate- and chitosan-based
multi layers [23, 42]. The active probiotic cells gradually liber-
ated from whey protein-based micro beads in AIF [11, 12].
Similar release profiles were observed by Gerez et al. [51],
who worked on the burst release of encapsulated whey
protein-hydrogelled caffeine at SIF of pH 7.5. Thus, persistence
of Bifidobacterium is highly pH-dependent as they are quite
stable at physiological pH > 5.0 but, more susceptible to acidic
conditions. The micro beads are tended to be washed out from
the body prior to exert beneficial effect, if probiotics are not
properly packed during their GIT transit [9, 52].

Conclusively, the results showed that microencapsulation
using coating matrixes (polysaccharide-protein matrix) pre-
serve viability of probiotics during GIT transitions and in ef-
fector molecules (intestine), which was one of the aims of
technology under discussion [45, 53]. The unique property
of polysaccharide-protein matrix has encouraged their use as
novel coating materials for probiotic-enriched foods [8, 28,
33]. The method used for improving the survival rate of
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microencapsulated bacteria with whey proteins, as
experimented, can be of importance for site-directed
(intestine-targeted) drug delivery, alternative therapy to anti-
biotic for treating GIT disorders and other health care man-
agement [35, 54]. However, future studies are still needed to
be carried out in order to monitor the effect of polysaccharide-
protein-based matrix fate of bacterial entrapment in tested
bacterial cells using gut or animal models.
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